孫貴英
【摘 要】整式的乘除是代數(shù)運算所需要重視的重要內(nèi)容,在整式乘除教學(xué)內(nèi)容中,要結(jié)合學(xué)生在實際應(yīng)用中的逆運算角度進行有效的研究,以解決學(xué)生在解題中出錯率偏高的問題,并對學(xué)生解題出錯率較高的問題進行有效的解決。為提升學(xué)生在數(shù)學(xué)方面的學(xué)習(xí)興趣,保障初中數(shù)學(xué)整式運算教學(xué)效果,本文對于學(xué)生在整式乘除運算應(yīng)用中的錯誤,進行了有效的原因查找,并對原因進行有效的歸納總結(jié)和分析,得出解決這一原因問題的直接教學(xué)方面對策。
【關(guān)鍵詞】初中;數(shù)學(xué);整式;問題
一、確定合理的教學(xué)目標(biāo),提高逆運算應(yīng)用的重視程度
課堂教學(xué)活動是教學(xué)目標(biāo)得以實現(xiàn)的重要內(nèi)容,教學(xué)目標(biāo)需要進行清晰明確的制定,并對教學(xué)環(huán)節(jié)進行相應(yīng)的有效性研究,以對教學(xué)效果進行最終的實現(xiàn)。因此教學(xué)目標(biāo)的合理規(guī)劃是教學(xué)工作的首要問題,如果教學(xué)目標(biāo)設(shè)置存在不合理性,就會對整體教學(xué)過程造成一定的影響,教師需要對教學(xué)目標(biāo)的重要價值進行充分的認(rèn)識,并在把握教材內(nèi)容的基礎(chǔ)上,結(jié)合教學(xué)大綱進行有效的深入性分析,以學(xué)生為教學(xué)主體對學(xué)生的知識水平體系建設(shè)進行注重。整式乘除自身具有較高的內(nèi)容復(fù)雜性和繁瑣性,相應(yīng)的數(shù)學(xué)題量偏多,要求學(xué)生具有良好的數(shù)學(xué)運算能力,在命運算上也需要對學(xué)生的要求進行了提升。所以在具體教學(xué)中,教師需要對學(xué)生的參與性和記憶性進行有效引導(dǎo),提高學(xué)生的自主學(xué)習(xí)性,進而對學(xué)生在解題中獲得的成就感進行提高。以增強學(xué)生面對數(shù)學(xué)的,興趣,教學(xué)質(zhì)量的把控,并有效降低學(xué)生在解題中的時間。
二、熟練掌握法則公式的同時,注意添加公式的逆用教法
通過調(diào)查發(fā)現(xiàn),學(xué)生在公式逆運算應(yīng)用中需要進行正面的引導(dǎo),正向應(yīng)用為實施基礎(chǔ),注重公式逆運算的實際解題能力。所以教師在教學(xué)中在做好公式正向應(yīng)用的基礎(chǔ)上,一定要重視公式的逆用教法,在實際學(xué)習(xí)過程中,學(xué)生的視覺感官要大于聽覺,因此教師在指導(dǎo)學(xué)生公式逆運算應(yīng)用中,不僅僅要重視語言表達(dá),更要重視在黑板上書寫逆運算公式,做到視覺聽覺的統(tǒng)一性,比如在冪的乘法的逆運算中,教師要表達(dá)出“當(dāng)冪的指數(shù)之間相乘時,變成冪運算要乘方”,并且這種視覺聽覺共同的方式要反復(fù)。
三、重視逆運算的首次應(yīng)用錯誤,倡導(dǎo)學(xué)生自主究錯反思
(一)合理優(yōu)化階段性小結(jié),構(gòu)建逆運算知識體系
學(xué)生在對新知識進行有效學(xué)習(xí)后,需要進行分階段的有效總結(jié),為下階段的學(xué)習(xí)進行有效的復(fù)習(xí)基礎(chǔ)構(gòu)建,并在逆運算法則與相應(yīng)數(shù)學(xué)法則上進行有效的融合。但是有的復(fù)習(xí)課往往是新授課的重復(fù),學(xué)生知識面沒有拓展,學(xué)生的逆運算應(yīng)用能力沒有提高,課堂效果大打折扣,所以只有讓學(xué)生的知識系統(tǒng)得到補充、應(yīng)用能力再提高才是復(fù)習(xí)課的重中之重。首先,再構(gòu)知識網(wǎng)絡(luò),重建知識系統(tǒng)。學(xué)生階段性復(fù)習(xí)的成果不能通過片面性的網(wǎng)絡(luò)構(gòu)建進行認(rèn)識,要以樹狀網(wǎng)絡(luò)結(jié)構(gòu)的認(rèn)識模式進行數(shù)學(xué)運算大系統(tǒng)的構(gòu)建。在整個樹狀模型的大系統(tǒng)中對相應(yīng)的數(shù)學(xué)知識進行類比、探究、歸納,并在相應(yīng)的逆運算法則和數(shù)學(xué)法則中進行有效的融會貫通,以提高對數(shù)學(xué)知識的認(rèn)識重要性。并對知識的新資源開發(fā)性進行有效的開拓,從而最終建立嚴(yán)謹(jǐn)?shù)闹R體系,發(fā)現(xiàn)知識蘊含的新規(guī)律,并且對知識不斷進行創(chuàng)新發(fā)現(xiàn)達(dá)到溫故而知新的目的,階段性的小結(jié)復(fù)習(xí)課需要對新授課內(nèi)容進行有效探索,在形式角度上對分階段小結(jié)設(shè)計的內(nèi)容進行鮮明特征的保障。學(xué)生經(jīng)常因為復(fù)習(xí)的知識重復(fù)而感到毫無興趣,所以設(shè)計過程要竭力減少重復(fù)和再探知新,有助于保證學(xué)生的學(xué)習(xí)積極性,進一步認(rèn)清法則運算的本質(zhì)特征,有效整合更全面的知識系統(tǒng),掌握恰當(dāng)?shù)膶W(xué)習(xí)方法,培養(yǎng)良好的學(xué)習(xí)習(xí)慣。第三,把握復(fù)習(xí)切點,形成知識絡(luò)印。復(fù)習(xí)設(shè)計要在新授課的基礎(chǔ)上,展開了有價值的知識探究、方法的思考。具體來說,整合了前面有理數(shù)運算和整式的加減等數(shù)學(xué)運算,運用特殊到一般,形象到具體的數(shù)學(xué)方法,讓學(xué)生形成了新的知識生長點,知識點之間緊緊相連,逐步完成知識的轉(zhuǎn)換與結(jié)網(wǎng),加深了對知識理解能力。
(二)要重視逆運算公式的引入與檢驗環(huán)節(jié),關(guān)注數(shù)學(xué)思想的滲透
教師需要在教學(xué)各環(huán)節(jié)中對公式法則的引入價值進行有效研究,從學(xué)生在新知識的結(jié)構(gòu)體系建立中進行相應(yīng)指導(dǎo)。結(jié)合教師的相應(yīng)問卷調(diào)查可以得出,大部分教師認(rèn)為講解法則或者公式的引入和推導(dǎo)過程是很重要的,其重要性在于可以促進學(xué)生的理解記憶,可以促進學(xué)生正確的應(yīng)用,但是忽略了在導(dǎo)入和推導(dǎo)公式的過程中的數(shù)學(xué)思想。
教師在相應(yīng)總結(jié)講評中對學(xué)生提出的問題進行有效解答,并在平方差等形式以及相應(yīng)文字描述中進行有效的講解,讓學(xué)生積極主動的進行推導(dǎo),其學(xué)生自主性的數(shù)學(xué)推導(dǎo)比教師在黑板上進行推導(dǎo)講解更具有效果。學(xué)生可以對公式的本質(zhì)進行一定的認(rèn)識,對其中變化特點進行有效的推導(dǎo)思維建立,在推導(dǎo)的過程中,最終實現(xiàn)學(xué)生對數(shù)學(xué)知識思想體系的構(gòu)建。讓數(shù)學(xué)思想方法可以融匯到學(xué)生日常解題中來,并起到舉一反三的價值和作用,并起到舉一反三的價值和作用最終實現(xiàn)學(xué)生數(shù)學(xué)學(xué)習(xí)水平提升的目。
四、結(jié)語
《整式的乘除》是初一年級下學(xué)期的內(nèi)容,是繼上冊學(xué)習(xí)了《有理數(shù)的運算》《整式的加減》之后進行的,也是后續(xù)學(xué)習(xí)分式、方程、函數(shù)的重要基礎(chǔ)。在這個特殊的年齡階段,學(xué)生從數(shù)到式的認(rèn)知本來就很困難,在《整式的乘除》本章內(nèi)容學(xué)習(xí)中法則逆運算的應(yīng)用更是讓給學(xué)生造成很大的障礙,學(xué)生在花費很大精力和時間之后,取得的效果也不明顯,整式的乘除因為法則逆運算成了一道分水嶺,導(dǎo)致部分學(xué)生對數(shù)學(xué)喪失信心,學(xué)習(xí)動力和學(xué)習(xí)成績也是一落千丈,所以研究整式乘除逆運算的應(yīng)用就顯得尤為重要。
參考文獻(xiàn):
[1]張成強.初中數(shù)學(xué)整式運算中常見錯誤分析與對策[J/OL].學(xué)周刊,2020(06)[2020-01-19].
[2]李嵐.初中學(xué)生整式運算的常見錯誤及對策[J].中國教師,2018(S1).