1. A 2. C 3. A 4. B 5. D 6. A 7. C 8. B 9. C 10. A
11. [-2] 12. [63] 13. [283] 14. 0或[23] 15. 3或[-7] 16. (1,0)或(4,0)
17. -2
18. 解:(1)[15] (2)列表得:
共出現(xiàn)9種結(jié)果,每種結(jié)果出現(xiàn)的可能性相同,其中兩次都是奇數(shù)的有兩種,所以?xún)纱味济狡鏀?shù)的概率為[29].
19. 解:(1)∵四邊形ABCD是矩形,∴∠GED? =? ∠GFB,
∵EF垂直平分BD,∴GB? =? GD,
∵∠EGD = ∠FGB,∴△EGD≌△FGB,
∴GE = GF,∴四邊形BEDF是平行四邊形,
∵EF⊥BD,∴平行四邊形BEDF是菱形;
(2)[758].
20. 解:(1)50;(2)5,36;(3)圖略;(4)420.
21. 解:如圖,連接AD,∵AB是⊙O的直徑,∴AD⊥BC,
∵AB = AC,∴BD = CD,
∵[BD=BD],∴∠BAD = ∠BED,
∵tan∠BED = [34],∴tan∠BAD = [BDAD=34],
設(shè)BD = 3k,則AD = 4k,
根據(jù)勾股定理可得AB = 5k = 5,∴k = 1,
∴BD = 3k = 3,∴BC = 2BD = 6;
(2)3,[185].
22. 解:將x = 4代入[y=12x],得[y=2],則點(diǎn)A坐標(biāo)為(4,2),
將(4,2)代入[y=kx]得[k=8],∴反比例函數(shù)解析式為[y=8x],
將[y=8]代入[y=8x]得[x=1],∴點(diǎn)C坐標(biāo)為(1,8).
設(shè)直線AC解析式為[y=mx+n],將點(diǎn)A,C坐標(biāo)代入可得
[,][,][解得][,][.]
∴AC的解析式為[y=-2x+10],設(shè)直線AC與y軸交點(diǎn)為D,則點(diǎn)D坐標(biāo)為(0,10),
則S△AOC = S△AOD - S△COD,
即S△AOC = [12×10×4-12×10×1=15].
23. 解:(1)(55 - 40)(300 + 5 × 20) = 6000(元),即這一周的利潤(rùn)為6000元.
(2)能. 設(shè)降價(jià)x元,
那么(60 - x - 40 )(300 + 20x) = 6080,
解得x1 = 1,x2 = 4,60 - 1 = 59(元),60 - 4 = 56(元),
即售價(jià)為59元或56元時(shí),商品一周的利潤(rùn)為6080元.
(3)設(shè)降價(jià)x元,一周利潤(rùn)為y元,
那么y = (60 - x - 40)(300 + 20x),整理得y = -20(x - 2.5)2 + 6125,
∵[-20<0],∴當(dāng)x = 2.5時(shí)y有最大值,即降價(jià)2. 5元時(shí)利潤(rùn)最大,最大利潤(rùn)為6125元.
(4)不對(duì).
設(shè)售價(jià)為x元,營(yíng)業(yè)額為w元,那么w = (60 - x)(300 + 20x),
當(dāng)x = 2.5時(shí),利潤(rùn)最大,營(yíng)業(yè)額為20 125元,
當(dāng)x = 3時(shí),營(yíng)業(yè)額為20 520元.
24. 解:(1)BD = CE;60°.
(2)[BD=3CE]且BD⊥CE.
證明:在△ABC和△ADE中,∵∠BAC = ∠DAE = 90°,∠ABC = ∠ADE = 30°,
∴tan30° = [ACAB=AEAD=33],∠BAC - ∠DAC = ∠DAE - ∠DAC,
∴∠BAD = ∠CAE,∴△BAD∽△CAE,∴[BDCE=ABAC=3],∴[BD=3CE].
延長(zhǎng)BD,EC相交于點(diǎn)F,
∵△BAD∽△CAE,∴∠AEC = ∠ADB,
∵∠ADB + ∠ADF = 180°,∴∠AEC + ∠ADF = 180°,∴∠DFE + ∠DAE = 180°,
∵∠DAE = 90°,∴∠DFE = 90°,即BD⊥CE.
(3)1. 提示:作等邊△AOD,點(diǎn)D在第一象限,連接BD,
由(1)可得OC = BD,D是定點(diǎn),B是動(dòng)點(diǎn). 當(dāng)DB⊥y軸時(shí),BD最短,則OC最短.
(4)6. 提示:當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)C時(shí)得到△DCE′,連接EE′,
由(2)可得△DEE′∽△DPC,∴∠DE′E = ∠DCP = 30°,
∴EE′⊥AB,即點(diǎn)E運(yùn)行的路線是一條線段,利用起始位置和終止位置,求得運(yùn)行路線長(zhǎng)為6.
25.? 解:(1)解析式為[y=-x2+2x+3],頂點(diǎn)D為(1,4).
(2)連接OE,則△OCE≌△OBE, OE為∠COB的角平分線. BD的解析式為[y=-2x+6],
設(shè)點(diǎn)E坐標(biāo)為(m,m),帶入[y=-2x+6],可得m = 2,設(shè)點(diǎn)F坐標(biāo)為(a,0),
做EH⊥x軸于點(diǎn)H. 則[a-2a=23],解得[a=6],∴點(diǎn)F坐標(biāo)為(6,0).
(3)3. 提示:易得∠PCQ = ∠OFC,∴CQ[?]OF,當(dāng)FQ⊥CQ時(shí),F(xiàn)Q最短.
(4)(4,-5)、[52,74]. 提示:①當(dāng)點(diǎn)G在第四象限時(shí),tan∠BCG = tan∠ACO = [13],∠OCB = 45°,可得CG解析式為y = -2x + 3,與y = -x2 + 2x + 3聯(lián)立,求得點(diǎn)G坐標(biāo)為(4,-5);
②當(dāng)點(diǎn)G在第一象限時(shí),可得CG解析式為y = -[12]x + 3,求得點(diǎn)G坐標(biāo)為[52,74].