彭玉嬌 崔學(xué)宇 譚夢(mèng)超 阮紅燕 邵元元 曾文萍 區(qū)燕麗 侯彥林
摘要:【目的】分析不同立地條件沙田柚果園土壤微生物多樣性,為沙田柚的精準(zhǔn)施肥和精細(xì)管理提供參考依據(jù)?!痉椒ā恳詮V西容縣沙田柚果園五一柚場(chǎng)為研究對(duì)象,測(cè)定該區(qū)域不同立地條件(坡向和坡位)土壤的基礎(chǔ)理化性質(zhì)(總氮、水分含量和pH),同時(shí)利用高通量測(cè)序技術(shù)對(duì)其微生物群落結(jié)構(gòu)及多樣性進(jìn)行分析。【結(jié)果】土壤樣本共獲得37806個(gè)操作分類單元(OTUs),至少涵蓋46門57綱136目270科661屬的細(xì)菌;門水平聚類分析結(jié)果表明,沙田柚種植土壤與對(duì)照(未種植沙田柚的空地)間能明顯區(qū)分開,變形菌門(Proteobacteria)和擬桿菌門(Bacteroidetes)是沙田柚種植土壤的優(yōu)勢(shì)菌門; Chujaibacter是沙田柚種植土壤微生物的優(yōu)勢(shì)屬,但其相對(duì)豐度在不同坡向和坡位差異較明顯,北坡向(25.77%)和下坡位(16.86%)相對(duì)豐度最高,而東坡向(5.26%)和上坡位(5.58%)較低;Pseudomonas cichorii是沙田柚種植潛在的致病種。土壤理化性質(zhì)分析發(fā)現(xiàn),坡位僅對(duì)土壤水分含量產(chǎn)生顯著影響(P<0.05,下同),下坡位水分含量最高(58.25%),上坡位最低(47.00%),二者間差異顯著;坡向是影響沙田柚種植土壤總氮、水分和pH的主要因素,其中,西坡向土壤水分含量最高(63.00%)、南坡向最低(42.67%),南坡向pH最高(6.60)、東坡向最低(5.90),北坡向土壤的總氮含量最高(2.07 g/kg)、南坡向最低(1.77 g/kg)。土壤水分含量影響土壤微生物4個(gè)屬和5個(gè)種,總氮含量影響2個(gè)屬和2個(gè)種,而pH對(duì)土壤微生物結(jié)構(gòu)未產(chǎn)生顯著影響(P>0.05);另有3個(gè)屬和2個(gè)種的微生物可能與沙田柚品質(zhì)相關(guān)?!窘Y(jié)論】坡向?qū)ι程镨址N植土壤的理化性質(zhì)影響較大,沙田柚種植影響土壤細(xì)菌群落組成,坡向和坡位造成沙田柚果園土壤細(xì)菌群落組成差異。
關(guān)鍵詞: 沙田柚;立地條件;微生物群落結(jié)構(gòu);高通量測(cè)序技術(shù)
中圖分類號(hào): S155.46? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2020)05-1136-09
Abstract:【Objective】The soil microbial diversity of Shatian pomelo orchard was analyzed under different site conditions to provide reference for precise fertilization and disease control of Shatian pomelo. 【Method】Taking the Wuyi pomelo orchard in Rongxian County of Guangxi as the object,the basic physical and chemical properties (total nitrogen,water content and pH) of soil under different site conditions(slope direction and position) were analyzed. Meanwhile,the microbial community structure and diversity analysis were carried out by high-throughput sequencing technology. 【Result】The results showed that the total number of operational taxonomic unit(OTUs) obtained in this study was 37806,including least 46 phyla,57 classes,136 orders,270 families and 661 genera. The cluster analysis at phyla level indicated that the soil cultivating Shatian pomelo orchard and control(with no Shatian pomelo) could be separated easily.? Proteobacteria and Bacteroidetes were dominant bacteria populations at phylum level. Chujaibacter was the dominant genus of soil microbe in Shatian pomelo orchard,but its relative abundance varied greatly in different slope directions and positions,the relative abundances of north slope direction(25.77%) and lower slope(16.86%) were higher,those of east slope direction(5.26%) and upper slope(5.58%) were? lower.? Pseudomonas cichorii was a potential pathogen in Shatian pomelo cultivation. Analysis of soil physical and chemical properties showed that slope position significantly affected water content(P<0.05, the same below), the highest water content(58.25%) was in the lower slope,the lowest(47.00%) was in the upper slope, and the difference between the two was significant. The slope direction affected soil total nitrogen, water content and pH,among which the soil water content in the north slope was the highest(63.00%),the south slope was the lowest (42.67%),the pH value in the south slope was the highest(6.60),the east slope was the lowest(5.90), the total nitrogen content in the north slope was the highest(2.07 g/kg),and the south slope was the lowest(1.77 g/kg). Soil water content affected 4 genera and 5 species of soil bacteria,total nitrogen content affected 2 genera and 2 species,pH had no significant effects on soil microbial community composition(P>0.05); and 3 genera and 2 species of soil bacteria might be rela-ted to the quality of Shatian pomelo. 【Conclusion】This study demonstrates that the slope direction factor has great influence on the physical and chemical properties of Shatian pomelo cultivating soil. The cultivation of Shatian pomelo affects the soil microbial community composition. The slope direction and position contribute a lot to the differences of soil microbial community composition in Shatian pomelo orchard.
Key words: Citrus maxima(Burm.) Merr.cv. Shatian Yu; site condition; microbial community structure; high throughput sequen-cing technology
Foundation item: Guangxi Major Science and Technology Project(Guike AA17204077); Guangxi Construction Project of First-class Discipline(Geography)(2019); Open project Key Laboratory of Environmental Change and Resource Utilization of Beibu Gulf of Ministry of Education(GTEU-KLOP-X1820,GTEU-KLOP-X1819)
0 引言
【研究意義】沙田柚[Citrus maxima(Burm.) Merr.cv. Shatian Yu]隸屬于蕓香科柑橘屬,分布于我國(guó)廣西、廣東、四川和重慶等地(郭淑敏等,2010),是一種適應(yīng)性強(qiáng)、種植范圍廣且經(jīng)濟(jì)效益高的果樹(區(qū)善漢等,2015)。本課題組前期研究發(fā)現(xiàn),不同栽培立地條件的沙田柚品質(zhì)存在明顯差異,因沙田柚品質(zhì)直接影響其商品果率,進(jìn)而影響栽培經(jīng)濟(jì)效益(彭玉嬌等,2019)。沙田柚的栽培中,土壤—微生物—果樹三者之間相互作用、相互影響,構(gòu)成了沙田柚根際生長(zhǎng)的微生態(tài)系統(tǒng)。因此,對(duì)沙田柚不同栽培立地條件土壤微生物多樣性進(jìn)行研究,有助于通過人工調(diào)節(jié)果園土壤微環(huán)境,解決地力衰退和潛在土傳病害等問題,對(duì)沙田柚精準(zhǔn)施肥和精細(xì)管理有重要意義?!厩叭搜芯窟M(jìn)展】近年來,關(guān)于沙田柚的研究主要集中在采后貯藏,包括采后不同貯藏方式下風(fēng)味物質(zhì)的變化(劉順枝等,2010;劉萍等,2016a,2016b)、采后風(fēng)味物質(zhì)含量測(cè)定(陽(yáng)梅芳等,2013)和采后品質(zhì)變化模型建立(許曦戈等,2018)等,沙田柚果園土壤的研究多集中在氮、磷、鉀含量變化及有機(jī)肥施用等(李涵,2016),但從微生物多樣性及功能角度進(jìn)行的研究鮮有報(bào)道。隨著測(cè)序技術(shù)的發(fā)展,已有較多關(guān)于微生物在土壤中的功能研究,且證實(shí)土壤微生物群落結(jié)構(gòu)受土壤理化性質(zhì)的影響(Brockett et al.,2012;Ramirez et al.,2012;Sun et al.,2015),同時(shí)群落差異也是林木地力衰退的重要原因之一(Tan et al.,2017a,2017b)。不同的立地條件直接影響光照、溫度及土壤質(zhì)地等因子,導(dǎo)致土壤養(yǎng)分和微生物的差異(雷斯越等,2019;張倩等,2019)。此外,作物的品種和健康狀況等對(duì)土壤微生物群落結(jié)構(gòu)也有直接影響(Luan et al.,2015;生靜雅等,2017)。【本研究切入點(diǎn)】目前從土壤生態(tài)角度來看,沙田柚種植土壤微生物群落結(jié)構(gòu)及沙田柚種植果園的坡向、坡位與土壤微生物群落間的關(guān)系尚不清晰,也鮮有相關(guān)研究報(bào)道。【擬解決的關(guān)鍵問題】測(cè)定沙田柚果園不同坡向和坡位的土壤理化性質(zhì)(水分含量、pH及總氮含量),同時(shí)利用16S rDNA V4區(qū)域擴(kuò)增子測(cè)序方法對(duì)土壤微生物群落進(jìn)行研究,旨在明確沙田柚果園土壤與微生物群落結(jié)構(gòu)的關(guān)系,為沙田柚果園的精準(zhǔn)管理提供理論依據(jù)。
1 材料與方法
1. 1 研究區(qū)域概況
試驗(yàn)基地五一柚場(chǎng)位于廣西玉林市容縣容州鎮(zhèn)(東經(jīng)111°19′,北緯22°33′,最高海拔151 m),屬亞熱帶季風(fēng)氣候,土壤為磚紅壤,年降水量約1700 mm。柚場(chǎng)占地10 ha,種植2000株同一品種的20~30年生成熟沙田柚果樹。
1. 2 樣地選取與土樣采集
2019年3月16日采集土壤,在果園按方位分為東、南、西和北坡向,同時(shí)在山頂定點(diǎn),將山分為上、中和下坡位,將山劃分為12個(gè)部分,每部分隨機(jī)選取果樹1株,去除地表落物等覆蓋物,在樹冠范圍內(nèi)按五點(diǎn)法取土樣,取土深度10~20 cm;在未種植沙田柚的空地隨機(jī)選擇3個(gè)地點(diǎn),同樣按照五點(diǎn)法取土樣為對(duì)照(CK)。
1. 3 測(cè)定方法
1. 3. 1 土壤理化性質(zhì)測(cè)定 土壤pH采用便攜式土壤pH計(jì)進(jìn)行測(cè)定,水分含量利用便攜式土壤水分儀進(jìn)行測(cè)定,總氮含量采用土壤總氮試劑盒[齊一生物科技(上海)有限公司]進(jìn)行測(cè)定。
1. 3. 2 基因組DNA提取和PCR擴(kuò)增 采用CTAB法對(duì)土壤樣本基因組DNA進(jìn)行提取,之后利用無菌水稀釋樣本至1 ng/μL,委托北京諾禾致源生物信息科技有限公司完成對(duì)應(yīng)區(qū)段的PCR擴(kuò)增及后續(xù)測(cè)序。以稀釋后的基因組DNA為模板,根據(jù)測(cè)序區(qū)域的選擇,使用帶Barcode的特異引物、New England Biolabs公司的Phusion? High-Fidelity PCR Master Mix with GC Buffer和高效高保真酶進(jìn)行PCR擴(kuò)增,確保擴(kuò)增效率和準(zhǔn)確性。PCR擴(kuò)增產(chǎn)物使用2%瓊脂糖凝膠進(jìn)行電泳檢測(cè);根據(jù)PCR擴(kuò)增產(chǎn)物濃度進(jìn)行等量混樣,充分混勻后使用1×TAE 2%瓊脂糖膠電泳純化PCR擴(kuò)增產(chǎn)物,剪切回收目標(biāo)條帶,使用Thermo Scientific公司GeneJET膠回收試劑盒進(jìn)行回收。使用Thermofisher公司的Ion Plus Fragment Library Kit 48 rxns建庫(kù)試劑盒進(jìn)行文庫(kù)構(gòu)建,經(jīng)Qubit定量和文庫(kù)檢測(cè)合格后,再采用Thermofisher公司的Ion S5TMXL進(jìn)行上機(jī)測(cè)序。
1. 4 數(shù)據(jù)處理
使用Qiime 1.9.1計(jì)算Observed-otus、Chao1、Shannon、Simpson、ACE、Goods-coverage和PD_ whole_tree指數(shù),利用R 2.15.3繪制稀釋曲線(Rare-faction curve)、Rank abundance曲線和物種累積曲線,并進(jìn)行Alpha多樣性指數(shù)組間差異分析,試驗(yàn)數(shù)據(jù)處理利用Excel 2016錄入,SPSS 23.0計(jì)算。
2 結(jié)果與分析
2. 1 沙田柚果園土壤微生物群落多樣性分析結(jié)果
樣品擴(kuò)增共獲得原始序列1198119條,對(duì)低質(zhì)量序列過濾后,獲得有效序列1134750條,占94.71%,合計(jì)獲得堿基數(shù)目為287579486 nt,有效序列長(zhǎng)度平均值為253 nt,得到操作分類單元(OTU)37806個(gè),至少涵蓋46門57綱136目270科661屬;對(duì)于各樣本,OTU在1926~3146個(gè),OTU最多的是南中,除對(duì)照外,最少的是東下(表1)。ACE指數(shù)和Chao1指數(shù)反映微生物群落的豐富度,由表1可知,南上、南中和西上的ACE指數(shù)和Chao1指數(shù)較大;群落物種多樣性由Simpson指數(shù)和Shannon指數(shù)反映,各坡向和坡位的Simpson指數(shù)差異小,在0.97~0.99,而Shannon指數(shù)同樣是南上、南中和西上較大。這一結(jié)果體現(xiàn)了坡向和坡位對(duì)細(xì)菌多樣性的影響。
稀釋曲線表示在樣本中隨機(jī)抽取一定測(cè)序量的數(shù)據(jù),對(duì)其代表的OTUs進(jìn)行統(tǒng)計(jì)所構(gòu)建獲得的曲線,當(dāng)稀釋曲線趨向平緩時(shí),表明測(cè)序量合理。15個(gè)土壤樣本稀釋曲線如圖1所示,各稀釋曲線逐漸趨于平緩,表明本研究測(cè)序量合理,增大數(shù)據(jù)量只會(huì)產(chǎn)生少量新物種OTUs。
對(duì)所有樣本進(jìn)行均一化處理后,繪制Venn圖(圖2)。由圖2-A可知,4個(gè)坡向包含的OTU數(shù)量分別為東坡向3252個(gè)、西坡向3883個(gè)、南坡向4101個(gè)和北坡向3282個(gè),對(duì)照為3823個(gè);其中1991個(gè)OTUs為4個(gè)坡向共有,即每個(gè)坡向均有接近50%的OTUs相同;東、南、西、北坡向特有的OTUs分別為215、512、385和228個(gè)。由圖2-B可知,上、中、下3個(gè)坡位包含的OTUs分別為4321、4340和3597個(gè);其中2716個(gè)OTUs為3個(gè)坡位共有,即每個(gè)坡位均有超過60%的OTUs相同。對(duì)于每個(gè)坡位來說,上坡位特有的OTUs數(shù)量最多(611個(gè)),下坡位最少(210個(gè))。
2. 2 沙田柚果園土壤優(yōu)勢(shì)菌群落分布情況
2. 2. 1 細(xì)菌門分類水平比較及聚類分析 為明確樣本間的相似性,對(duì)樣本進(jìn)行聚類分析,結(jié)果(圖3)表明,不論按照坡向還是坡位劃分,對(duì)照土壤和沙田柚種植區(qū)域土壤細(xì)菌均被分為兩大類;根據(jù)坡向劃分,南坡向和西坡向樣本聚在一個(gè)類群中(圖3-A);根據(jù)坡位劃分,下坡位和中坡位樣本聚在一個(gè)類群中(圖3-B)。
所有土壤樣本共獲得46個(gè)門,以變形菌門(Proteobacteria)的相對(duì)豐度最高,其在對(duì)照及西、北、南、東4個(gè)坡向土壤樣本中的相對(duì)豐度分別為31.11%、51.41%、62.92%、48.94%和49.21%,在上、中、下3個(gè)坡位土壤樣本中的相對(duì)豐度分別為49.93%、54.82%和54.57%;不同立地條件間比較發(fā)現(xiàn),北坡向土壤的變形菌門相對(duì)豐度高于其他組別。其次是擬桿菌門(Bacteroidetes),其在對(duì)照及西、北、南、東4個(gè)坡向土壤中相對(duì)豐度分別為19.79%、11.72%、10.67%、13.91%和27.13%,在上、中、下3個(gè)坡位土壤中的相對(duì)豐度分別為17.36%、13.76%和16.48%;不同立地條件間比較發(fā)現(xiàn),東坡向土壤的擬桿菌門相對(duì)豐度遠(yuǎn)高于其他組別。其余在各土壤樣本中相對(duì)豐度較高的菌門分別是厚壁菌門(Firmicutes)、酸桿菌門(Acidobacteria)、放線菌門(Actinobacteria)、芽單胞菌門(Gemmatimonadetes)、綠彎菌門(Chloroflexi)和疣微菌門(Verrucomicrobia)等。
2. 2. 2 細(xì)菌屬分類水平比較 對(duì)土壤樣本細(xì)菌屬分類水平進(jìn)行分析,結(jié)果發(fā)現(xiàn)沙田柚種植土壤全部細(xì)菌序列至少有661個(gè)屬,選取相對(duì)豐度前30的屬比較作圖。除去其他(Others)外,相對(duì)豐度最高的屬是Chujaibacter,其在對(duì)照及西、北、南、東4個(gè)坡向樣本中的相對(duì)豐度分別為7.32%、9.46%、25.77%、9.88%和5.26%(圖4-A),在上、中、下3個(gè)坡位樣本中的相對(duì)豐度分別為5.58%、15.37%和16.86%(圖4-B)。其次是產(chǎn)黃桿菌屬(Rhodanobacter),其在對(duì)照及西、北、南、東4個(gè)坡向樣本中的相對(duì)豐度分別為0.20%、7.60%、4.47%、5.06%和9.99%,對(duì)照土壤的相對(duì)豐度明顯低于沙田柚種植土壤;在上、中、下3個(gè)坡位樣本中的相對(duì)豐度分別為4.29%、6.84%和10.55%。土地桿菌屬(Pedobacter)同樣在沙田柚種植土壤中相對(duì)豐度更高,其在對(duì)照及西、北、南、東4個(gè)坡向樣本中的相對(duì)豐度分別為0.10%、1.45%、2.93%、1.19%和7.58%;在上、中、下3個(gè)坡位樣本中的相對(duì)豐度分別為2.87%、2.28%和4.63%。此外,乳酸菌屬(Lactobacillus)和乳球菌屬(Lactococcus)在對(duì)照土壤中的相對(duì)豐度遠(yuǎn)高于沙田柚種植土壤,尤其是乳球菌屬在對(duì)照土壤中的相對(duì)豐度為1.58%。
2. 3 沙田柚土壤樣本高豐度微生物潛在功能分析結(jié)果
對(duì)沙田柚種植土壤和對(duì)照土壤相對(duì)豐度較高(相對(duì)豐度>0.10%)的屬、種進(jìn)行分析,共獲得81個(gè)屬和31個(gè)種。對(duì)沙田柚種植土壤和對(duì)照土壤樣本微生物屬進(jìn)行分析發(fā)現(xiàn),有6個(gè)植物病原菌重要的屬(馮潔,2017)在沙田柚種植土壤中被發(fā)現(xiàn),分別為假單胞菌屬(Pseudomonas)、紅球菌屬(Rhodococcus)、芽孢桿菌屬(Bacillus)、鏈絲(霉)菌屬(Streptomyces)、雷爾氏菌屬(Ralstonia)和節(jié)桿菌屬(Arthrobacter),未發(fā)現(xiàn)柑橘黃龍病的韌皮桿菌屬(Liberobacter)。與對(duì)照相比,沙田柚種植土壤中高豐度的潛在致病種主要是Pseudomonas cichorii(Trantas et al.,2013)。對(duì)沙田柚種植土壤潛在固氮微生物進(jìn)行分析發(fā)現(xiàn),有3個(gè)潛在固氮菌屬的相對(duì)豐度較高,分別為黃桿菌屬(Flavobacterium)、假單胞菌屬和脫硫弧菌屬(Desulfovibrio),其中黃桿菌屬和假單胞菌屬相對(duì)豐度明顯高于對(duì)照。在對(duì)照土壤樣本中發(fā)現(xiàn)脫硫腸狀桿菌屬(Desulfotomaculum),但在沙田柚種植土壤中未發(fā)現(xiàn)。此外,硝化細(xì)菌Pseudomonas xanthomarina(Sope?a et al.,2014)、丁草胺降解菌Flavobacterium yanchengense(Hu et al.,2013)和烷烴降解菌香茅醇假單胞菌Pseudomonas citronellolis(Bhattacharya et al.,2003)在所有沙田柚種植土壤中的相對(duì)豐度也遠(yuǎn)高于對(duì)照土壤,可能與施用肥料及除草劑有關(guān)。
2. 4 環(huán)境因子對(duì)沙田柚土壤微生物的影響
對(duì)沙田柚種植土壤中的水分含量、pH和總氮含量進(jìn)行測(cè)定,結(jié)果如表2和表3所示。坡向是影響土壤屬性的主要因素,對(duì)于不同坡向來說,西坡向土壤水分含量最高,顯著高于東坡向、南坡向和對(duì)照(P<0.05,下同),與北坡向間差異不顯著(P>0.05,下同),南坡向最低;南坡向土壤的pH最高,顯著高于東坡向和對(duì)照,對(duì)照土壤的pH最低;北坡向土壤的總氮含量最高,顯著高于東坡向、南坡向和對(duì)照,而對(duì)照的總氮含量最低。對(duì)于不同坡位來說,坡位僅對(duì)土壤水分含量有顯著影響,上坡位土壤水分含量最低,下坡位最高。分析沙田柚種植土壤微生物與環(huán)境因子的相關(guān)性發(fā)現(xiàn),土壤水分含量影響土壤微生物4個(gè)屬和5個(gè)種,總氮含量影響2個(gè)屬和2個(gè)種,而pH對(duì)土壤微生物結(jié)構(gòu)未產(chǎn)生顯著影響;此外,有3個(gè)屬和2個(gè)種的微生物可能與沙田柚品質(zhì)相關(guān)(圖5)。
3 討論
已有研究表明,土壤微生物以細(xì)菌為主(Yang et al.,2010),土壤中的微生物群落與外界環(huán)境存在相互作用(魏賽金等,2016;王楠楠等,2017;徐琳等,2017;張文鋒等,2018)。因此,本研究以細(xì)菌為切入點(diǎn),對(duì)沙田柚種植土壤細(xì)菌多樣性進(jìn)行分析,15個(gè)土壤樣本的稀釋曲線趨于平緩,證明本研究測(cè)序量合理。對(duì)OTU分析結(jié)果表明,沙田柚種植土壤和對(duì)照土壤細(xì)菌結(jié)構(gòu)有一定差異。對(duì)沙田柚種植土壤樣本之間的OTU進(jìn)行分析發(fā)現(xiàn),南坡向和上坡位土壤特有的OTU數(shù)量最多。
在門水平上對(duì)土壤微生物多樣性進(jìn)行聚類分析發(fā)現(xiàn),對(duì)照土壤和沙田柚種植土壤樣本被劃分到兩個(gè)大類中;對(duì)于坡向,西坡向和南坡向聚為一個(gè)類群,對(duì)于坡位,下坡位和中坡位聚為一個(gè)類群。變形菌門在所有的樣本中相對(duì)豐度最高,但在樣本間差異較明顯,對(duì)照的相對(duì)豐度最低;對(duì)于坡向,北坡向的相對(duì)豐度最高,南坡向最低;對(duì)于坡位,中坡位的相對(duì)豐度最高,上坡位最低。變形菌門相對(duì)豐度高于對(duì)照土壤的結(jié)果與前人在雷竹林(翟婉璐等,2017)、蘋果園(沈鵬飛等,2019)土壤中的研究結(jié)果相似。究其原因可能是變形菌門為富養(yǎng)菌(王慧穎等,2018;張凱煜等,2019),坡向間的差異由北坡向的總氮含量最高所致;從坡位角度分析,可能由于地勢(shì)的原因,水分在中、下坡位較高,溶解于水的營(yíng)養(yǎng)富集在中、下坡位,故中、下坡位的變形菌門豐度高于上坡位。在屬水平上對(duì)土壤微生物多樣性進(jìn)行分析發(fā)現(xiàn),沙田柚的種植明顯提高土壤中產(chǎn)黃桿菌屬和土地桿菌屬的相對(duì)豐度,降低乳酸菌屬和乳球菌屬的相對(duì)豐度。說明植物的自身代謝、微生物的主動(dòng)選擇及栽培種植管理均影響土壤細(xì)菌的菌群結(jié)構(gòu),也可能是沙田柚種植土壤營(yíng)養(yǎng)更豐富所致。
本研究對(duì)沙田柚種植土壤微生物相對(duì)豐度較高的種、屬潛在功能進(jìn)行分析,發(fā)現(xiàn)Pseudomonas? cichorii在沙田柚種植土壤中有較高的相對(duì)豐度,其在多種植物中有致病的報(bào)道(Cottyn et al.,2009;Tateda et al.,2009;Trantas et al.,2013;Moreira et al.,2015),因此需注意其對(duì)沙田柚產(chǎn)生病害危害的潛在風(fēng)險(xiǎn)。硝化細(xì)菌在沙田柚種植土壤中的相對(duì)豐度遠(yuǎn)高于對(duì)照,該菌的存在可能降低沙田柚種植土壤的氮肥利用率。此外,丁草胺降解菌(胡鋼,2013;Hu et al.,2013)和烷烴降解菌香茅醇假單胞菌(Bhattacharya et al.,2003;陳道康,2016)在沙田柚種植土壤中的相對(duì)豐度提高,可能是自然狀態(tài)下對(duì)土壤除草劑污染修復(fù)所致,推測(cè)這兩種菌具有潛在修復(fù)土壤除草劑污染的利用價(jià)值。
本研究對(duì)沙田柚種植的環(huán)境因子進(jìn)行測(cè)定分析,發(fā)現(xiàn)坡向是影響沙田柚種植土壤氮、水和pH的主要因素,可能是因?yàn)樯程镨址N植土壤海拔不高且為梯田所致。pH未對(duì)沙田柚種植土壤微生物結(jié)構(gòu)產(chǎn)生顯著影響;同時(shí)發(fā)現(xiàn)3個(gè)屬和2個(gè)種在不同品質(zhì)沙田柚種植土壤中存在顯著差異,但其具體機(jī)理有待進(jìn)一步研究。
4 結(jié)論
坡向?qū)ι程镨址N植土壤的理化性質(zhì)影響較大,沙田柚種植影響土壤細(xì)菌群落組成,坡向和坡位造成沙田柚果園土壤細(xì)菌群落組成差異。
參考文獻(xiàn):
陳道康. 2016. 一株三氟羧草醚降解菌的分離、降解特性及固定化研究[D]. 南京:南京農(nóng)業(yè)大學(xué). [Chen D K. 2016. Scree-ning of degradation bacteria of acifluorfen and its degradation characteristics and immobilized cell[D]. Nanjing:Nanjing Agricultural University.]
馮潔. 2017. 植物病原細(xì)菌分類最新進(jìn)展[J]. 中國(guó)農(nóng)業(yè)科學(xué),50(12):2305-2314. [Feng J. 2017. Recent advances in taxonomy of plant pathogenic bacteria[J]. Scientia Agricultura Sinica,50(12):2305-2314.]
郭淑敏,陳印軍,蘇永秀,鐘仕全,李政. 2010. 廣西沙田柚精細(xì)化農(nóng)業(yè)氣候區(qū)劃與應(yīng)用研究[J]. 氣象與環(huán)境科學(xué),33(4):16-20. [Guo S M,Chen Y J,Su Y X,Zhong S Q,Li Z. 2010. Study on precise comprehensive agricultural climate zoning and application of Shatian pomelo in Guangxi[J]. Meteorological and Environmental Sciences,33(4):16-20.]
胡鋼. 2013. 丁草胺降解菌Flavobacterium yanchengense sp.nov.hgT的分離、鑒定及其特性研究[D]. 南京:南京農(nóng)業(yè)大學(xué). [Hu G. 2013. Isolation and characterization of a butachlor degrading strain Flavobacterium yanchengense sp.nov.hgT and its characteristics[D]. Nanjing:Nanjing Agricultural University.]
雷斯越,趙文慧,楊亞輝,呂渡,白云斌,何亮,郭晉偉,張曉萍. 2019. 不同坡位植被生長(zhǎng)狀況與土壤養(yǎng)分空間分布特征[J]. 水土保持研究,26(1):92-97. [Lei S Y,Zhao W H,Yang Y H,Lü D,Bai Y B,He L,Guo J W,Zhang X P. 2019. Spatial distribution characteristics of soil nutrients and vegetation growth status in different slopes[J]. Research of Soil and Water Conservation,26(1):92-97.]
李涵. 2016. 沙田柚土壤、葉片氮、磷、鉀含量季節(jié)性變化與果實(shí)品質(zhì)的關(guān)系[D]. 重慶:西南大學(xué). [Li H. 2016. Relationship between fruit quality and seasonal variation of nitrogen,phosphorus and potassium of soil and leaves in‘Changshou shatian pomelo[Citrus grandis(L.) Osbeck][D]. Chongqing:Southwest University.]
劉萍,黃春霞,鄧光宙,范七君,牛英. 2016a. 不同貯藏條件對(duì)沙田柚果實(shí)苦味物質(zhì)含量的影響[J]. 廣西植物,36(6):658-662. [Liu P,Huang C X,Deng G Z,F(xiàn)an Q J,Niu Y. 2016a. Effects of different storage conditions on changes of bitter substance of “Shatian” pomelo[J]. Guihaia,36(6):658-662.]
劉萍,牛英,鄧光宙,劉冰浩,范七君,婁兵海. 2016b. 室溫和低溫貯藏沙田柚果實(shí)的有機(jī)酸含量變化[J]. 南方農(nóng)業(yè)學(xué)報(bào),47(9):1542-1546. [Liu P,Niu Y,Deng G Z,Liu B H,F(xiàn)an Q J,Lou B H. 2016b. Variation of organic acids in Citrus maxima(Burm.) Merr. cv. Shatian Yu under room and low temperature storage[J]. Journal of Southern Agriculture,47(9):1542-1546.]
劉順枝,江月玲,李小梅,張昭其,胡位榮. 2010. 柚類果實(shí)采后生理及貯藏技術(shù)研究進(jìn)展[J]. 食品科學(xué), 31(21):394-399. [Liu S Z,Jiang Y L,Li X M,Zhang Z Q,Hu W R. 2010. Research progress in postharvest physiology and storage technology of pomelo fruit[J]. Food Science,31(21):394-399.]
區(qū)善漢,梅正敏,林林,肖遠(yuǎn)輝,張社南,麥適秋,鄧鵬,王天菊,廖遠(yuǎn)漢. 2015. 施用花生麩對(duì)沙田柚果實(shí)品質(zhì)的影響[J]. 南方農(nóng)業(yè)學(xué)報(bào),46(12):2168-2172. [Ou S H,Mei Z M,Lin L,Xiao Y H,Zhang S N,Mai S Q,Deng P,Wang T J,Liao Y H. 2015. Effect of peanut-bran application on fruit quality of Shatian pomelo[J]. Journal of Southern Agriculture,46(12):2168-2172.]
彭玉嬌,崔婷婷,崔學(xué)宇,邵元元,曾文萍,劉書田,賈書剛,侯彥林. 2019. 立地條件及空間冠層對(duì)沙田柚品質(zhì)的影響[J]. 種子,38(11):129-132. [Peng Y J,Cui T T,Cui X Y,Shao Y Y,Zeng W P,Liu S T,Jia S G,Hou Y L. 2019. Effects of site conditions and space canopy on the quality of Shatian pomelo[J]. Seed,38(11):129-132.]
沈鵬飛,王威雁,李彤,廖允成,李亞君,溫曉霞. 2019. 陜西洛川蘋果園不同覆蓋措施對(duì)土壤性質(zhì)、細(xì)菌群落及果實(shí)產(chǎn)量和品質(zhì)的影響[J]. 園藝學(xué)報(bào),46(5):817-831. [Shen P F,Wang W Y,Li T,Liao Y C,Li Y J,Wen X X. 2019. Effects of different mulching measures on soil properties,bacterial community,fruit yield and quality of Luochuan apple orchard in Shaanxi Province[J]. Acta Horticulturae Sinica,46(5):817-831.]
生靜雅,朱海軍,劉廣勤,萬(wàn)青. 2017. 不同薄殼山核桃品種的根際土壤細(xì)菌菌群結(jié)構(gòu)及多樣性研究[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào),33(9):816-821. [Sheng J Y,Zhu H J,Liu G Q,Wan Q. 2017. Community structure and diversity of soil bacteria in rhizospheres under different varieties of Carya illinoensis[J]. Journal of Ecology and Rural Environment,33(9):816-821.]
王慧穎,徐明崗,周寶庫(kù),馬想,段英華. 2018. 黑土細(xì)菌及真菌群落對(duì)長(zhǎng)期施肥響應(yīng)的差異及其驅(qū)動(dòng)因素[J]. 中國(guó)農(nóng)業(yè)科學(xué),51(5):914-925. [Wang H Y,Xu M G,Zhou B K,Ma X,Duan Y H. 2018. Response and driving factors of bacterial and fungal community to long-term fertilization in black soil[J]. Scientia Agricultura Sinica,51(5):914-925.]
王楠楠,韓冬雪,孫雪,國(guó)微,馬宏宇,馮富娟. 2017. 降水變化對(duì)紅松闊葉林土壤微生物功能多樣性的影響[J]. 生態(tài)學(xué)報(bào),37(3):868-876. [Wang N N,Han D X,Sun X,Guo W,Ma H Y,F(xiàn)eng F J. 2017. Effects of precipitation change on soil microbial functional diversity in the primitive Korean pine and broadleaved forests[J]. Acta Ecologica Sinica,37(3):868-876.]
魏賽金,黃國(guó)強(qiáng),倪國(guó)榮,呂偉生,譚雪明,曾勇軍,涂國(guó)全,石慶華,潘曉華. 2016. 稻草還田配施腐解菌劑對(duì)水稻土壤微生物的影響[J]. 核農(nóng)學(xué)報(bào),30(10):2026-2032. [Wei S J,Huang G Q,Ni G R,Lü W S,Tan X M,Zeng Y J,Tu G Q,Shi Q H,Pan X H. 2016. Effects of rice straw retur-ning plus straw decomposition agent on the rice soil microbial diversity[J]. Journal of Nuclear Agricultural Scien-ces,30(10):2026-2032.]
徐琳,張雪嬌,田忠賽,程丹丹. 2017. 秭歸張家沖坡耕地作物類型對(duì)土壤微生物功能多樣性的影響[J]. 生態(tài)學(xué)雜志,36(6):1555-1563. [Xu L,Zhang X J,Tian Z S,Cheng D D. 2017. Effects of crop types on soil microbial functional diversity in sloping agricultural land of Zhangjiachong in Zigui County[J]. Chinese Journal of Ecology,36(6):1555-1563.]
許曦戈,黃顥,汪慶南,黃德仙,任文彬. 2018. 梅州沙田柚貯藏期品質(zhì)變化及動(dòng)力學(xué)模型預(yù)測(cè)[J]. 食品工業(yè),39(3):189-192. [Xu X G,Huang H,Wang Q N,Huang D X,Ren W B. 2018. Kinetics of quality change for Meizhou Shatian pomelo during storage[J]. The Food Industry,39(3):189-192.]
陽(yáng)梅芳,曾新安,楊星. 2013. 沙田柚中不同部位黃酮類物質(zhì)的分布及含量探討[J]. 食品工業(yè)科技,34(1):89-91. [Yang M F,Zeng X A,Yang X. 2013. Study on the distribution and content of flavonoids in various parts of Shatian grapefruit[J]. Science and Technology of Food Industry,34(1):89-91.]
翟婉璐,鐘哲科,高貴賓,楊慧敏. 2017. 覆蓋經(jīng)營(yíng)對(duì)雷竹林土壤細(xì)菌群落結(jié)構(gòu)演變及多樣性的影響[J]. 林業(yè)科學(xué),53(9):133-142. [Zhai W L,Zhong Z K,Gao G B,Yang H M. 2017. Influence of mulching management on soil bacterial structure and diversity in Phyllostachys praecox Stands[J]. Scientia Silvae Sinicae,53(9):133-142.]
張凱煜,谷潔,王小娟,高華. 2019. 微生物有機(jī)肥對(duì)櫻桃園土壤細(xì)菌群落的影響[J]. 中國(guó)環(huán)境科學(xué),39(3):1245-1252. [Zhang K Y,Gu J,Wang X J,Gao H. 2019. Effects of bio-organic fertilizer on the soil bacterial community in a cherry orchard[J]. China Environmental Science,39(3):1245-1252.]
張倩,姚寶輝,王纏,康宇坤,郭懷亮,楊晶,楊瑩博,蘇軍虎. 2019. 不同坡向高寒草甸土壤理化特性和微生物數(shù)量特征[J]. 生態(tài)學(xué)報(bào),39(9):3167-3174. [Zhang Q,Yao B H,Wang C,Kang Y K,Guo H L,Yang J,Yang Y B,Su J H. 2019. Soil physical and chemical characteristics and microbial propotions in an alpine meadow with different slopes[J]. Acta Ecologica Sinica,39(9):3167-3174.]
張文鋒,時(shí)紅,才碩,武琳,胡秋萍,徐濤,張昆. 2018. 不同灌溉和栽培方式對(duì)紅壤性水稻土微生物群落結(jié)構(gòu)及多樣性的影響[J]. 江西農(nóng)業(yè)學(xué)報(bào),30(3):11-16. [Zhang W F,Shi H,Cai S,Wu L,Hu Q P,Xu T,Zhang K. 2018. Effects of different irrigation and cultivation methods on microbial community structure and diversity in paddy red soil[J]. Acta Agriculturae Jiangxi,30(3):11-16.]
Bhattacharya D,Sarma P M,Krishnan S,Mishra S,Lal B. 2003. Evaluation of genetic diversity among Pseudomonas citronellolis strains isolated from oily sludge-contaminated sites[J]. Applied and Environmental Microbiology,69(3):1435-1441.
Brockett B F T,Prescott C E,Grayston S J. 2012. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada[J]. Soil Biology and Biochemistry,44(1):9-20.
Cottyn B,Heylen K,Heyrman J,Vanhouteghem K,Pauwelyn E,Bleyaert P,van Vaerenbergh J,H?fte M,de Vos P,Maes M. 2009. Pseudomonas cichorii as the causal agent of midrib rot,an emerging disease of greenhouse-grown butterhead lettuce in Flanders[J]. Systematic and Applied Microbiology,32(3):211-225.
Hu G,Zhang J,Yang G Q,Li Y Y,Guan Y T,Wang J,Li S P,Hong Q. 2013. Flavobacterium yanchengense sp. nov. isolated from soil[J]. International Journal of Systematic and Evolutionary Microbiology,63(8):2848-2852.
Luan F G,Zhang L L,Lou Y Y,Wang L,Liu Y N,Zhang H Y. 2015. Analysis of microbial diversity and niche in rhizosphere soil of healthy and diseased cotton at the flowering stage in southern Xinjiang[J]. Genetics and Mole-cular Research:GMR,14(1):1602-1611.
Moreira Z P M,dos Santos P O,de Oliveira T A S,de Souza J T,Moreira Z P M,Santos P O D. 2015. Occurrence of basil leaf spot caused by Pseudomonas cichorii in Bahia State,Brazil[J]. Summa Phytopathologica,41(1):73. doi:10.1590/0100-5405/2041.
Ramirez K S,CraineJ M,F(xiàn)ierer N. 2012. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes[J]. Global Change Biology,18(6):1918-1927.
Sope?a F,Laiz L,Morillo E,Sanchez-Trujillo M A,Villaverde J,Jurado V,Saiz-Jimenez C. 2014. Phenanthrene biodegradation by Pseudomonas xanthomarina isolated from an aged contaminated soil[J]. CLEAN-Soil,Air,Water,42(6):785-790.
Sun R,Zhang X X,Guo X S,Wang D Z,Chu H Y. 2015. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw[J]. Soil Biology and Biochemistry,88(4):9-18.
Tan Y,Cui Y S,Li H Y,Kuang A X,Li X R,Wei Y L,Ji X L. 2017a. Rhizospheric soil and root endogenous fungal diversity and composition in response to continuous Panax notoginseng cropping practices[J]. Microbiological Research,194:10-19.
Tan Y,Cui Y S,Li H Y,Kuang A X,Li X R,Wei Y L,Ji X L. 2017b. Diversity and composition of rhizospheric soil and root endogenous bacteria in Panax notoginseng du-ring continuous cropping practices[J]. Journal of Basic Microbiology,57(4):337-344.
Tateda C,Yamashita K,Takahashi F,Kusano T,Takahashi Y. 2009. Plant voltage-dependent anion channels are involved in host defense against Pseudomonas cichorii and in Bax-induced cell death[J]. Plant Cell Reports, 28(1):41-51.
Trantas E A,Sarris P F,Mpalantinaki E E,Pentari M G,Ververidis F N,Goumas D E. 2013. A new genomovar of Pseudomonas cichorii,a causal agent of tomato pith necrosis[J]. European Journal of Plant Pathology,137(3):477-493.
Yang S,Xing S,Liu C, Du Z T,Wang H,Xu Y. 2010. Effects of root pruning on the vegetative growth and fruit quality of Zhanhuadongzao trees[J]. Horticultural Science,37(1):14-21.
(責(zé)任編輯 羅 麗)