亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        由箭圖誘導(dǎo)的分次Frobenius代數(shù)及其扭超勢(shì)

        2020-09-23 01:29:22俞曉嵐
        關(guān)鍵詞:自同構(gòu)代數(shù)頂點(diǎn)

        陳 斌,俞曉嵐

        (杭州師范大學(xué)理學(xué)院,浙江 杭州 311121)

        0 引言

        Frobenius代數(shù)與數(shù)學(xué)的多個(gè)分支都有密切的聯(lián)系,在數(shù)學(xué)多個(gè)領(lǐng)域都有廣泛的應(yīng)用[1].諸如Frobenius代數(shù)與拓?fù)淞孔訄?chǎng)理論的聯(lián)系,Frobenius代數(shù)與Hopf代數(shù)、量子Yang-Baxter方程之間的聯(lián)系等,連通分次Frobenius代數(shù)則與非交換投影幾何高度相關(guān).

        文獻(xiàn)[2]提供了一種通過一個(gè)扭超勢(shì)來建構(gòu)一個(gè)連通分次Frobenius代數(shù)的具體方法,并重點(diǎn)闡明了只有一個(gè)頂點(diǎn)的情形下扭超勢(shì)與連通分次Frobenius代數(shù)的一一對(duì)應(yīng)關(guān)系.本文把研究對(duì)象從一次生成的連通分次Frobenius代數(shù)拓展到由箭圖誘導(dǎo)的分次Frobenius代數(shù),并將分次 Frobenius代數(shù)從連通的情形推廣到非連通的情形中去.

        本文首先考慮一類簡(jiǎn)單的(由箭圖誘導(dǎo)的)分次Frobenius代數(shù),通過“非退化的雙線性結(jié)構(gòu)”來刻畫分次Frobenius代數(shù)在箭圖上的幾何性質(zhì).對(duì)于由箭圖誘導(dǎo)的分次Frobenius代數(shù),本文對(duì)偶地考慮它伴隨著相應(yīng)的生成元和Nakayama自同構(gòu)的余代數(shù),并證明了相應(yīng)的生成元就是所定義的扭超勢(shì).通過詳細(xì)描述扭超勢(shì)生成的余代數(shù)結(jié)構(gòu),本文最后證明任意一個(gè)路余代數(shù)中的扭超勢(shì)都能構(gòu)造一個(gè)分次Frobenius代數(shù).

        1 預(yù)備知識(shí)

        定義1[3]箭圖Q指的是由頂點(diǎn)和箭向構(gòu)成的定向圖,其頂點(diǎn)集和箭向集分別記成Q0和Q1.對(duì)箭向α,本文用s(α) 和t(α)分別表示α的起點(diǎn)和終點(diǎn),即s和t可看作由Q1到Q0的映射.一個(gè)箭圖Q常表示成Q=(Q0,Q1,s,t).若Q0和Q1都是有限的,則稱Q為有限箭圖.本文討論的都是有限箭圖.

        定義2[3]箭圖Q中的路p指的是有限序列p=αl…α2α1,其中每個(gè)αi都是箭向且t(αi)=s(αi+1),1≤i≤l-1.用|·|度量路p的長度,記為|p|=l; 定義路p的起點(diǎn)為s(p):=s(α1);定義路p的終點(diǎn)為t(p):=t(αl).本文約定頂點(diǎn)i可看作長度為0的路,并記作ei.路p稱為有向圈,簡(jiǎn)稱為圈,如果|p|≥1且s(p)=t(p).

        定義3[3]一個(gè)箭圖Q的路代數(shù)KQ作為向量空間是以Q中所有的路為基,乘法定義為路的連接,即對(duì)于Q中兩條路p和q,若p的終點(diǎn)和q的起點(diǎn)不同,定義乘積q·p=0,否則定義乘積q·p為這兩條路的連接qp.由此還可定義偏導(dǎo)如下:

        定義4[2]域K上的一個(gè)有限維代數(shù)A是Frobenius代數(shù),當(dāng)且僅當(dāng)存在一個(gè)非退化的映射σ:A×A→K,滿足

        ?x,y,z,x1,x2,y1,y2∈A,k∈K,

        (1)σ(xy,z)=σ(x,yz);(2)σ(x1+x2,y)=σ(x1,y)+σ(x2,y);(3)σ(x,y1+y2)=σ(x,y1)+σ(x,y2);(4)σ(kx,y)=σ(x,ky)=kσ(x,y).

        如果A還滿足σ(x,y)=σ(y,x),那么稱A為對(duì)稱代數(shù).

        定義5[2]對(duì)每一個(gè)Frobenius代數(shù),都存在一個(gè)K-代數(shù)自同構(gòu)μ:A→A使得

        σ(μ(x),y)=σ(y,x),?x,y∈A.

        這個(gè)自同構(gòu)被稱為Nakayama自同構(gòu).

        定義6[2]一個(gè)Z-分次代數(shù)指的是一個(gè)結(jié)合代數(shù)A可表示成一系列子空間的直和形式,即A=⊕i∈ZAi,且滿足對(duì)任意的i,j∈Z,Ai·Aj?Ai+j.如果一個(gè)有限維分次代數(shù)A=A0⊕A1⊕…⊕An是Frobenius代數(shù)且其Frobenius結(jié)構(gòu)映射σ滿足

        σ(x,y)=0, ?x∈Ai,y∈Aj,i+j≠n,

        那么A就是一個(gè)長度為n的分次Frobenius代數(shù).當(dāng)分次Frobenius代數(shù)是對(duì)稱代數(shù)時(shí)則稱為分次對(duì)稱代數(shù).

        一個(gè)箭圖Q的路代數(shù)KQ作為向量空間有一個(gè)自然的直和分解

        KQ=KQ0⊕KQ1⊕KQ2⊕…⊕KQl⊕…,

        域K上的箭圖Q伴有兩個(gè)向量空間R:=KQ0和V:=KQ1.V是一個(gè)R-雙模[4],其雙模結(jié)構(gòu)RVR有一個(gè)自然的直和分解

        R上的張量積可由一般的矩陣乘法給出:

        其中Bi,k=⊕ei,ek∈Q0Vi,k,Ck,j=⊕ek,ej∈Q0Vk,j.記

        其中V0=R.所以,路代數(shù)KQ亦可視為張量代數(shù)

        同理,路余代數(shù)KQc也有張量表示法KQc=T(V*).對(duì)偶地,一個(gè)Z-分次余代數(shù)意指一個(gè)結(jié)合余代數(shù)C可表成一系列子空間的直和形式,即C=⊕i∈ZCi,且滿足對(duì)任意的n∈Z,ΔCn?⊕i+j=nCi?Cj.

        定義7[5]弱超勢(shì)ω指的是路代數(shù)KQ中那些同長度成圈的路的線性組合,即:

        ω∈KQl,?ei∈KQ0,ωei=eiω.

        弱超勢(shì)ω為齊次元素,可用齊次分量的長度定義弱超勢(shì)的長度,沿用度量符號(hào)|ω|; 若ωei≠0,則稱弱超勢(shì)ω經(jīng)過箭圖Q中的頂點(diǎn)ei.如果弱超勢(shì)還滿足

        定義8[5]弱扭超勢(shì)ω指的是路(余)代數(shù)KQ中那些在一個(gè)箭圖自同構(gòu)ι下仍然保持弱超勢(shì)的幾何性質(zhì)的齊次元素,即

        則稱它為扭超勢(shì).

        引理1[6]A是域K上的一個(gè)有限維代數(shù),K-對(duì)偶空間A*=Hom(A,K)有一個(gè)自然的余代數(shù)結(jié)構(gòu).

        p*q=δp,qs(q),qp*=δp,qt(q), ?p,q∈KQl.

        偏導(dǎo)運(yùn)算也可對(duì)偶表示如下:

        路余代數(shù)KQc所代表的張量空間T(V*)有相應(yīng)的余代數(shù)結(jié)構(gòu),其余乘和余單位定義如下:

        對(duì)單元素ξ∈T(V*),記〈ξ〉為KQc中含有ξ的最小子余代數(shù).

        2 一類簡(jiǎn)單的(由箭圖誘導(dǎo)的)分次Frobenius代數(shù)

        命題1如果KQn是一個(gè)分次Frobenius代數(shù),那么對(duì)于箭圖Q中的每一個(gè)頂點(diǎn)ei有且僅有一條以ei為終點(diǎn)的長度為n的路,對(duì)于箭圖Q中的每一個(gè)頂點(diǎn)ej有且僅有一條以ej為起點(diǎn)的長度為n的路.

        證明只需考慮其中一種情形即可,先證存在性,再反證唯一性.

        考慮σ(ei,-),則對(duì)于分次Frobenius形式的映射σ,存在一條長度為n可表示為αinαin-1…αi1的路使得σ(ei,αinαin-1…αi1)≠0.如若不然,那么所有長度為n的路p都使得σ(ei,p)=0.從而對(duì)于KQn中的任意一個(gè)元素,即任意多條路的線性組合γ,σ(ei,γ)=0:這與σ的非退化性矛盾.已知

        σ(ei,αinαin-1…αi1)≠0,

        可得

        αinαin-1…αi1≠0,t(αi)=s(αi+1),1≤i≤n-1.

        又有

        σ(ei,αinαin-1…αi1)=σ(1,eiαinαin-1…αi1)≠0,

        從而

        eiαinαin-1…αi1≠0.

        至此即證得

        t(αin)=ei.

        若對(duì)于箭圖中的其中一個(gè)頂點(diǎn)有不少于兩條以它為終點(diǎn)的長度為n的路,則可由KQn的維數(shù)等于長度為n的路的條數(shù)知

        dim(KQn)≥n+1.

        根據(jù)引理1,

        至此

        n=dim(KQ0)=dim(KQn)≥n+1,

        矛盾已顯然.

        命題2如果KQn是一個(gè)分次Frobenius代數(shù),那么對(duì)于箭圖Q中的每一個(gè)頂點(diǎn)ei有且僅有一個(gè)以ei為終點(diǎn)的箭向,對(duì)于箭圖Q中的每一個(gè)頂點(diǎn)ej有且僅有一個(gè)以ej為起點(diǎn)的箭向.

        證明存在性可由命題1直接得到.

        假設(shè)有至少兩個(gè)不同的箭向αi1和αi2以ei為終點(diǎn),那么根據(jù)命題1的存在性,有以s(αi1)為終點(diǎn)的一條長度為n的路αjnαjn-1…αj1和 以s(αi2)為終點(diǎn)的一條長度為n的路αknαkn-1…αk1.于是分別有αi1αjnαjn-1…αj2和αi2αknαkn-1…αk2兩條 以ei為終點(diǎn)的長度為n的路,與命題1的唯一性相矛盾.

        定理1KQn是一個(gè)分次Frobenius代數(shù)當(dāng)且僅當(dāng)Q形如圖1.

        圖1 箭圖QFig.1 Quiver Q

        證明必要性 由命題2已顯然,證明充分性只需給出分次Frobenius形式的映射σ,具體定義如下:

        σ(0,x)=σ(x,0)=0,?x∈KQn,

        σ(k1p,k2q)=k1k2δn,k+lδs(αi1),t(αj1),?p=αik…αi1≠0,q=αjl…αj1≠0,k1,k2∈K.

        易驗(yàn)證上述的σ是分次Frobenius的.

        命題3如果KQn是一個(gè)分次對(duì)稱代數(shù),那么命題1中所述的路為圈.

        證明由對(duì)稱性

        σ(ei,αinαin-1…αi1)=σ(αinαin-1…αi1,ei)≠0,

        可得

        t(αinαin-1…αi1)=s(αinαin-1…αi1)=ei.

        證畢.

        證得命題3,結(jié)合定理1可直接得到定理2.

        定理2KQn是一個(gè)分次對(duì)稱代數(shù)當(dāng)且僅當(dāng)Q形如圖1,其中m|n.

        定理3

        KQn=KQ/〈?pw;|p|=n〉,

        其中

        〈?pw;|p|=n〉={w|?pw≠0,|p|=n}.

        Frobenius代數(shù)KQn的Nakayama自同構(gòu)可由

        μ(e1)=en(≡m)+1,μ(α1)=αn(≡m)+1

        確定.

        證明對(duì)于箭圖Q中的路p=αl…α2α1,?p有具體作用

        先考慮集合,有

        再考慮元素,有

        對(duì)于Frobenius結(jié)構(gòu)映射σ(箭圖形如定理1),有

        σ(αnαn-1…α2α1,e1)=σ(μ(e1),αnαn-1…α2α1),

        σ(αnαn-1…α2,α1)=σ(μ(α1),αnαn-1…α2),

        其中αn=αn(≡m)+1.至此可知

        μ(e1)=en(≡m)+1,μ(α1)=αn(≡m)+1.

        3 通過扭超勢(shì)構(gòu)造(由箭圖誘導(dǎo)的)分次Frobenius代數(shù)

        設(shè)由箭圖誘導(dǎo)的結(jié)合代數(shù)A=A0⊕A1⊕A2⊕…⊕Al是一個(gè)長度為l的分次Frobenius 代數(shù),伴有Frobenius結(jié)構(gòu)映射σ和Nakayama自同構(gòu)μ,其中

        A0=R=KQ0,A1=V=KQ1,|Q0|=m,|Q1|=n.

        定理4記

        如果由箭圖誘導(dǎo)的結(jié)合代數(shù)A=A0⊕A1⊕A2⊕…⊕Al是一個(gè)長度為l的分次Frobenius代數(shù),那么存在余代數(shù)同構(gòu)A*?〈ξ〉.

        其中

        并且滿足

        v*(pj)=σ(αjl,αjl-1…αj2αj1).

        因?yàn)?/p>

        v*(pj)=v*(αjlαjl-1…αj2αj1)=v*((π(αjl))(π(αjl-1…αj2αjl))=ΔA*(v*)(π(αjl)?π(αjl-1…αj2αj1))=

        (π*?π*)°ΔA*(v*)((αjl)?(αjl-1…αj2αj1))=ΔT(V*)°π*(v*)((αjl)?(αjl-1…αj2αj1))=

        所以

        σ(αjl,αjl-1…αj2αj1)=hj1j2…jl-1jl.

        取ξ=π*(v*),有〈ξ〉?π*(A*),下證反包含關(guān)系.

        dim(Il)≥1.

        dim(Bl)≥m.

        綜合引理1和引理2有推論

        dim(Al)=dim(A0)=m.

        它們的維數(shù)關(guān)系顯然與A/I?〈ξ〉*矛盾,即證得I=0.

        命題4定理4所記的ξ為余代數(shù)自同構(gòu)下的扭超勢(shì).

        證明設(shè)

        則有

        從而

        證得

        命題5如果C=〈?〉是由長度為l的扭超勢(shì)?生成的T(V*)的分次子余代數(shù),那么

        證明定義一個(gè)平移變換如下:

        由扭超勢(shì)的定義可知在箭圖自同構(gòu)ι下:

        ?=τι(?).

        此時(shí)

        注意到

        |p|=|ι(p)|=l-k,

        可得

        可表

        即知

        同理可知

        證得

        定理5如果?∈T(V*)是一個(gè)扭超勢(shì),那么A=〈?〉*是一個(gè)長度為|?|的分次Frobenius代數(shù).

        定義映射σ:A×A→K如下:

        不難驗(yàn)證它是一個(gè)雙線性映射:

        ?x,y,z,x1,x2,y1,y2∈A,k∈K,

        (1)σ(xy,z)=σ(x,yz);(2)σ(x1+x2,y)=σ(x1,y)+σ(x2,y);

        (3)σ(x,y1+y2)=σ(x,y1)+σ(x,y2);(4)σ(kx,y)=σ(x,ky)=kσ(x,y).

        下面證明它是非退化的,即:

        ?γ∈Ai,?θ∈A|?|-i,σ(γ,θ)≠0.

        設(shè)βii1,…,βiij是Ai的一組基,表γ=kii1βii1+…+kiijβiij.再由命題5可表

        非退化性得證.

        對(duì)于任意的1≤i≤|?|,i1≤ih≤ij,由γ的任意性有

        亦即

        證得ι*就是分次Frobenius代數(shù)A的Nakayama自同構(gòu).

        4 一些例子

        示例1取圖1中m=4,即箭圖Q′形如圖2.

        圖2 箭圖Q′Fig.2 Quivers Q′

        則I=〈α3α2α1,α4α3α2,α1α4α3,α2α1α4〉誘導(dǎo)了一個(gè)長度為2的分次Frobenius代數(shù).

        說明I誘導(dǎo)了一個(gè)路代數(shù)KQ的商代數(shù)A=A0⊕A1⊕A2,其中

        A0=KQ0,A1=KQ1,A2=KQ2.

        分次代數(shù)A的Frobenius結(jié)構(gòu)映射σ的非退化性表現(xiàn)在

        σ(α2,α1)=σ(α3,α2)=σ(α4,α3)=σ(α1,α4)≠0,

        并且滿足

        σ(x,y)=0, ?x∈Ai,y∈Aj,i+j≠2.

        其Nakayama自同構(gòu)μ如下:

        μ(e1)=e3,μ(e2)=e4,μ(e3)=e1,μ(e4)=e2;

        μ(α1)=α3,μ(α2)=α4,μ(α3)=α1,μ(α4)=α2.

        示例2取箭圖Q逆箭向的對(duì)偶箭圖,即箭圖Q*形如圖3.

        圖3 箭圖Q*Fig.3 Quivers Q*

        設(shè)

        這是一個(gè)箭圖自同構(gòu)ι=id下的扭超勢(shì),則A=〈?〉*是一個(gè)長度為4的分次Frobenius代數(shù).

        說明記C=〈?〉,這是一個(gè)長度為4的扭超勢(shì)?生成的T(V*)的分次子余代數(shù),其中

        可利用余乘得到其分次結(jié)構(gòu)如下:

        C0=span{e1,e2,e3,e4}.

        從而A=A0⊕A1⊕A2⊕A3⊕A4,其中

        A0=KQ0,A1=KQ1,A2=KQ2,A3=KQ3,A4=KQ4.

        即有限維結(jié)合代數(shù)A是圖2中m=n=4時(shí)的分次對(duì)稱代數(shù).

        同示例1,可由長度為4的分次Frobenius代數(shù)A的結(jié)構(gòu)映射σ知

        σ(α4α3α2,α1)=σ(α1α4α3,α2)=σ(α2α1α4,α3)=σ(α3α2α1,α4)=k≠0.

        此時(shí)

        猜你喜歡
        自同構(gòu)代數(shù)頂點(diǎn)
        一類無限?ernikov p-群的自同構(gòu)群
        過非等腰銳角三角形頂點(diǎn)和垂心的圓的性質(zhì)及應(yīng)用(下)
        兩個(gè)有趣的無窮長代數(shù)不等式鏈
        Hopf代數(shù)的二重Ore擴(kuò)張
        什么是代數(shù)幾何
        科學(xué)(2020年1期)2020-08-24 08:08:06
        關(guān)于有限Abel p-群的自同構(gòu)群
        剩余有限Minimax可解群的4階正則自同構(gòu)
        關(guān)于頂點(diǎn)染色的一個(gè)猜想
        一個(gè)非平凡的Calabi-Yau DG代數(shù)
        有限秩的可解群的正則自同構(gòu)
        亚洲成a人v欧美综合天堂麻豆| 在线观看日本一区二区三区四区| 国产精品亚洲色婷婷99久久精品 | 亚洲成人av在线第一页| 免费看黑人男阳茎进女阳道视频| 中国年轻丰满女人毛茸茸| 色二av手机版在线| 精品综合久久88少妇激情| 亚洲精品国产一区二区| 曰本极品少妇videossexhd | 狼人综合干伊人网在线观看| 亚洲精品av一区二区| 国产精品乱码一区二区三区| 欧美精品区| 一区二区三区国产视频在线观看| 国产精品专区第一页天堂2019| 一区二区三区国产| 国产人在线成免费视频麻豆| 日韩av中文字幕一卡二卡| 精品久久亚洲中文字幕| 国产真人性做爰久久网站| 精品囯产成人国产在线观看| 免费人成网站在线观看| 人人妻人人澡人人爽人人精品av | 无码日韩AⅤ一区二区三区| 国产精品成人有码在线观看| 粗大猛烈进出高潮视频大全| 亚洲处破女av日韩精品| 少妇的诱惑免费在线观看| 日本一区二区三级免费| 亚洲国产欧美在线观看| 久操视频新免费伊人| 人妻在线中文字幕视频| 久久熟妇少妇亚洲精品| 越猛烈欧美xx00动态图| 老熟女一区二区免费| 国产一区二区三免费视频| 狠狠躁夜夜躁人人躁婷婷视频 | 在线观看免费不卡网站| 久久久久久久综合综合狠狠| 久久无码一二三四|