白萬鵬 李虎軍 劉林波 王鎖民
摘要 干旱、土壤鹽漬化和極端高溫等已成為世界性難題,對植物生長、農(nóng)業(yè)生產(chǎn)和糧食安全產(chǎn)生了巨大的影響。控制植物水分散失是減輕非生物脅迫對植物的傷害以及提高其抗逆能力的主要途徑之一。植物的氣孔和角質(zhì)層蠟質(zhì)作為植物與外界環(huán)境相接觸的第一臨界面,在控制水分散失和保持體內(nèi)外水分平衡方面具有重要的作用。綜述了植物氣孔和角質(zhì)層蠟質(zhì)在干旱、鹽、高溫以及其他非生物脅迫下的生理響應(yīng),并概述了氣孔與角質(zhì)層蠟質(zhì)之間的關(guān)系,同時也指出了未來需要研究的重點(diǎn)和方向。
關(guān)鍵詞 非生物脅迫;角質(zhì)層蠟質(zhì);氣孔;生理響應(yīng);水分散失
中圖分類號 Q945.78文獻(xiàn)標(biāo)識碼 A文章編號 0517-6611(2020)22-0014-05
doi:10.3969/j.issn.0517-6611.2020.22.005
Research Progress of Plant Stomata and Cuticular Wax in Response to Abiotic Stress
BAI Wan-peng, LI Hu-jun, LIU Lin-bo et al
(College of Pastoral Agriculture Science and Technology, National Demonstration Center for Experimental Grassland Science Education, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou,Gansu 730020)
Abstract Drought, soil salinization, and extreme high temperatures have become worldwide problems, which have an enormous impact on plant growth, agricultural productivity and food security. Limiting water loss is one of the key ways to alleviate damage to plant from abiotic stress and increase plant stress resistance. Plant stomata and cuticular wax , as the first interface between plants and environment, play important role in maintaining water balance and resisting abiotic stresses.We reviewed the physiological responses of plant stomata and cuticular wax to drought, salt, high temperature and other abiotic stresses, and summarized the relationship between stomata and cuticular wax, in order to indicate the direction of future efforts.
Key words Abiotic stresses;Cuticular wax;Stomata;Physiological response;Water loss
基金項目 國家自然科學(xué)基金項目(31971405);蘭州大學(xué)中央高?;究蒲袠I(yè)務(wù)費(fèi)專項資金(lzujbky-2018-k01)。
作者簡介 白萬鵬(1994—),男,甘肅民樂人,碩士研究生,研究方向:植物逆境生理與分子生物學(xué)。*通信作者,教授,博士,博士生導(dǎo)師,從事植物逆境生理與分子生物學(xué)、牧草營養(yǎng)生理與基因工程等方面的研究。
收稿日期 2020-04-27
隨著溫室氣體排放量的逐年增加,全球平均溫度持續(xù)升高,并且大部分地區(qū)發(fā)生高溫極端事件的頻率逐漸增高,而低溫極端事件的頻率逐漸降低[1-2]。未來全球氣候仍將變暖且趨勢逐漸加劇,高溫?zé)崂说陌l(fā)生會更加頻繁,且持續(xù)時間將會更長,從而使得世界范圍內(nèi)的干旱缺水問題更為嚴(yán)重[1-2]。因此,如何提高植物的抗旱性及耐熱性已成為當(dāng)前的研究重點(diǎn)。在干熱環(huán)境中,植物的水分吸收速率遠(yuǎn)遠(yuǎn)低于蒸騰速率,無法滿足其對水分的需求,從而使其受到嚴(yán)重的傷害。因此,控制水分散失是減輕非生物逆境對植物的傷害并提高其抗逆能力的主要途徑。
植物的水分散失途徑包括氣孔蒸騰和角質(zhì)蒸騰。一般情況下,氣孔蒸騰和角質(zhì)層蒸騰是同時發(fā)生的,但在不同環(huán)境條件下兩者所占的比例卻有所不同。通常在濕潤環(huán)境中植物的角質(zhì)層較薄,氣孔蒸騰是其水分散失的主要方式;而在干熱環(huán)境中,植物氣孔往往趨于關(guān)閉,此時角質(zhì)蒸騰成為水分散失的主要方式[3]。Rawson等[4]研究發(fā)現(xiàn)當(dāng)小麥植株受到水分脅迫時,角質(zhì)層對總蒸騰的貢獻(xiàn)超過50%。此外,有研究表明角質(zhì)蒸騰與角質(zhì)層含量呈顯著負(fù)相關(guān),表明角質(zhì)層能夠作為疏水屏障限制植物角質(zhì)蒸騰[5]。蠟質(zhì)作為角質(zhì)層的重要成分,其含量及組分是決定植物非氣孔性水分散失
的關(guān)鍵因子[6-7]??傊参锶~表皮氣孔和角質(zhì)層蠟質(zhì)作為植物與外界環(huán)境相接觸的第一臨界面,對保持植物體內(nèi)外水分平衡具有重要的作用。鑒于此,筆者綜述了近年來有關(guān)植物氣孔和角質(zhì)層蠟質(zhì)在干旱、鹽、高溫以及其他非生物脅迫下的生理響應(yīng),并概述了氣孔與角質(zhì)層蠟質(zhì)之間的關(guān)系,以期為抗逆基因的挖掘和農(nóng)作物抗逆性的遺傳改良奠定基礎(chǔ)。
1 氣孔與非生物脅迫
1.1 氣孔的形成
氣孔是植物表皮特化的重要結(jié)構(gòu),其發(fā)育受幾個bHLH(basic Helix-loop-Helix)類轉(zhuǎn)錄因子的共同調(diào)控。以擬南芥(Arabidopsis thaliana)為例,其氣孔的發(fā)育是由表皮原細(xì)胞(protodermal cell,PDC)通過SPCH(speechless)調(diào)控逐漸分化成擬分生組織母細(xì)胞(meristemoid mother cell,MMC);而MMC通過不對稱分裂形成大小不一致的2種細(xì)胞,即擬分生組織細(xì)胞(meristemoid cell,MC)和氣孔世系基礎(chǔ)細(xì)胞(stomatal lineage ground cell,SLGC);然后MC通過MUTE的調(diào)控分化為保衛(wèi)母細(xì)胞(guard mother cell,GMC);最后經(jīng)FAMA調(diào)控,GMC通過對稱分裂從而形成氣孔[8-12]。而在氣孔發(fā)育過程中,另外2個同源bHLH蛋白SCRM和SCRM2可以分別與SPCH、MUTE和FAMA形成二聚體,從而調(diào)控氣孔的形態(tài)轉(zhuǎn)變。此外,MYB88和FLP(four lips)與FAMA共同調(diào)控了氣孔的發(fā)育[13-14]。另外,表皮模式因子(epidermal patterning factor,EPF)也參與氣孔發(fā)育,其中,EPF1、EPF2和EPF9/STOMAGEN是氣孔轉(zhuǎn)導(dǎo)過程中的多肽類受體,EPF1、EPF2負(fù)調(diào)控氣孔的發(fā)育,而EPF9/STOMAGEN是在葉肉細(xì)胞中產(chǎn)生并被分泌到其他表皮細(xì)胞從而促進(jìn)氣孔分化,是氣孔發(fā)育的正調(diào)節(jié)因子[15]。此外,類受體蛋白TMM(too many mouth)和ER能夠接收EPF所傳輸?shù)男盘?,并通過MAPK級聯(lián)通路將信號傳遞給細(xì)胞核,然后通過調(diào)控SPCH、MUTE和FAMA等轉(zhuǎn)錄因子從而調(diào)控表皮分化與氣孔形成[14]。
1.2 氣孔對非生物脅迫的響應(yīng)
氣孔在平衡植物自身與周圍環(huán)境之間的水氣交換過程中也發(fā)揮著重要作用。其一方面維持了細(xì)胞吸收CO2的動態(tài)平衡;另一方面通過調(diào)節(jié)其開度控制水分散失以快速響應(yīng)周圍環(huán)境的變化,對光合作用和蒸騰作用有著極大的影響[16]。干旱、鹽、高溫、濕度等環(huán)境因素均能對氣孔發(fā)育及運(yùn)動產(chǎn)生影響。在不同環(huán)境中,植物通過不斷調(diào)控氣孔開合或改變氣孔特性以平衡CO2和水分,使其水分利用效率最優(yōu)化[17-18]。
1.2.1
氣孔對干旱和鹽脅迫的響應(yīng)。氣孔的形態(tài)特征、分布密度和面積等均受水分狀況的影響。當(dāng)植物受到干旱脅迫時,氣孔的快速關(guān)閉是減少水分散失最重要的措施之一,是植物最早響應(yīng)干旱脅迫的特征[19]。干旱脅迫下,土壤中水分的缺乏導(dǎo)致植株體內(nèi)脫落酸(ABA)大量積累從而影響氣孔運(yùn)動[20]。Franks等[21]研究發(fā)現(xiàn)干旱脅迫下紫露草(Tradescantia virginiana)葉片氣孔的長和寬明顯減小而氣孔密度卻顯著增大,這種氣孔形態(tài)的改變不僅能夠促進(jìn)氣體交換,而且有利于保水[22-23]。在小麥[24]、山黧豆(Lathyrus quinquenervius)[25]、梨樹(Pyrus sorotina)[26]、大豆(Glycine max)[27]和玉米[28]中的研究結(jié)果表明,在干旱脅迫下葉片氣孔密度的增加往往伴隨著氣孔開度的減小。因此,氣孔密度的增加和氣孔開度的下降是植物響應(yīng)干旱脅迫的典型特征。在鹽漬環(huán)境中,土壤鹽濃度是影響植物葉片氣孔運(yùn)動及其密度的主要因素之一。200 mmol/L NaCl處理下,核桃(Juglans regia)葉片氣孔呈不均勻分布且部分呈關(guān)閉狀態(tài),國槐(Sophora japonica)的氣孔開合程度減小[29]。對三色莧(Amaranthus tricolor)的研究發(fā)現(xiàn),其葉片通過降低氣孔開度甚至閉合氣孔來適應(yīng)高鹽環(huán)境[30]。趙姝麗[31]研究發(fā)現(xiàn)水稻劍葉的氣孔密度隨著鹽濃度的增加而增加。沈禹穎[32]對小花堿茅(Puainellia tenuiflora)、野大麥(Hordeum brevisubulatum)和堿蓬(Suaeda glauca)進(jìn)行研究表明,鹽處理導(dǎo)致了葉片氣孔密度的增加。綜上所述,植物通過減小葉片氣孔開度,甚至最終將氣孔完全閉合,以降低水分的蒸騰,從而提高植物的保水能力以適應(yīng)干旱和鹽漬環(huán)境。
1.2.2
氣孔對高溫脅迫的響應(yīng)。植物葉表皮氣孔對高溫脅迫的響應(yīng)在不同植物中存在差異。韓笑冰等[33]對不同耐熱品種蘿卜(Raphanus sativus)的研究發(fā)現(xiàn),高溫脅迫下耐熱品種的葉面積比熱敏感品種的大,氣孔小且密集,這些結(jié)構(gòu)的改變能夠保持水分,使其免受高溫傷害。然而,Chen等[34] 對3種不同耐熱性的蘿卜進(jìn)行熱處理,發(fā)現(xiàn)耐熱品種相較于對照,其氣孔開放率增加了1.2倍,氣孔孔徑增大了5倍。潘寶貴等[35]研究發(fā)現(xiàn),當(dāng)脅迫溫度在耐受范圍內(nèi)時,植物通過增大其葉片氣孔開度,以加快水分散失降低葉片溫度,從而適應(yīng)高溫環(huán)境。另外,高溫脅迫也能夠改變?nèi)~片氣孔的分布。Hu等[36]通過對煙草(Nicotiana tabacum)進(jìn)行低、中、高3個不同溫度梯度處理發(fā)現(xiàn),隨著溫度的升高,煙草葉片的氣孔密度也逐漸增加。上述研究表明,植物可以通過調(diào)節(jié)氣孔開度和密度來適應(yīng)高溫環(huán)境。
1.2.3
氣孔對其他非生物脅迫的響應(yīng)。CO2作為光合作用的底物,通過氣孔被植物吸收進(jìn)而同化為有機(jī)物。葉片與大氣之間CO2和水蒸氣的交換主要受氣孔孔徑和氣孔密度控制。Levine等[37]研究表明,長期生長在 1 200 μmol/mol CO2 濃度下的大豆葉片氣孔導(dǎo)度減小38%。李菲等[38]研究發(fā)現(xiàn),高CO2濃度下大豆的氣孔密度和氣孔導(dǎo)度明顯降低,表明高于周圍環(huán)境的CO2可介導(dǎo)植物氣孔的關(guān)閉;反之,低濃度CO2可以引起氣孔的開放[39]。Woodward[40]研究發(fā)現(xiàn),CO2濃度持續(xù)升高可能會影響植物葉表皮氣孔的發(fā)育。隨后Woodward等[41]通過對100多個物種的化石進(jìn)行調(diào)查,發(fā)現(xiàn)在高CO2濃度的環(huán)境中約有74%物種的氣孔密度顯著降低,進(jìn)一步說明CO2濃度的改變會影響植物氣孔發(fā)育。Rivera等[42]通過對黃楊(Buxus sinica)化石的分析也取得了類似的結(jié)果,CO2濃度與葉片氣孔密度相關(guān),推測植物可能通過減小氣孔密度來調(diào)控氣孔導(dǎo)度,以適應(yīng)外界環(huán)境CO2 濃度的變化。此外,研究發(fā)現(xiàn)熱帶咖啡樹(Coffea arabica)的氣孔密度對高濃度CO2的響應(yīng)取決于其基因型[43]。上述結(jié)果表明,氣孔密度對CO2富集的響應(yīng)幅度可能因物種/基因型和其他環(huán)境變量而變化。另外,在不同光照強(qiáng)度下植物的葉片氣孔密度和氣孔指數(shù)會隨著光強(qiáng)的增加而有所提高[44-45]。Zhang等[46]研究發(fā)現(xiàn),山指甲(Ligustrum sinense)低光照下葉片的氣孔密度明顯小于強(qiáng)光照的葉片,并且氣孔對環(huán)境變化的敏感性在強(qiáng)光下明顯高于弱光下,這可能與強(qiáng)光下氣孔密度較大有關(guān)。此外,不同光質(zhì)能夠影響氣孔的運(yùn)動和發(fā)育;藍(lán)光和紅光誘導(dǎo)氣孔開放;并且氣孔密度在藍(lán)光照射下最大,紅光次之,自然漫射光最低[46-48]。
2 角質(zhì)層蠟質(zhì)與非生物脅迫
2.1 角質(zhì)層蠟質(zhì)成分及其合成與轉(zhuǎn)運(yùn)
角質(zhì)層覆蓋在植物器官表面,在植物與環(huán)境的相互影響中起著至關(guān)重要的作用。角質(zhì)層通常分為外角質(zhì)層(epicuticular waxes,EW)、真角質(zhì)層(cuticle proper,CP)和角質(zhì)層基層(cuticular layer,CL)3個部分[49-50]。Samuels等[51]通過對外角質(zhì)層進(jìn)行觀察發(fā)現(xiàn),外角質(zhì)層主要由內(nèi)外蠟質(zhì)層共同組成。通常內(nèi)蠟質(zhì)層嵌入角質(zhì)結(jié)構(gòu)中并無固定形態(tài),而外蠟質(zhì)層是通過分泌并沉積于角質(zhì)層外從而形成的晶體結(jié)構(gòu)[49]。蠟質(zhì)主要由超長鏈脂肪酸(very long chain fatty acids,VLCFAs)及其衍生物(烷烴類、醇類、醛類和三萜類等)組成。植物角質(zhì)層蠟質(zhì)晶體結(jié)構(gòu)因植物種類、生長期和周圍環(huán)境變化而不同[52]。
植物角質(zhì)層蠟質(zhì)的合成主要包括VLCFAs的合成與修飾[49,53]。VLCFAs由C16和C18長鏈脂肪酸在內(nèi)質(zhì)網(wǎng)中由脂肪酸延伸復(fù)合酶(FAE)催化經(jīng)縮合、還原、脫水、還原4個連續(xù)的循環(huán)反應(yīng)合成[53-55]。VLCFAs的修飾包括?;€原途徑和脫羰途徑,前者合成初級醇和蠟酯,后者合成醛、烷烴、次級酮和酮[56-57]。植物表皮蠟質(zhì)的轉(zhuǎn)運(yùn)依據(jù)植物表皮蠟質(zhì)的合成部位大致分為4個步驟[54-55]。第1步是通過吸收、翻轉(zhuǎn)、脫離3個步驟將短鏈脂肪酸蠟質(zhì)從質(zhì)體運(yùn)輸至內(nèi)質(zhì)網(wǎng)(endoplasmic reticulum,ER)[58];第2步是通過胞吐或高爾基體介導(dǎo)的分泌將蠟質(zhì)從內(nèi)質(zhì)網(wǎng)運(yùn)輸?shù)劫|(zhì)膜[59-61];第3步是通過ABCG轉(zhuǎn)運(yùn)蛋白將蠟質(zhì)分子從質(zhì)膜轉(zhuǎn)出[62];第4步是通過脂質(zhì)轉(zhuǎn)運(yùn)蛋白(lipid-transfer proteins,LTPs)將蠟質(zhì)分子轉(zhuǎn)出細(xì)胞壁[63]。
2.2 角質(zhì)層蠟質(zhì)對非生物脅迫的響應(yīng)
角質(zhì)層蠟質(zhì)作為植物表皮細(xì)胞壁外一層重要的疏水結(jié)構(gòu),其主要功能是減少非氣孔性水分散失,在植物抵御干旱、鹽和高溫等非生物脅迫方面具有重要作用[6-7]。
2.2.1
角質(zhì)層蠟質(zhì)對干旱和鹽脅迫的響應(yīng)。在干旱脅迫下,大多數(shù)植物如擬南芥[64-65]、煙草[66]、大麥[67-68]、水稻[69]等的角質(zhì)層蠟質(zhì)含量均大量積累,且與植物抗旱性和水分利用效率之間存在顯著相關(guān)性。Kosma等[64]研究發(fā)現(xiàn),水分脅迫下擬南芥葉片表皮蠟質(zhì)顯著增加,且處理后水分散失率與葉綠素浸出率均顯著低于對照,表明角質(zhì)層蠟質(zhì)的積累在植物響應(yīng)干旱脅迫方面發(fā)揮著重要作用[70-71]。而Oliveira等[7]通過對卡廷加植被(caatinga)和熱帶高草草原植被(cerrado)進(jìn)行研究發(fā)現(xiàn),前者的抗旱性明顯強(qiáng)于后者,且前者葉角質(zhì)層蠟質(zhì)主要由烷烴和三萜醇類組成,而后者主要由棕櫚桐和熊果酸組成,從而推測植物表面的水分散失與表皮蠟質(zhì)積累量的多少并不相關(guān),蠟質(zhì)的組成成分可能是影響植物角質(zhì)層蒸騰的關(guān)鍵所在。此外,角質(zhì)層蠟質(zhì)通過調(diào)節(jié)角質(zhì)蒸騰在植物耐鹽方面起著重要作用。Hasanuzzaman等[3]研究發(fā)現(xiàn),大麥在鹽脅迫下其葉蠟質(zhì)含量與角質(zhì)蒸騰呈顯著負(fù)相關(guān),表明角質(zhì)層蠟質(zhì)的大量積累會形成保護(hù)屏障,從而調(diào)節(jié)角質(zhì)蒸騰,優(yōu)化水分利用效率,進(jìn)而提高植株耐鹽性。在擬南芥[64]、霍霍巴(Simmondsia chinensis)[72]、甘藍(lán)(Brassica oleracea)[73]中的研究也取得類似結(jié)果。與中生植物不同,鹽生植物可通過改變?nèi)~角質(zhì)層蠟質(zhì)的晶體結(jié)構(gòu)從而適應(yīng)高鹽環(huán)境[74]。
2.2.2
角質(zhì)層蠟質(zhì)對高溫脅迫的響應(yīng)。角質(zhì)層蠟質(zhì)的積累與植物的耐熱性也密切相關(guān)[75]。但高溫脅迫是否會增加或減少角質(zhì)層蠟質(zhì)含量仍然沒有定論。Salem-fnayou等[76]研究發(fā)現(xiàn),在高溫脅迫下葡萄(Vitis vinifera)葉片的角質(zhì)層出現(xiàn)明顯的折疊且厚度顯著減小,而表皮細(xì)胞的厚度卻顯著增加。Maier等[77]通過對韭蔥(Allium porrum)進(jìn)行高溫處理發(fā)現(xiàn),其葉表皮蠟質(zhì)總含量明顯減少,但伯醇含量卻有所增加。而Huggins等[78]研究發(fā)現(xiàn)高溫脅迫下,小麥葉片蠟質(zhì)含量顯著增加,這一結(jié)果可能有利于反射更多輻射、降低氣孔導(dǎo)度從而減少蒸騰。百喜草(Paspalum notatum)的蠟質(zhì)積累也與熱脅迫抗性呈正相關(guān)[79]。在高溫脅迫下,高粱(Sorghum bicolor)的蠟質(zhì)含量與其保持冠層溫度較低的能力相關(guān),從而降低水分損失[80]。同樣,蠟質(zhì)含量多的豌豆品種也表現(xiàn)出較低的冠層溫度以限制過多的水分散失[81]。因此,高溫脅迫下蠟質(zhì)含量的變化可能與植物的種類有關(guān)。
2.2.3
角質(zhì)層蠟質(zhì)對其他非生物脅迫的響應(yīng)。角質(zhì)層蠟質(zhì)可以保護(hù)植物免受強(qiáng)光傷害,在保護(hù)植物免受紫外線傷害方面也起著重要作用,有研究表明UV-B輻射的增加會影響植物角質(zhì)層蠟質(zhì)的形成[82-85]。此外,環(huán)境濕度指數(shù)的變化均會對角質(zhì)層蠟質(zhì)的形態(tài)和沉積模式產(chǎn)生影響[86]。大多數(shù)植物角質(zhì)層蠟質(zhì)會隨著濕度的降低而增加。Ziv[87]研究發(fā)現(xiàn),8周齡的康乃馨(Dianthus caryophyllus)在較低的濕度下(50%)處理7 d后,其蠟質(zhì)比高濕度(80%)條件下增加了10倍。Koch等[88]對甘藍(lán)、蘋果桉(Eucalyptus gunnii)、旱金蓮(Tropaeolum majus)3種植物進(jìn)行20%~30%、40%~75%和98%的濕度梯度處理后發(fā)現(xiàn),在高濕度(98%)下3個物種角質(zhì)層蠟質(zhì)含量顯著減少,蠟質(zhì)晶體密度也隨之減少;相反,在20%~30%濕度下其蠟質(zhì)含量顯著增加。
3 氣孔與植物角質(zhì)層蠟質(zhì)的關(guān)系
氣孔和角質(zhì)層蠟質(zhì)作為植物長期演化過程中2個特殊的表皮結(jié)構(gòu),在限制植物氣孔性和非氣孔性水分散失、維持植物體內(nèi)外水分平衡方面具有重要作用。Zeiger等[89]在早期研究大麥cer突變體時發(fā)現(xiàn)表皮蠟質(zhì)的產(chǎn)生與氣孔發(fā)育有關(guān)。Gray等[90]在研究擬南芥cer1和cer6突變體時也發(fā)現(xiàn)了多氣孔效應(yīng),即打破了“至少一個細(xì)胞間隔”的模式,2種突變體氣孔指數(shù)與野生型相比有顯著增加。此外,Gray等[90]鑒定了響應(yīng)CO2濃度的氣孔發(fā)育負(fù)調(diào)節(jié)因子HIC,其編碼3-酮基脂酰輔酶A,參與超長鏈脂肪酸的合成;hic突變體在高CO2濃度條件下氣孔密度和氣孔指數(shù)顯著增加。研究發(fā)現(xiàn)通過改變擬南芥的氣孔發(fā)育可以誘導(dǎo)角質(zhì)層蠟質(zhì)的積累以增強(qiáng)植株抗旱性,表明擬南芥葉片蠟質(zhì)合成的改變與表皮氣孔異常密切相關(guān)[70,91-92]。推測超長鏈脂肪酸衍生物或其下游產(chǎn)物可以作為信號分子或信號識別的中介物,直接參與氣孔發(fā)育過程中的信號傳遞[93],然而目前其對氣孔發(fā)育的調(diào)控機(jī)制仍不清楚。另外,張志飛等[6]對14個高羊茅品種進(jìn)行研究,發(fā)現(xiàn)其葉片氣孔附近的蠟質(zhì)成分對氣孔導(dǎo)度和胞間CO2濃度有顯著影響,表明葉表皮蠟質(zhì)在氣孔調(diào)節(jié)過程中發(fā)揮了一定的作用。Karabourniotis等[94]通過熒光試驗發(fā)現(xiàn),保衛(wèi)細(xì)胞的藍(lán)色熒光強(qiáng)度明顯大于扁平細(xì)胞,推測此現(xiàn)象可能與保衛(wèi)細(xì)胞上所沉積的蠟質(zhì)有關(guān)。一方面可能是由于保衛(wèi)細(xì)胞上所積累的蠟質(zhì)多于扁平細(xì)胞上的蠟質(zhì),另一方面可能是積累在保衛(wèi)細(xì)胞周圍的蠟質(zhì)成分與扁平細(xì)胞上的蠟質(zhì)成分不同。然而,覆蓋于保衛(wèi)細(xì)胞的蠟質(zhì)是如何影響氣孔的運(yùn)動仍需進(jìn)一步研究。
4 結(jié)語與展望
氣孔和角質(zhì)層是高等陸生植物在進(jìn)化中形成的關(guān)鍵結(jié)構(gòu),周圍不同的環(huán)境因子往往會影響到表皮氣孔的發(fā)育及植物角質(zhì)層蠟質(zhì)的生物合成過程,調(diào)節(jié)氣孔性和非氣孔性水分散失,保證其體內(nèi)的含水量,從而使植物適應(yīng)各種環(huán)境變化。前期的研究大多集中在有關(guān)氣孔和蠟質(zhì)的生理響應(yīng)方面[64,78,95-96]。隨著研究的深入,人們利用模式植物突變體鑒定出了一些參與氣孔發(fā)育和蠟質(zhì)合成的轉(zhuǎn)錄因子,部分詮釋了氣孔發(fā)育和蠟質(zhì)合成的途徑[91,97-99]。而對有關(guān)氣孔發(fā)育和蠟質(zhì)合成響應(yīng)不同非生物脅迫的研究仍然較少,尤其是關(guān)于脅迫信號是如何進(jìn)入氣孔發(fā)育和角質(zhì)層蠟質(zhì)合成調(diào)控網(wǎng)絡(luò)等仍不清楚。另外,研究發(fā)現(xiàn)氣孔與植物角質(zhì)層蠟質(zhì)密切相關(guān),但有關(guān)角質(zhì)層蠟質(zhì)含量、結(jié)構(gòu)或成分是如何影響氣孔發(fā)育或運(yùn)動的機(jī)制仍不清楚[70,91,94]。如今大多數(shù)相關(guān)研究均集中于擬南芥、水稻、玉米等模式植物和農(nóng)作物,而一些鹽生植物、旱生植物在長期演化過程中形成了特殊的適應(yīng)機(jī)制,這為植物抗逆性研究以及農(nóng)作物或經(jīng)濟(jì)作物的改良提供了豐富的基因資源。因此,今后有關(guān)氣孔和角質(zhì)層蠟質(zhì)的深入研究可以從以下3個方面進(jìn)行:①利用轉(zhuǎn)錄組、蛋白組、代謝組手段篩選并鑒定響應(yīng)不同脅迫的關(guān)鍵基因、關(guān)鍵蛋白以及下游產(chǎn)物,可以為氣孔發(fā)育和蠟質(zhì)合成之間調(diào)控網(wǎng)絡(luò)的構(gòu)成提供證據(jù);②今后通過構(gòu)建突變體庫,進(jìn)行蠟質(zhì)與氣孔超微結(jié)構(gòu)和功能的分析,建立和確定角質(zhì)層蠟質(zhì)與氣孔之間的關(guān)系顯得十分必要;③利用鹽生、旱生植物進(jìn)行基因挖掘可以為提高重要作物對非生物逆境的耐受性提供新的研究策略。
參考文獻(xiàn)
[1] HOUGHTON J T.Scientific assessment of climate change:Summar of the IPCC working Group I report[C]∥JAGER J,F(xiàn)ERGUSON H L.Climate change:Science,impacts and policy.Proceedings of the second world climate conference.Cambridge:Cambridge University Press,1991:243-246.
[2] IPCC.Climate change 2014:Synthesis report[R].2014:10-13.
[3] HASANUZZAMAN M,DAVIES N W,SHABALA L,et al.Residual transpiration as a component of salinity stress tolerance mechanism:A case study for barley[J].BMC Plant Biology,2017,17(1):1-12.
[4] RAWSON H M,CLARKE J M.Nocturnal transpiration in wheat[J].Function plant biology,1988,15:397-406.
[5] PREMCHANDRA G S,SANEOKA H,F(xiàn)UJITA K,et al.Leaf water relations,osmotic adjustment,cell-membrane stability,epicuticular wax load and growth as affected by increasing water deficits in sorghum[J].Journal of experimental botany,1992,43:1569-1576.
[6] 張志飛,饒力群,向佐湘,等.高羊茅葉片表皮蠟質(zhì)含量與其抗旱性的關(guān)系[J].西北植物學(xué)報,2007,27(7):1417-1421.
[7] OLIVEIRA A F M,MEIRELLES S T,SALATINO A.Epicuticular waxes from caatinga and cerrado species and their efficiency against water loss[J].An Acad Bras Cienc,2003,75(4):431-439.
[8] PILLITTERI L J,DONG J.Stomatal development in Arabidopsis[M]∥SOMERVILLE C R,MEYEROWITZ E M.The Arabidopsis book.Rockville,MD:American Society of Plant Biologists,2013:1-26.
[9] NADEAU J A,SACK F D.Stomatal development in Arabidopsis[M]∥SOMERVILLE C R,MEYEROWITZ E M.The Arabidopsis book.Rockville,MD:American Society of Plant Biologists,2002.
[10] BERGMANN D C,SACK F D.Stomatal development[J].Annual review of plant biology,2007,58:163-181.
[11] MACALISTER C A,OHASHI-ITO K,BERGMANN D C.Transcription factor control of asymmetric cell divisions that establish the stomatal lineage[J].Nature,2007,445:537-540.
[12] CASSON S,GRAY J E.Influence of environmental factors on stomatal development[J].New phytologist,2008,178(1):9-23.
[35] 潘寶貴,王述彬,劉金兵,等.高溫脅迫對不同辣椒品種苗期光合作用的影響[J].江蘇農(nóng)業(yè)學(xué)報,2006,22(2):137-140.
[36] HU J,YANG Q Y,HUANG W.Effects of temperature on leaf hydraulic architecture of tobacco plants[J].Planta,2014,240(3):489-496.
[37] LEVINE L H,RICHARDS J T,WHEELER R M.Super-elevated CO2 interferes with stomatal response to ABA and night closure in soybean(Glycine max)[J].Journal plant physiology,2009,166(9):903-913.
[38] 李菲,劉亮,張浩,等.CO2濃度對大豆葉片氣孔特征和氣體交換參數(shù)的影響[J].作物學(xué)報,2018,44(8):1212-1220.
[39] ENGINEER C B,HASHIMOTO-SUGIMOTO M,NEGI J,et al.CO2 sensing and CO2 regulation of stomatal conductance:Advances and open questions[J].Trends in plant science,2015,21(1):16-30.
[40] WOODWARD F I.Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels[J].Nature,1987,327:617-618.
[41] WOODWARD F I,KELLY C K.The influence of CO2 concentration on stomatal density[J].The new phytologist,1995,131(3):311-317.
[42] RIVERA L,BARAZA E,ALCOVER J A,et al.Stomatal density and stomatal index of fossil Buxus from coprolites of extinct Myotragus balearicus Bate(Artiodactyla,Caprinae)as evidence of increased CO2 concentration during the late Holocene[J].Holocene,2014,24(7):876-880.
[43] RODRIGUES W P,MARTINS M Q,F(xiàn)ORTUNATO A S,et al.Long-term elevated air [CO2]? strengthens photosynthetic functioning and mitigates the impact of supra-optimal temperatures in tropical Coffea arabica and C.canephora species[J].Global change biology,2016,22(1):415-431.
[44] 蔡志全,齊欣,曹坤芳.七種熱帶雨林樹苗葉片氣孔特征及其可塑性對不同光照強(qiáng)度的響應(yīng)[J].應(yīng)用生態(tài)學(xué)報,2004,15(2):201-204.
[45] 戴凌峰.四種灌木樹種的耐蔭性研究[D].北京:北京林業(yè)大學(xué),2007.
[46] ZHANG S R,MA K P,CHEN L Z.Tempo-spatial variations in stomatal conductance,aperture and density of Ligustrum sinense acclimated to different light environments[J].Acta botanica sinica,2002,44(10):1225-1232.
[47] 王書偉,王巍,李海俠,等.保衛(wèi)細(xì)胞的光合作用在光調(diào)節(jié)的氣孔運(yùn)動中的功能[J].植物生理學(xué)通訊,2010,46(5):499-504.
[48] 何若天,呂成群.若干闊葉樹樹冠各層葉氣孔密度及光照條件對氣孔密度的影響[J].廣西農(nóng)業(yè)大學(xué)學(xué)報,1995,14(4):311-316.
[49] 段瑞君,王愛東,陳國雄.植物角質(zhì)層基因研究進(jìn)展[J].植物學(xué)報,2017,52(5):637-651.
[50] BERNARD A,JOUBS J.Arabidopsis cuticular waxes:Advances in synthesis,export and regulation[J].Progress in lipid research,2013,52(1):110-129.
[51] SAMUELS L,KUNST L,JETTER R.Sealing plant surfaces:Cuticular wax formation by epidermal cells[J].Annual review of plant biology,2008,59:683-707.
[52] BARTHLOTT W,NEINHUIS C,CUTLER D,et al.Classification and terminology of plant epicuticular waxes[J].Botanical journal of the linnean society,1998,126(3):237-260.
[53] 岑斌,王慧中.植物蠟質(zhì)合成與分泌的研究進(jìn)展[J].科技通報,2009,25(3):265-270.
[54] LEE S B,SUH M C.Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species[J].Plant cell reports,2015,34(4):557-572.
[55] 戴雙,郭軍,徐文,等.蠟質(zhì)組成形態(tài)及其合成調(diào)控對小麥抗旱性的影響[J].植物生理學(xué)報,2016,52(7):979-988.
[56] KUNST L,SAMUELS A L.Biosynthesis and secretion of plant cuticular wax[J].Progress in lipid research,2003,42(1):51-80.
[57] LI-BEISSON Y,SHORROSH B,BEISSON F,et al.Acyl-lipid metabolism[M]∥SOMERVILLE C R,MEYEROWITZ E M.The Arabidopsis book.Rockville,MD:American Society of Plant Biologists,2010.
[58] HAMILTON J A.Fatty acid transport:Difficult or easy?[J].Journal of lipid research,1998,39(3):467-481.
[59] POLLARD M,BEISSON F,LI Y H,et al.Building lipid barriers:Biosynthesis of cutin and suberin[J].Trends in plant science,2008,13(5):236-246.
[60] FRANKE R,SCHREIBER L.Suberin-A biopolyester forming apoplastic plant interfaces[J].Current opinion in plant biology,2007,10(3):252-259.
[61] MCFARLANE H E,WATANABE Y,YANG W L,et al.Golgi- and trans-golgi network-mediated vesicle trafficking is required for wax secretion from epidermal cells[J].Plant physiology,2014,164(3):1250-1260.
[62] KUNST L,SAMUELS L.Plant cuticles shine:Advances in wax biosynthesis and export[J].Current opinion in plant biology,2009,12(6):721-727.
[63] ARONDEL V,VERGNOLLE C,CANTREL C,et al.Lipid transfer proteins are encoded by a small multigene family in Arabidopsis thaliana[J].Plant science,2000,157(1):1-12.
[64] KOSMA D K,BOURDENX B,BERNARD A,et al.The impact of water deficiency on leaf cuticle lipids of Arabidopsis[J].Plant physiology,2009,151(4):1918-1929.
[65] ISAACSON T,KOSMA D K,MATAS A J,et al.Cutin deficiency in the tomato fruit cuticle consistently affects resistance to microbial infection and biomechanical properties,but not transpirational water loss[J].The plant journal,2009,60(2):363-377.
[66] CAMERON K D,TEECE M A,SMART L B.Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco[J].Plant physiology,2006,140:176-183.
[67] FEBRERO A,F(xiàn)ERNNDEZ S,MOLINA-CANO J L,et al.Yield,carbon isotope discrimination,canopy reflectance and cuticular conductance of barley isolines of differing glaucousness[J].Journal of experimental botany,1998,49:1575-1581.
[68] BI H H,KOVALCHUK N,LANGRIDGE P,et al.The impact of drought on wheat leaf cuticle properties[J].BMC Plant Biology,2017,17:85-98.
[69] ZHU X Y,XIONG L Z.Putative megaenzyme DWA1 plays essential roles in drought resistance by regulating stress-induced wax deposition in rice[J].Proceedings of the national academy of sciences,2013,110(44):17790-17795.
[70] YANG J,ORDIZ M I,JAWORSKI J G,et al.Induced accumulation of cuticular waxes enhances drought tolerance in Arabidopsis by changes in development of stomata[J].Plant physiology and biochemistry,2011,49(12):1448-1455.
[71] CHEN N M,SONG B,TANG S,et al.Overexpression of the ABC transporter gene TsABCG11 increases cuticle lipids and abiotic stress tolerance in Arabidopsis[J].Plant biotechnology reports,2018,12:303-313.
[72] MILLS D,ZHABG G F,BENZIONI A.Effect of different salts and of ABA on growth and mineral uptake in Jojoba shoots grown in vitro[J].Journal of plant physiology,2001,158(8):1031-1039.
[73] FUJIWARA T,NAKAYAMA M,KIKUCHI S,et al.Applying NaCl to suppress succulent growth and acclimatize cabbage plug seedlings[J].Journal of the Japanese society for horticultural science,2002,71(6):796-804.
[74] KOSMA D K,JENKS M A.Eco-physiological and molecular-genetic determinants of plant cuticle function in drought and salt stress tolerance[M]∥JENKS M A,HASEGAWA P M,JAIN S M.Advances in molecular breeding toward drought and salt tolerant crops.The Dordrecht:Netherlands Springer,2007.
[75] TISCHLER C R,BURSON B L.Evaluating different bahiagrass cytotypes for heat tolerance and leaf epicuticular wax content[J].Euphytica,1995,84:229-235.
[76] SALEM-FNAYOU A B,BOUAMAMA B,GHORBEL A,et al.Investigations on the leaf anatomy and ultrastructure of grapevine(Vitis vinifera)under heat stress[J].Microscopy research and technique,2011,74(8):756-762.
[77] MAIER C G A,POST-BEITTENMILLER D.Epicuticular wax on leek in vitro developmental stages and seedlings under varied growth conditions[J].Plant science,1998,134(1):53-67.
[78] HUGGINS T D,MOHAMMED S,SENGODON P,et al.Changes in leaf epicuticular wax load and its effect on leaf temperature and physiological traits in wheat cultivars(Triticum aestivum L.)exposed to high temperatures during anthesis[J].Journal of agronomy and crop science,2018,204(1):49-61.
[79] TISCHLER C R,BURSON B L.Evaluating different bahiagrass cytotypes for heat tolerance and leaf epicuticular wax content[J].Euphytica,1995,84:229-235.
[80] AWIKA H O,HAYS D B,MULLET J E,et al.QTL mapping and loci dissection for leaf epicuticular wax load and canopy temperature depression and their association with QTL for staygreen in Sorghum bicolor under stress[J].Euphytica,2017,213:1-22.
[81] SNCHEZ F J,MANZANARES M,DE ANDRS E F,et al.Residual transpiration rate,epicuticular wax load and leaf colour of pea plants in drought conditions.Influence on harvest index and canopy temperature[J].European journal of agronomy,2001,15(1):57-70.
[82] SOLOVCHENKO A,MERZLYAK M.Optical properties and contribution of cuticle to UV protection in plants:Experiments with apple fruit[J].Photochemical & photobiological sciences,2003,2:861-866.
[83] STEINMLLER D,TEVINI M.Action of ultraviolet radiation(UV-B)upon cuticular waxes in some crop plants[J].Planta,1985,164:557-564.
[84] JANSEN M A K,GABA V,GREENBERG B M.Higher plants and UV-B radiation:Balancing damage,repair and acclimation[J].Trends in plant science,1998,3(4):131-135.
[85] FUKUDA S,SATOH A,KASAHARA H,et al.Effects of ultraviolet-B irradiation on the cuticular wax of cucumber(Cucumis sativus)cotyledons[J].Journal of plant research,2008,121(2):179-189.
[86] SINGH S,DAS S,GEETA R.Role of cuticular wax in adaptation to abiotic stress:A molecular perspective[M]∥ZARGAR S M,ZARGAR M Y.Abiotic stress-mediated sensing and signaling in plants:An omics perspective.Singapore:Springer,2018.
[87] ZIV M.In vitro hardening and acclimatization of tissue culture plants[M]∥WITHERS L A,ALDERSON P G.Plant tissue culture and agricultural applications.London:Butterworths Publishers,1986:187-196.
[88] KOCH K,HARTMANN K D,SCHREIBER L,et al.Influences of air humidity during the cultivation of plants on wax chemical composition,morphology and leaf surface wettability[J].Environmental and experimental botany,2006,56(1):1-9.
[89] ZEIGER E,STEBBINS G L.Developmental genetics in barley:A mutant for stomatal development[J].American journal of botany,1972,59(2):143-148.
[90] GRAY J E,HOLROYD G H,VAN DER LEE F M,et al.The HIC signalling pathway links CO2 perception to stomatal development[J].Nature,2000,408:713-716.
[91] AHARONI A,DIXIT S,JETTER R,et al.The SHINE Clade of AP2 domain transcription factors activates wax biosynthesis,alters cuticle properties,and confers drought tolerance when overexpressed in Arabidopsis[J].The plant cell,2004,16:2463-2480.
[92] CHEN X B,GOODWIN S M,BOROFF V L,et al.Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production[J].The plant cell,2003,15(5):1170-1185.
[93] BIRD S M,GRAY J E.Signals from the cuticle affect epidermal cell differentiation[J].New phytologist,2003,157(1):9-23.
[94]KARABOURNIOTIS G,TZOBANOGLOU D,NIKOLOPOULOS D,et al.Epicuticular phenolics over guard cell:Exploitation for in situ stomatal counting by fluorescence microscopy and combined image analysis[J].Annals of botany,2001,87:631-639.
[95] LEI Z Y,HAN J M,YI X P,et al.Coordinated variation between veins and stomata in cotton and its relationship with water-use efficiency under drought stress[J].Photosynthetica,2018,56:1326-1335.
[96] HARUKI K,MIMI H S,KOH I,et al.Improved stomatal opening enhances photosynthetic rate and biomass production in fluctuating light[J].Journal of experimental botany,2020,71:2339-2350.
[97] WANG X C,GUAN Y Y,ZHANG D,et al.A β-ketoacyl-CoA synthase is involved in rice leaf cuticular wax synthesis and requires a CER2-LIKE protein as a cofactor[J].Plant physiology,2017,173:944-955.
[98] COMINELLI E,SALA T,CALVI D,et al.Over-expression of the Arabidopsis AtMYB41 gene alters cell expansion and leaf surface permeability[J].The plant journal,2008,53(1):53-64.
[99] ZHU J L,PARK J H,LEE S,et al.Regulation of stomatal development by stomatal lineage miRNAs[J].PNAS,2020,117(11):6237-6245.