張衛(wèi)明
在解決某些數(shù)學(xué)問(wèn)題時(shí),我們經(jīng)常會(huì)用到“類比”和“轉(zhuǎn)化”的思想方法。類比是指由兩個(gè)對(duì)象具有某些相同的性質(zhì),推出它們的其他性質(zhì)也可能相同。轉(zhuǎn)化是指把待解決或難解決的問(wèn)題化為已有知識(shí)范圍內(nèi)的可解問(wèn)題。下面就與大家談?wù)勅绾斡眠@兩種思想方法學(xué)習(xí)本章內(nèi)容。
一、用類比的方法去思考問(wèn)題
我們知道,分式與分?jǐn)?shù)有許多相似之處。同樣,分式方程與整式方程也有很多共同之處。由此,就可通過(guò)類比得到本章知識(shí)的框圖。
分?jǐn)?shù)與分式之間有很多地方可以做類比。例如,小學(xué)我們學(xué)過(guò)分?jǐn)?shù)的約分,3=3÷3166÷3=2,利用分?jǐn)?shù)基本性質(zhì)約去分子和分母的公因數(shù)。類比分?jǐn)?shù)約分,學(xué)習(xí)分式約分也就很輕松了。
【分析】分式的分子與分母有公因式6abc,利用分式基本性質(zhì)約去分子和分母的公因式。
【評(píng)注】與分?jǐn)?shù)約分類似,根據(jù)分式的基本性質(zhì),把一個(gè)分式的分子和分母分別除以它們的公因式。本題可視為分子、分母是單項(xiàng)式的分式約分問(wèn)題。約去分子、分母中相同字母(或含字母的式子)的最低次冪,并約去系數(shù)的最大公約數(shù)即可。
【分析】先對(duì)分子和分母因式分解,再約分。
【評(píng)注】分式約分的關(guān)鍵是找出分子和分母的公因式。如果分子、分母都是多項(xiàng)式,還需先將分子、分母分別因式分解,將其轉(zhuǎn)化為因式乘積的形式,然后進(jìn)行約分。約分通常要把分式化為最簡(jiǎn)分式或整式。
二、用轉(zhuǎn)化的思想去解決問(wèn)題
異分母的分式相加減,本質(zhì)就是把異分母轉(zhuǎn)化為同分母。同樣,解分式方程的基本思路是在分式方程兩邊都乘各分式的最簡(jiǎn)公分母,把分式方程轉(zhuǎn)化成整式方程。
【分析】在方程兩邊同乘各分式的最簡(jiǎn)公分母x(x-2),轉(zhuǎn)化為一元一次方程。
【評(píng)注】在方程兩邊同乘各分式的最簡(jiǎn)公分母,將分式方程轉(zhuǎn)化為整式方程。由于變形后的整式方程的解可能使原來(lái)分式方程中的分母的值為零,從而使原分式方程失去意義,因此解分式方程必須對(duì)解得的根進(jìn)行檢驗(yàn)。
【分析】在要求解的方程兩邊同時(shí)減去2,把(x-2)看成一個(gè)整體,就可轉(zhuǎn)化成已知方程的形式。
【評(píng)注】恰當(dāng)使用整體法進(jìn)行轉(zhuǎn)化,可以使得求解更方便。
類比和轉(zhuǎn)化是數(shù)學(xué)中的重要思想方法,相信同學(xué)們只要在“分式”一章的學(xué)習(xí)中細(xì)心體會(huì),靈活運(yùn)用,就會(huì)達(dá)到事半功倍的效果。
(作者單位:江蘇省鹽城市初級(jí)中學(xué))