王延榮
(河北省衡水市棗強縣新屯中學,河北 衡水 053100)
初中數(shù)學課程是初中階段比較重要的學科,學生學起來感覺不是很輕松,關(guān)鍵還需要數(shù)學老師做及時的有效的引導。根據(jù)多年的教學經(jīng)驗,我采取多種方法提高教學效率,在此作簡要的分析。
理清和把握教材的體系和脈絡,統(tǒng)攬教材全局,高屋建瓴。然后,建立各類概念、知識點或知識單元之間的界面關(guān)系,歸納和揭示其特殊性質(zhì)和內(nèi)在的一般規(guī)律。例如,在“因式分解”這一章中,我們接觸到許多數(shù)學方法—提公因式法、運用公式法、分組分解法、十字相乘法等。這是學習這一章知識的重點,只要我們學會了這些方法,按知識——方法——思想的順序提煉數(shù)學思想方法,就能運用它們?nèi)ソ鉀Q成千上萬分解多項式因式的問題。又如:結(jié)合初中代數(shù)的消元、降次、配方、換元方法,以及分類、變換、歸納、抽象和數(shù)形結(jié)合等方法性思想,進一步確定數(shù)學知識與其思想方法之間的結(jié)合點,建立一整套豐富的教學范例或模型,最終形成一個活動的知識與思想互聯(lián)網(wǎng)絡。
數(shù)學思想方法的滲透應根據(jù)教學計劃有步驟地進行。一般在知識的概念形成階段導入概念型數(shù)學思想,如方程思想、相似思想、已知與未知互相轉(zhuǎn)化的思想、特殊與一般互相轉(zhuǎn)化的思想等等。在知識的結(jié)論、公式、法則等規(guī)律的推導階段,要強調(diào)和灌輸思維方法,如解方程的如何消元降次、函數(shù)的數(shù)與形的轉(zhuǎn)化、判定兩個三角形相似有哪些常用思路等。在知識的總結(jié)階段或新舊知識結(jié)合部分,要選配結(jié)構(gòu)型的數(shù)學思想,如函數(shù)與方程思想體現(xiàn)了函數(shù)、方程、不等式間的相互轉(zhuǎn)化,分數(shù)討論思想體現(xiàn)了局部與整體的相互轉(zhuǎn)化。在所有數(shù)學建構(gòu)及問題的處理方面,注意體現(xiàn)其根本思想,如運用同解原理解一元一次方程,應注意為簡便而采取的移項法則。
教學計劃的制訂應體現(xiàn)數(shù)學思想方法教學的綜合考慮,要明確每一階段的載體內(nèi)容、教學目標、展開步驟、教學程序和操作要點。數(shù)學教案則要就每一節(jié)課的概念、命題、公式、法則以至單元結(jié)構(gòu)等教學過程進行滲透思想方法的具體設計。要求通過目標設計、創(chuàng)設情境、程序演化、歸納總結(jié)等關(guān)鍵環(huán)節(jié),在知識的發(fā)生和運用過程中貫徹數(shù)學思想方法,形成數(shù)學知識、方法和思想的一體化。
首先,以數(shù)學的廣泛應用,激發(fā)學生學好數(shù)學的熱情。其次,以我國在數(shù)學領(lǐng)域的卓越成就,培養(yǎng)學生的愛國主義思想,激發(fā)學習動機。再次,挖掘數(shù)學中的美育因素,使學生受到美的熏陶。此外,教師還可以在教學過程中,根據(jù)教學的內(nèi)容,選用生動活潑、貼近學生生活的教學方法引起學生的興趣,使學生產(chǎn)生強烈的求知欲;教師還可以運用形象生動、貼近學生、幽默風趣的語言來感染學生;教師還可以安排既嚴謹又活潑的教學結(jié)構(gòu),形成熱烈和諧的氛圍,使學生積極主動、心情愉快地學習,充分調(diào)動學生學習的積極性和主動性。
心理學家認為:“意志在克服困難中表現(xiàn),也在經(jīng)受挫折、克服困難中發(fā)展,困難是培養(yǎng)學生意志的‘磨刀石’。因此,數(shù)學教學中要經(jīng)常給學生安排適當難度的練習題,讓他們付出一定的努力,在獨立思考中獨立解決問題(但注意難度必須適當,因為太難會挫傷學生的信心,太易又不能鍛煉學生的意志)。
第一,針對不同層次的學生提出不同的要求;第二,反復訓練,持之以恒;第三,樹立榜樣,激發(fā)自覺性;第四,評價表揚,鼓勵發(fā)展;第五,建立學習規(guī)章制度,嚴格管理;第六,創(chuàng)造良好學習環(huán)境,如搞好校風、學風、教風、班風建設。
在知識的引進、消化和應用過程中促使學生領(lǐng)悟和提煉數(shù)學思想方法數(shù)學知識發(fā)生的過程也是其思想方法產(chǎn)生的過程。在此過程中,要向?qū)W生提供豐富的、典型的以及正確的直觀背景材料,創(chuàng)設使認知主體與客體之間激發(fā)作用的環(huán)境和條件,通過對知識發(fā)生過程的展示,使學生的思維和經(jīng)驗全部投人到接受問題、分析問題和感悟思想方法的挑戰(zhàn)之中,從而主動構(gòu)建科學的認知結(jié)構(gòu),將數(shù)學思想方法與數(shù)學知識融匯成一體,最終形成獨立探索分析、解決問題的能力。
概念既是思維的基礎(chǔ),又是思維的結(jié)果。恰當?shù)卣故酒湫纬傻倪^程,拉長被壓縮了的“知識鏈”,是對數(shù)學抽象與數(shù)學模型方法進行點悟的極好素材和契機。在概念的引進過程中,應注意:解釋概念產(chǎn)生的背景,讓學生了解定義的合理性和必要性;揭示概念的形成過程,讓學生綜合概念定義的本質(zhì)屬性;鞏固和加深概念理解,讓學生在變式和比較中活化思維。在規(guī)律(定理、公式、法則等)的揭示過程中,教師應注意灌輸數(shù)學思想方法,培養(yǎng)學生的探索性思維能力,并引導學生通過感性的直觀背景材料或已有的知識發(fā)現(xiàn)規(guī)律,不過早地給結(jié)論,講清抽象、概括或證明的過程,充分地向?qū)W生展現(xiàn)自己是如何思考的,使學生領(lǐng)悟蘊含其中的思想方法。
范例教學通過選擇具有典型性、啟發(fā)性、創(chuàng)造性和審美性的例題和練習進行。要注意設計具有探索性的范例和能從中抽象一般和特殊規(guī)律的范例,在對其分析和思考的過程中展示數(shù)學思想和具有代表性的數(shù)學方法,提高學生的思維能力。例如,對某些問題,要引導學生盡可能運用多種方法,從各條途徑尋求答案,找出最優(yōu)方法,培養(yǎng)學生的變通性;對某些問題可以進行由簡到繁、由特殊到一般的推論,讓學生大膽聯(lián)系和猜想,培養(yǎng)其思維的廣闊性;對某些問題可以分析其特殊性,克服慣性思維束縛,培養(yǎng)學生思維的靈活性;對一些條件、因素較多的問題,要引導學生全面分析、系統(tǒng)綜合各個條件,得出正確結(jié)論,培養(yǎng)其橫向思維等等。此外,還要引導學生通過解題以后的反思,優(yōu)化解題過程,總結(jié)解題經(jīng)驗,提煉數(shù)學思想方法。