劉思遠(yuǎn),易國(guó)強(qiáng),唐中林,3,陳斌
綜 述
基于CRISPR/Cas9系統(tǒng)在全基因組范圍內(nèi)篩選功能基因及調(diào)控元件研究進(jìn)展
劉思遠(yuǎn)1,2,易國(guó)強(qiáng)2,唐中林2,3,陳斌1
1. 湖南農(nóng)業(yè)大學(xué)動(dòng)物科學(xué)技術(shù)學(xué)院,長(zhǎng)沙 410128 2. 中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)基因組研究所,嶺南現(xiàn)代農(nóng)業(yè)科學(xué)與技術(shù)廣東省實(shí)驗(yàn)室深圳分中心,農(nóng)業(yè)部農(nóng)業(yè)基因數(shù)據(jù)分析重點(diǎn)實(shí)驗(yàn)室,深圳 518120 3. 中國(guó)農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,北京 100193
CRISPR/Cas9系統(tǒng)是一種近年來(lái)被廣泛應(yīng)用于基因組編輯的強(qiáng)大工具。通過(guò)將CRISPR/Cas9系統(tǒng)中的Cas9蛋白突變后,使其失去剪切活性而成為dCas9 (nuclease-dead Cas9),再結(jié)合基因功能喪失(loss-of-function, LOF)、基因功能激活(gain-of-function, GOF)以及非編碼功能基因鑒定技術(shù)即可實(shí)現(xiàn)全基因組高通量的功能基因及調(diào)控元件靶向鑒定和篩選。目前,該技術(shù)已被廣泛應(yīng)用于疾病免疫機(jī)理、藥物靶點(diǎn)篩選和動(dòng)物遺傳育種等研究,為生命醫(yī)學(xué)和基礎(chǔ)科學(xué)帶來(lái)了全新高效的技術(shù)方法和研究思路。本文綜述了基于CRISPR/Cas9技術(shù)在全基因組中高通量篩選功能基因及調(diào)控元件的方法及研究進(jìn)展,重點(diǎn)闡述了CRISPR/Cas9系統(tǒng)在動(dòng)物細(xì)胞中篩選功能性基因的方法,以期為基因編輯及相關(guān)研究領(lǐng)域提供參考。
CRISPR/Cas9;全基因組篩選;功能基因;調(diào)控元件
成簇的規(guī)律間隔的短回文重復(fù)序列及其相關(guān)蛋白(clustered regularly interspaced short palindromic repeats/CRISPR-associated 9, CRISPR/Cas9)具有低成本、高效率和操作便捷等優(yōu)點(diǎn),已被廣泛應(yīng)用于遺傳改良、分子育種和分子生物學(xué)等基因組編輯領(lǐng)域[1~3]。CRISPR/Cas9系統(tǒng)是一種存在于多數(shù)古生菌中的免疫系統(tǒng)[4~6],該系統(tǒng)在微生物中抵御外源DNA的感染,微生物利用Cas9酶切割外源基因序列使入侵序列被破壞并失活,隨后將捕獲的片段儲(chǔ)存于本身基因組中組成新的間隔區(qū)(spacer),并保持免疫記憶[7]?;贑as9蛋白結(jié)合啟動(dòng)子前導(dǎo)區(qū)轉(zhuǎn)錄生成的CRISPR RNAs (crRNA)等元件形成的復(fù)合體可識(shí)別基因序列上原間隔物相鄰基序(protospacer adjacent motif, PAM)位點(diǎn),并進(jìn)行靶向剪切的工作模式,研究者只需合成一條長(zhǎng)度在22 nt左右與目的序列互補(bǔ)的向?qū)NA(single guide RNA, sgRNA),引導(dǎo)Cas9復(fù)合體結(jié)合到基因組上不同的PAM位點(diǎn)就可達(dá)到對(duì)基因組進(jìn)行靶向切割的目的[8]。CRISPR/ Cas9系統(tǒng)切割DNA后會(huì)導(dǎo)致雙堿基鍵斷裂(double- strand break, DSB),從而產(chǎn)生移碼突變和堿基缺失等現(xiàn)象,隨后引發(fā)DNA修復(fù)機(jī)制,即通過(guò)非同源末端連接(non-homologous end joining, NHEJ)途徑直接修復(fù)缺口,或利用同源直接修復(fù)(homology directed repair, HDR)在斷裂處引入同源粘性末端的DNA片段[9,10]。
由于CRISPR/Cas9系統(tǒng)在編碼區(qū)與非編碼區(qū)均可精準(zhǔn)打靶目的基因片段,因此可實(shí)現(xiàn)全基因組敲除、大片段基因敲入和調(diào)控基因表達(dá)等功能[11,12]。目前,在全基因組范圍內(nèi)篩選表型是基因功能研究的熱點(diǎn)方向,將CRISPR/Cas9系統(tǒng)與全基因組鑒定和后續(xù)的功能分析技術(shù)相結(jié)合,可以在分子、細(xì)胞和個(gè)體層面對(duì)生物進(jìn)行全基因組范圍的功能篩選,從而獲得新的功能基因或特異性遺傳位點(diǎn),加快后續(xù)研究進(jìn)展[13]。
本文綜述了利用CRISPR/Cas9系統(tǒng)在全基因組中高通量篩選功能基因和調(diào)控元件的方法及其研究進(jìn)展,并闡述了該方法在篩選功能性長(zhǎng)鏈非編碼RNA、癌癥基因、生長(zhǎng)發(fā)育性狀相關(guān)的功能基因及調(diào)控元件等相關(guān)領(lǐng)域中的應(yīng)用情況。同時(shí)剖析了這種方法存在的問(wèn)題和未來(lái)發(fā)展方向,以期為后續(xù)篩選和驗(yàn)證動(dòng)物功能基因及調(diào)控元件提供研究方法和參考。
CRISPR/Cas9系統(tǒng)利用sgRNA的引導(dǎo)性和Cas9蛋白的定點(diǎn)識(shí)別及切割功能,可以直接對(duì)靶標(biāo)基因進(jìn)行靶向切割,從而干擾基因表達(dá)。在此基礎(chǔ)上,科研人員開(kāi)發(fā)出了CRISPR-Cas9全基因組敲除文庫(kù)、CRISPR干擾系統(tǒng)(CRISPR interference, CRISPRi)與CRISPR基因轉(zhuǎn)錄激活系統(tǒng)(CRISPR activation, CRISPRa)。其中,CRISPR-Cas9全基因組敲除文庫(kù)是通過(guò)全基因組的打靶sgRNA,利用CRISPR/Cas9系統(tǒng)在細(xì)胞群內(nèi)高通量的靶向敲除目的基因,從而獲得單基因敲除的單克隆細(xì)胞庫(kù)。后兩種系統(tǒng)都需要利用突變后失去核酸內(nèi)切酶活性的Cas9 (nuclease- dead mutants of Cas9, dCas9)酶,并使其與sgRNA共同靶向基因組特定位點(diǎn)的功能[14]。其中,CRISPR 干擾系統(tǒng)是利用sgRNA引導(dǎo)dCas9在打靶基因的轉(zhuǎn)錄起始位點(diǎn)(transcription start sites, TSS)融合轉(zhuǎn)錄抑制因子KRAB (Krüppel-associated box),從而可以高效的抑制靶標(biāo)目的基因的表達(dá),導(dǎo)致基因功能喪失(loss-of-function, LOF),該系統(tǒng)也被稱作CRISPRi系統(tǒng)[15]。相反,CRISPRa系統(tǒng)則可以通過(guò)dCas9在TSS位點(diǎn)招募轉(zhuǎn)錄激活因子如VP64、p65、Rta以及相關(guān)蛋白形成“dCas-X”的復(fù)合體,進(jìn)而顯著促進(jìn)內(nèi)源靶標(biāo)基因的表達(dá),促進(jìn)內(nèi)源基因的高水平轉(zhuǎn)錄,使基因呈現(xiàn)基因功能激活(gain-of-function, GOF)[16]。因此,通過(guò)sgRNA引導(dǎo)dCas9靶向基因的兩種調(diào)控手段,可實(shí)現(xiàn)對(duì)全基因組范圍內(nèi)基因的精準(zhǔn)調(diào)控[17,18]。目前,CRISPR/Cas9技術(shù)及CRISPR-dCas9系統(tǒng)已經(jīng)應(yīng)用于高通量篩選編碼基因、啟動(dòng)子及增強(qiáng)子和長(zhǎng)鏈非編碼RNA等序列的功能。2013年,Gilbert等[14]通過(guò)測(cè)試CRISPR-dCas9系統(tǒng)中dCas9蛋白與cCas9、dCas9-KRAB、dCas9-CS和dCas9- WRPW等4種不同的融合蛋白工作效率,并在GFP隨機(jī)整合的人胚腎細(xì)胞(HEK293)中產(chǎn)生了不同程度的熒光蛋白表達(dá)沉默,有效證明了dCas9-KRAB融合蛋白所導(dǎo)致的基因沉默效率最高。同時(shí),通過(guò)RNA-seq實(shí)驗(yàn)表明CRISPRi在真核細(xì)胞中介導(dǎo)的轉(zhuǎn)錄抑制具有高度特異性。Ganguly等[19]利用CRISPRi系統(tǒng)在嗜熱桿菌()中準(zhǔn)確地抑制了中央代謝乳酸脫氫酶和磷酸轉(zhuǎn)乙酰酶基因的表達(dá)。Joung等[11]在2017年通過(guò)CRISPR/Cas9系統(tǒng)在人的細(xì)胞系中分別開(kāi)發(fā)出全基因組敲除文庫(kù)和轉(zhuǎn)錄激活元件篩選系統(tǒng),Konermann等[20]通過(guò)優(yōu)化改造后的CRISPRa系統(tǒng)促進(jìn)了基因在細(xì)胞內(nèi)的轉(zhuǎn)錄激活,并同時(shí)激活了多個(gè)基因的高表達(dá)以及高效上調(diào)了靶標(biāo)lncRNAs的轉(zhuǎn)錄本,最終大規(guī)模篩選了抵抗BRAF抑制劑的激活基因,在細(xì)胞層面證明了CRISPRa系統(tǒng)作為上調(diào)基因表達(dá)的轉(zhuǎn)錄激活工具的諸多優(yōu)勢(shì)。
設(shè)計(jì)一個(gè)全基因組功能篩查的首要條件是如何針對(duì)全基因組設(shè)計(jì)特異性高的sgRNA庫(kù),并將其包裝入可穩(wěn)定轉(zhuǎn)染的病毒載體中[21],其次需要選擇合適的受體樣本進(jìn)行功能分析和驗(yàn)證[22]。Liu等[23]在2015年報(bào)道了一種名為“CRISPR-ERA”的sgRNA在線設(shè)計(jì)網(wǎng)站,可在全基因組中預(yù)測(cè)高效而特異的sgRNA,用于CRISPR系統(tǒng)介導(dǎo)的基因編輯、抑制和激活。2017年,Zhao等[24]建立了一種名為“CRISPR- offinder”的基因組sgRNA自定義設(shè)計(jì)軟件,可針對(duì)不同實(shí)驗(yàn)?zāi)康脑O(shè)計(jì)sgRNA并評(píng)估其打靶效率。
在細(xì)胞層面的全基因組功能篩查流程可分為以下幾個(gè)步驟:(1)確定表型與基因篩選范圍;(2)構(gòu)建全基因組敲除或激活基因的sgRNA文庫(kù);(3)包裝慢病毒文庫(kù),通過(guò)低感染復(fù)數(shù)(multiplicity of infection, MOI)的全基因組慢病毒文庫(kù)并感染目的細(xì)胞,構(gòu)建穩(wěn)定表達(dá)sgRNA的細(xì)胞文庫(kù)并獲得穩(wěn)定表達(dá)株[25];(4)篩選細(xì)胞表型:對(duì)轉(zhuǎn)染后的細(xì)胞施加抗生素或藥物等壓力并保留能存活的細(xì)胞(陽(yáng)性篩選)、挑選死亡細(xì)胞(陰性篩選)或細(xì)胞增殖能力和篩選標(biāo)記基因等;(5)分別提取篩選后細(xì)胞的基因組并建庫(kù);(6)利用高通量測(cè)序手段獲得細(xì)胞文庫(kù)中的sgRNA序列信息,并篩選目的性狀的關(guān)聯(lián)基因等步驟[11,26]。CRISPR/ Cas9全基因組功能篩選系統(tǒng)具體工作流程如圖1所示。
圖1 CRISPR/Cas9全基因組功能篩選系統(tǒng)工作流程
隨著全基因組測(cè)序成本降低,結(jié)合第二代和第三代基因測(cè)序手段,利用高通量數(shù)據(jù)篩選全基因組中功能基因的實(shí)驗(yàn)方法變得愈來(lái)愈流行。全基因組功能基因篩查是最為全面的基因檢測(cè)及驗(yàn)證手段之一。RNA干擾(RNA interference, RNAi)是一種已標(biāo)準(zhǔn)化的基因沉默工具,靶標(biāo)基因組中成熟的RNA,可高效且低成本的抑制靶標(biāo)基因表達(dá),但RNAi無(wú)法將干擾覆蓋到編碼基因本身,只能影響基因在轉(zhuǎn)錄后的表達(dá)但不能抑制基因表達(dá),且存在較高的錯(cuò)配率與其他mRNA的抑制效應(yīng),因此干擾效果不全面[27,28]。而CRISPRi可在轉(zhuǎn)錄起始區(qū)域發(fā)揮阻止轉(zhuǎn)錄的作用,此外CRISPRi還可以靶標(biāo)細(xì)胞核內(nèi)的轉(zhuǎn)錄本,RNAi試劑則很難做到這一點(diǎn)。因此,利用CRISPRi進(jìn)行基因組高通量功能元件篩選比以往的RNAi和cDNA文庫(kù)等基因表達(dá)干擾手段更有優(yōu)勢(shì)。
長(zhǎng)鏈非編碼RNA (long non-coding RNAs, lnc-RNAs)是一種長(zhǎng)度為200 nt以上的轉(zhuǎn)錄本,雖然不能編碼為蛋白質(zhì),但對(duì)動(dòng)物的生長(zhǎng)發(fā)育、細(xì)胞功能、疾病和植物馴化機(jī)制等方面有著重要的影響和調(diào)控作用[29~31]。2017年,Liu等[15]對(duì)7種細(xì)胞系中的16,401個(gè)lncRNAs基因座進(jìn)行了高通量CRISPR打靶干擾,篩選出細(xì)胞生長(zhǎng)過(guò)程中必須存在的499個(gè)lncRNA基因座位點(diǎn),并且這些具有生長(zhǎng)調(diào)控功能的lncRNA存在細(xì)胞類型特異性。2019年,Cai等[32]通過(guò)CRISPRi對(duì)人表皮細(xì)胞中2263個(gè)lncRNA進(jìn)行了表達(dá)篩選,并新鑒定了9個(gè)具有調(diào)節(jié)角質(zhì)細(xì)胞增殖功能的候選lncRNA,其中PRANCR具有重要的調(diào)控皮膚表皮穩(wěn)態(tài)的作用。Esposito等[33]也匯總了近年來(lái)CRISPR相關(guān)篩選技術(shù)在發(fā)現(xiàn)新癌基因lncRNA具有很大的應(yīng)用潛力。Liu等[34]在2018年從10,996個(gè)lncRNA中鑒定出230個(gè)對(duì)于慢性粒細(xì)胞白血病K562細(xì)胞的細(xì)胞生長(zhǎng)至關(guān)重要的lncRNA,并驗(yàn)證了該方法的穩(wěn)健性和特異性。CRISPRi為鑒定全基因組功能性lncRNA提供了一種高效手段。
轉(zhuǎn)錄組學(xué)和比較基因組學(xué)一直是挖掘影響機(jī)體發(fā)育過(guò)程關(guān)鍵基因和轉(zhuǎn)錄調(diào)控機(jī)制的常用方法。2007年,Tang等[35]利用長(zhǎng)標(biāo)簽基因表達(dá)系列分析的方法繪制了中外不同豬種在多個(gè)胚胎發(fā)育期骨骼肌發(fā)育的轉(zhuǎn)錄組圖譜,證實(shí)了通城豬和長(zhǎng)白豬相比有更慢的肌肉生長(zhǎng)速度和更為復(fù)雜的分子形成機(jī)制。Li等[36]還利用基因表達(dá)芯片技術(shù)比較了中國(guó)梅山豬背最長(zhǎng)肌和比目魚(yú)肌的轉(zhuǎn)錄組差異,發(fā)現(xiàn)差異表達(dá)基因在TGF-beta、Wnt和MAPK等信號(hào)通路富集。多組學(xué)分析技術(shù)只能預(yù)測(cè)肌肉生長(zhǎng)發(fā)育階段中潛在的相關(guān)基因和蛋白靶標(biāo)位點(diǎn),無(wú)法直接獲得與預(yù)測(cè)基因相對(duì)應(yīng)表型數(shù)據(jù),因此,為了能精確的篩選出與表型直接相關(guān)的基因并同時(shí)進(jìn)行驗(yàn)證,基于CRISPR/Cas9的全基因組功能篩選是更為有效的方法。為尋找到影響肌細(xì)胞生成的新調(diào)控元件,Bi等[37]在2017年利用結(jié)合CRISPR技術(shù)和全基因組在小鼠成肌細(xì)胞融合和成肌纖維形成過(guò)程中所需基因的功能喪失篩選技術(shù),鑒定出了一種名為Myomixer的肌肉特異性肽,該蛋白對(duì)于胚胎發(fā)生過(guò)程中融合和骨骼肌形成起著至關(guān)重要的作用。是人類和小鼠破骨細(xì)胞形成所必需的基因,與牙齒、頭骨、長(zhǎng)骨塑性和軟骨等組織的形成密切相關(guān)。MacLeod等[38]利用dCas9融合KRAB的CRISPRi系統(tǒng)抑制了小鼠的表達(dá),并成功建立了淋巴結(jié)發(fā)育失敗和骨質(zhì)增生等表型。與野生型病理表型相比較,CRISPRi轉(zhuǎn)基因小鼠具有更明顯的病理表型。這些結(jié)果表明,CRISPRi所介導(dǎo)的基因LOF方法可以有效的抑制動(dòng)物基因組上的靶基因表達(dá),并有望搭建動(dòng)物生長(zhǎng)發(fā)育過(guò)程中的相關(guān)表型,對(duì)以后研究不同細(xì)胞類型的特異性功能喪失有極大的幫助。
基于CRISPR/Cas9系統(tǒng)的全基因組功能篩查方法已廣泛應(yīng)用于醫(yī)學(xué)、免疫學(xué)和藥理學(xué)等領(lǐng)域[39],研究者不僅建立了基因定點(diǎn)突變細(xì)胞模型[40],還成功篩選出人急性髓細(xì)胞性白血病等疾病的潛在治療靶點(diǎn)。令人驚喜的是,為了進(jìn)一步建立小鼠等多種哺乳動(dòng)物的疾病模型,科研人員正迅速將全基因組功能基因篩選技術(shù)應(yīng)用于實(shí)驗(yàn)動(dòng)物中。Chen等[41]針對(duì)腫瘤生長(zhǎng)和轉(zhuǎn)移過(guò)程中進(jìn)行了全基因組CRISPR/ Cas9介導(dǎo)的全基因組基因的LOF規(guī)模篩選,在非轉(zhuǎn)移性小鼠癌細(xì)胞系中構(gòu)建了含有67,405種sgRNA的細(xì)胞文庫(kù),并在小鼠體內(nèi)富集了文庫(kù)靶向的基因,鑒定出624條sgRNAs高度靶向的基因在特定功能喪失或突變后會(huì)驅(qū)動(dòng)腫瘤的生長(zhǎng)和轉(zhuǎn)移。Shi等[42]在2015年利用全基因組CRISPR/Cas9系統(tǒng)聯(lián)合sgRNA鑒別了小鼠骨髓源永生化巨噬細(xì)胞(iBMDMs)中參與炎癥激活因子caspase-1和細(xì)菌脂多糖受體caspase-11介導(dǎo)的細(xì)胞凋亡的宿主因子中發(fā)現(xiàn)了消皮素D (gasdermin D, GSDMD)底物蛋白,并驗(yàn)證了對(duì)GSDMD的切割介導(dǎo)細(xì)胞焦亡。Napier等[43]在鼠巨噬細(xì)胞細(xì)胞系中創(chuàng)建了一種CRISPR-Cas9全基因組文庫(kù)的方法曾應(yīng)用于篩選介導(dǎo)細(xì)胞死亡過(guò)程中的新介體[44],并篩選出Cpb1-C3- C3aR途徑在促炎癥傳導(dǎo)、依賴細(xì)胞死亡過(guò)程和敗血癥中的新作用。
全基因組基因編輯打靶技術(shù)目前廣泛應(yīng)用于癌癥基因、藥物靶點(diǎn)挖掘、微生物反應(yīng)器制備、病毒感染機(jī)制以及CRISPRi/a系統(tǒng)的優(yōu)化和改良等研究方面。通過(guò)CRISPR/Cas9系統(tǒng)及全基因組功能篩選工具建立的疾病模型,為深入研究癌癥致病機(jī)理和關(guān)鍵功能基因提供了新思路[40,45]。2016年,Tzelepis等[46]通過(guò)優(yōu)化CRISPR-Cas9系統(tǒng),在人急性髓細(xì)胞性白血病細(xì)胞(acute myeloid leukemia, AML)中進(jìn)行全基因組遺傳脆弱性的隱性篩選,鑒定出一種新的潛在的治療靶點(diǎn),還確定了、和等其他幾種已知的治療靶標(biāo)。同年,Zotova等[47]利用CRISPR-Cas9基因敲除(GeCKO)文庫(kù)載體整合入CEM T細(xì)胞和Raji B細(xì)胞中并通過(guò)免疫熒光分離陽(yáng)性單抗,并且新鑒定出腫瘤轉(zhuǎn)移抑制因子CD82的新單抗BF4。為了結(jié)合實(shí)驗(yàn)?zāi)康暮脱芯克?,科研人員針對(duì)Cas蛋白功能進(jìn)行了不同的功能修飾,CRISPR/Cas9編輯系統(tǒng)慢慢趨于定制化[48]。Polstein等將dCas9蛋白與融合隱花色素2 (cryptochromes, CRY2)和堿性螺旋環(huán)螺旋蛋白1 (cryptochrome- interacting basic-helix-loop-helix 1, C1B1)后,便可通過(guò)sgRNA靶向轉(zhuǎn)錄激活區(qū)域并高效抑制內(nèi)源基因的表達(dá)[49]。
在微生物基因編輯領(lǐng)域,2017年,Zhang等[50]通過(guò)改造后的CRISPR-Cas Cpf1蛋白(DNase-dead Cpf1 mutant, ddCpf1)系統(tǒng)在大腸桿菌中實(shí)現(xiàn)了一次性多重基因的調(diào)控,并通過(guò)RNA-Seq技術(shù)驗(yàn)證了該系統(tǒng)介導(dǎo)的基因表達(dá)抑制具有高特異性,有望在細(xì)胞和臨床研究中取得下一步進(jìn)展。經(jīng)過(guò)不斷的優(yōu)化和改善,Li等[51]在2018年基于FnCRISPR-Cpf1系統(tǒng)建立了一種新型高效的鏈霉菌基因組編輯工具,補(bǔ)充了鏈霉菌菌株的多基因編輯領(lǐng)域里的技術(shù)空白,并有望利用與其他放線菌中藥物活性天然產(chǎn)物的開(kāi)發(fā)。在2019年,Depardieu等[52]建立了可應(yīng)用于多種細(xì)菌中的CRISPRi篩選系統(tǒng),這些應(yīng)用均為日后建立大規(guī)模原核表達(dá)和篩選系統(tǒng)奠定了基礎(chǔ)。
綜上所述,基于CRISPR/Cas9和CRISPRi/a技術(shù)可以系統(tǒng)地建立全基因組目標(biāo)區(qū)域的sgRNA文庫(kù)和細(xì)胞文庫(kù),在動(dòng)物體內(nèi)和體外研究個(gè)體發(fā)育及疾病發(fā)生和進(jìn)化過(guò)程等方面的功能基因篩選都是一種有效的方法。
近幾年來(lái),CRISPR/Cas9技術(shù)在各類基礎(chǔ)科研中的便利性和重要性與日俱增[53~55]。同時(shí),CRISPR/ Cas9全基因組功能篩選鑒定技術(shù)在農(nóng)業(yè)精準(zhǔn)育種、遺傳改良、生命醫(yī)學(xué)、分子治療和多基因編輯等方面飛速發(fā)展,并取得了一系列成績(jī)。例如,利用CRISPR/Cas9系統(tǒng)結(jié)合體細(xì)胞核移植(somatic cell nuclear transfer, SCNT)等技術(shù)已成功制備了斑馬魚(yú)()、小鼠()、豬()、黑腹果蠅()和食蟹猴()等基因編輯和轉(zhuǎn)基因動(dòng)物模型[56~60]。由于CRISPR/Cas9全基因組功能篩選在sgRNA文庫(kù)和細(xì)胞文庫(kù)搭建的前期需要花費(fèi)大量的時(shí)間成本,目前該方法較多的應(yīng)用于人癌癥基因的摸索和疾病模型的搭建等研究領(lǐng)域或在動(dòng)物細(xì)胞中進(jìn)行功能驗(yàn)證。但在今后的研究中,CRISPR/Cas9全基因組功能篩選技術(shù)勢(shì)必會(huì)普及到動(dòng)植物的全基因組育種工作中,該技術(shù)也為人們理解基因遺傳機(jī)制、三維基因組調(diào)控、生長(zhǎng)發(fā)育調(diào)控和病毒等疾病的治病機(jī)理建立了新思路[61~63]。
單細(xì)胞測(cè)序是以單個(gè)細(xì)胞為單位進(jìn)行的全基因組或轉(zhuǎn)錄組擴(kuò)增的高通量測(cè)序手段,該技術(shù)可以揭示單個(gè)細(xì)胞的基因結(jié)構(gòu)、基因表達(dá)狀態(tài)以及細(xì)胞間的異質(zhì)性,是目前研究腫瘤、細(xì)胞發(fā)育生物學(xué)、微生物學(xué)等生物學(xué)領(lǐng)域的熱點(diǎn)[64~66]。如果在前期結(jié)合CRISPR基因編輯技術(shù),對(duì)功能篩選后的單個(gè)基因編輯細(xì)胞進(jìn)行高通量組分分析,可以獲得相關(guān)性狀更清晰的差異信息[67, 68]。因此,全基因組功能篩選技術(shù)在農(nóng)業(yè)生物和相關(guān)學(xué)科的研究中還有很大的利用空間。
[1] Baliou S, Adamaki M, Kyriakopoulos AM, Spandidos DA, Panayiotidis M, Christodoulou I, Zoumpourlis V. CRISPR therapeutic tools for complex genetic disorders and cancer (Review)., 2018, 53(2): 443–468.
[2] Kruminis-Kaszkiel E, Juranek J, Maksymowicz W, Wojtkiewicz J. CRISPR/Cas9 technology as an emerging tool for targeting Amyotrophic Lateral Sclerosis (ALS)., 2018, 19(3): 906.
[3] Crispo M, Mulet AP, Tesson L, Barrera N, Cuadro F, Dos Santos-Neto PC, Nguyen TH, Creneguy A, Brusselle L, Anegon I, Menchaca A. Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes., 2015, 10(8): e0136690.
[4] Jansen R, Embden JD, Gaastra W, Schouls LM. Iden-tification of genes that are associated with DNA repeats in prokaryotes., 2002, 43(6): 1565–1575.
[5] Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product., 1987, 169(12): 5429–5433.
[6] Brouns SJJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJH, Snijders APL, Dickman MJ, Makarova KS, Koonin EV, Van der Oost J. Small CRISPR RNAs guide antiviral defense in prokaryotes., 2008, 321(5891): 960– 964.
[7] Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies., 2005, 151(Pt 3): 653– 663.
[8] Anders C, Niewoehner O, Duerst A, Jinek M. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease., 2014, 513(7519): 569–573.
[9] Wyman C, Kanaar R. DNA double-strand break repair: all's well that ends well., 2006, 40: 363– 383.
[10] Mao Z, Bozzella M, Seluanov A, Gorbunova V. DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells., 2008, 7(18): 2902–2906.
[11] Joung J, Konermann S, Gootenberg JS, Abudayyeh OO, Platt RJ, Brigham MD, Sanjana NE, Zhang F. Genome- scale CRISPR-Cas9 knockout and transcriptional activation screening., 2017, 12(4): 828–863.
[12] Chowdhury TA, Koceja C, Eisa-Beygi S, Kleinstiver BP, Kumar SN, Lin CW, Li K, Prabhudesai S, Joung K, Ramchandran R. Temporal and spatial post-transcriptional regulation of zebrafish tie1 mrna by long noncoding RNA during brain vascular assembly., 2018, 38(7): 1562–1575.
[13] Li HH, Huang CH. Functional genetic screening using CRISPR-Cas9 system., 2018, 34(4): 461– 472.李歡歡,黃承浩. 基于CRISPR-Cas9的功能基因篩選研究進(jìn)展. 生物工程學(xué)報(bào), 2018, 34(4): 461–472.
[14] Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weissman JS, Qi LS. CRISPR- mediated modular RNA-guided regulation of transcription in eukaryotes., 2013, 154(2): 442–451.
[15] Liu SJ, Horlbeck MA, Cho SW, Birk HS, Malatesta M, He D, Attenello FJ, Villalta JE, Cho MY, Chen Y, Mandegar MA, Olvera MP, Gilbert LA, Conklin BR, Chang HY, Weissman JS, Lim DA. CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells., 2017, 355(6320). pii:aah7111.
[16] Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR, Thakore PI, Glass KA, Ousterout DG, Leong KW, Guilak F, Crawford GE, Reddy TE, Gersbach CA. RNA-guided gene activation by CRISPR-Cas9-based transcription factors., 2013, 10(10): 973– 976.
[17] Kampmann M. CRISPRi and CRISPRa screens in mammalian cells for precision biology and medicine., 2018, 13(2): 406–416.
[18] Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M, P R Iyer E, Lin S, Kiani S, Guzman CD, Wiegand DJ, Ter-Ovanesyan D, Braff JL, Davidsohn N, Housden BE, Perrimon N, Weiss R, Aach J, Collins JJ, Church GM. Highly efficient Cas9-mediated transcriptional programming., 2015, 12(4): 326–328.
[19] Ganguly J, Martin-Pascual M, van Kranenburg R. CRISPR interference (CRISPRi) as transcriptional repression tool for Hungateiclostridium thermocellum DSM 1313., 2019, 13(2): 339–349.
[20] Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Goo-tenberg JS, Nishimasu H, Nureki O, Zhang F. Genome- scale transcriptional activation by an engineered CRISPR- Cas9 complex., 2015, 517(7536): 583–588.
[21] Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, Smith I, Tothova Z, Wilen C, Orchard R, Virgin HW, Listgarten J, Root DE. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9., 2016, 34(2): 184–191.
[22] Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening., 2014, 11(8): 783–784.
[23] Liu HL, Wei Z, Dominguez A, Li YD, Wang XW, Qi LS. CRISPR-ERA: a comprehensive design tool for CRISPR- mediated gene editing, repression and activation., 2015, 31(22): 3676–3678.
[24] Zhao CZ, Zheng XG, Qu WB, Li GL, Li XY, Miao YL, Han XS, Liu XD, Li ZH, Ma YL, Shao QZ, Li HW, Sun F, Xie SS, Zhao SH. CRISPR-offinder: a CRISPR guide RNA design and off-target searching tool for user-defined protospacer adjacent motif., 2017, 13(12): 1470–1478.
[25] Chen C, Hao S, Bai Y, Zhang JP, Zhang JB, Cheng T. Establishment and optimization of genome-wide CRISPR/ Cas9-sgRNA screening system in THP1cell line for functional oncogenes and tumor suppressor genes., 2016, 46(7): 839–850.陳晨, 郝莎, 白楊, 張健萍, 張孝兵, 程濤. CRISPR/ Cas9-sgRNA全基因組文庫(kù)篩選人單核細(xì)胞白血病功能性促癌/抑癌基因體系的建立與優(yōu)化. 中國(guó)科學(xué):生命科學(xué), 2016, 46(7): 839–850.
[26] Morgens DW, Deans RM, Li A, Bassik MC. Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes., 2016, 34(6): 634–636.
[27] Schuster A, Erasimus H, Fritah S, Nazarov PV, van Dyck E, Niclou SP, Golebiewska A. RNAi/CRISPR screens: from a pool to a valid hit., 2019, 37(1): 38–55.
[28] Klann TS, Black JB, Chellappan M, Safi A, Song L, Hilton IB, Crawford GE, Reddy TE, Gersbach CA. CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome., 2017, 35(6): 561–568.
[29] Wang Z, Yang Y, Li S, Li K, Tang Z. Analysis and comparison of long non-coding RNAs expressed in the ovaries of Meishan and Yorkshire pigs., 2019, 50(6): 660–669.
[30] Yu X, Wang Z, Sun H, Yang Y, Li K, Tang Z. Long non-coding MEG3 is a marker for skeletal muscle development and meat production traits in pigs., 2018, 49(6): 571–578.
[31] Zheng XM, Chen J, Pang HB, Liu S, Gao Q, Wang JR, Qiao WH, Wang H, Liu J, Olsen KM, Yang QW. Genome-wide analyses reveal the role of noncoding variation in complex traits during rice domestication., 2019, 5(12): eaax3619.
[32] Cai P, Otten AB, Cheng B, Ishii MA, Zhang W, Huang BB, Qu K, Sun BK. A genome-wide long noncoding RNA CRISPRi screen identifies PRANCR as a novel regulator of epidermal homeostasi., 2020, 30(1): 22– 34.
[33] Esposito R, Bosch N, Lanzós A, Polidori T, Pulido- Quetglas C, Johnson R. Hacking the cancer genome: Profiling therapeutically actionable long Non-coding RNAs using CRISPR-Cas9 screening., 2019, 35(4): 545–557.
[34] Liu Y, Cao ZZ, Wang YN, Guo Y, Xu P, Yuan PF, Liu ZH, He Y, Wei WS. Genome-wide screening for functional long noncoding RNAs in human cells by Cas9 targeting of splice sites., 2018, 36(12): 1203–1210.
[35] Tang ZL, Li Y, Wan P, Li XP, Zhao SH, Liu B, Fan B, Zhu MJ, Yu M, Li K. LongSAGE analysis of skeletal muscle at three prenatal stages in Tongcheng and Landrace pigs., 2007, 8(6): R115.
[36] Li Y, Xu ZY, Li HY, Xiong YZ, Zuo B. Differential transcriptional analysis between red and white skeletal muscle of Chinese Meishan pigs., 2010, 6(4): 350–360.
[37] Bi PP, Ramirez-Martinez A, Li H, Cannavino J, Mcanally JR, Shelton JM, Sánchez-Ortiz E, Bassel-Duby R, Olson EN. Control of muscle formation by the fusogenic micro-peptide myomixer., 2017, 356(6335): 323–327.
[38] MacLeod RS, Cawley KM, Gubrij I, Nookaew I, Onal M, O'Brien CA. Effective CRISPR interference of an endo-genous gene via a single transgene in mice., 2019, 9(1): 17312.
[39] Ahmad HI, Ahmad MJ, Asif AR, Adnan M, Iqbal MK, Mehmood K, Muhammad SA, Bhuiyan AA, Elokil A, Du XY, Zhao CZ, Liu XD, Xie SS. A Review of CRISPR- Based genome editing: Survival, evolution and challenges., 2018, 28: 47–68.
[40] Zhang K, Liu W, Liu XF, Chen YS, Liu XH, He ZY. Generation of cell strains containing point mutations in HPRT1 by CRISPR/Cas9., 2019, 41(10): 939–949.張楷, 劉蔚, 劉小鳳, 陳瑤生, 劉小紅, 何祖勇. 利用CRISPR/Cas9系統(tǒng)構(gòu)建人HPRT1基因定點(diǎn)突變細(xì)胞株. 遺傳, 2019, 41(10): 939–949.
[41] Chen S, Sanjana NE, Zheng K, Shalem O, Lee K, Shi X, Scott DA, Song J, Pan JQ, Weissleder R, Lee H, Zhang F, Sharp PA. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis., 2015, 160(6): 1246–1260.
[42] Shi JJ, Zhao Y, Wang K, Shi XY, Wang Y, Huang HW, Zhuang YH, Cai T, Wang FC, Shao F. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death., 2015, 526(7575): 660–665.
[43] Napier BA, Monack DM. Creating a RAW264.7 CRISPR- Cas9 genome wide library., 2017, 7(10): 1–10.
[44] Napier BA, Brubaker SW, Sweeney TE, Monette P, Rothmeier GH, Gertsvolf NA, Puschnik A, Carette JE, Khatri P, Monack DM. Complement pathway amplifies caspase-11-dependent cell death and endotoxin-induced sepsis severity., 2016, 213(11): 2365–2382.
[45] Liu H, Li DM, Zhu LY, Lai LJ, Yan WY, Lu YS, Wei Y, Huang YQ, Fang M, Su YG, Yang F, Shu W. Research on the knockout of LMNA gene by CRISPR/Cas9 system in human cell lines., 2019, 41(1): 66–75.劉恒, 李東明, 朱蘭玉, 賴樂(lè)錦, 閆婉云, 陸玉雙, 韋伊, 黃月琪, 方媚, 蘇元港, 楊芳, 舒?zhèn)? 利用CRISPR/Cas9敲除人源細(xì)胞系中LMNA基因的研究. 遺傳, 2019, 41(1): 66–75.
[46] Tzelepis K, Koike-Yusa H, De Braekeleer E, Li Y, Metzakopian E, Dovey OM, Mupo A, Grinkevich V, Li M, Mazan M, Gozdecka, M, Ohnishi S, Cooper J, Patel M, McKerrell T, Chen B, Domingues AF, Gallipoli P, Teichmann S, Ponstingl H, McDermott U, Saez-Rodriguez J, Huntly BJP, Iorio F, Pina C, Vassiliou GS, Yusa K. A CRISPR dropout screen identifies genetic vulnerabilities and therapeutic targets in acute myeloid leukemia., 2016, 17(4): 1193–1205.
[47] Zotova A, Zotov I, Filatov A, Mazurov D. Determining antigen specificity of a monoclonal antibody using genome-scale CRISPR-Cas9 knockout library., 2016, 439: 8–14.
[48] Covarrubias S, Robinson EK, Shapleigh B, Vollmers A, Katzan S, Hanley N, Fong N, McManus MT, Carpenter S. CRISPR/Cas-based screening of long non-coding RNAs (lncRNAs) in macrophages with an NF-κB reporter., 2017, 292(51): 20911–20920.
[49] Polstein LR, Gersbach CA. A light-inducible CRISPR- Cas9 system for control of endogenous gene activation., 2015, 11(3): 198–200.
[50] Zhang XC, Wang JM, Cheng QX, Zheng X, Zhao GP, Wang J. Multiplex gene regulation by CRISPR-ddCpf1., 2017, 3: 17018.
[51] Li L, Wei K, Zheng G, Liu X. CRISPR-Cpf1-Assisted multiplex genome editing and transcriptional repression in streptomyces., 2018, 84(18): e00827–18.
[52] Depardieu F, Bikard D. Gene silencing with CRISPRi in bacteria and optimization of dCas9 expression levels., 2019, 172: 61–75.
[53] Li W, Teng F, Li TD, Zhou Q. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems., 2013, 31(8): 684–686.
[54] Huang JJ, Cao CW, Zheng GM, Zhao JG. Genome editing technologies drive the development of pig genetic imp-rovement., 2017, 39(11): 1078–1089.黃嬌嬌, 曹春偉, 鄭國(guó)民, 趙建國(guó). 基因組編輯技術(shù)在豬遺傳改良中的應(yīng)用. 遺傳, 2017, 39(11): 1078–1089.
[55] Li S, Yang YY, Qiu Y, Chen YH, Xu LL, Ding QR. Applications of genome editing tools in precision medicine research., 2017, 39(3): 177–188.李爽, 楊圓圓, 邱艷, 陳彥好, 徐璐薇, 丁秋蓉. 基因組編輯技術(shù)在精準(zhǔn)醫(yī)學(xué)中的應(yīng)用. 遺傳, 2017, 39(3): 177– 188.
[56] Wu YX, Liang D, Wang YH, Bai MZ, Tang W, Bao SM, Yan ZQ, Li DS, Li JS. Correction of a genetic disease in mouse via use of CRISPR-Cas9., 2013, 13(6): 659–662.
[57] Zuo EW, Cai YJ, Li K, Wei Y, Wang BA, Sun YD, Liu Z, Liu JW, Hu XD, Wei W, Huo XN, Shi LY, Tang C, Liang D, Wang Y, Nie YH, Zhang CC, Yao X, Wang X, Zhou CY, Ying WQ, Wang QF, Chen RC, Shen Q, Xu GL, Li JS, Sun Q, Xiong ZQ, Yang H. One-step generation of complete gene knockout mice and monkeys by CRISPR/Cas9- mediated gene editing with multiple sgRNAs., 2017, 27(7): 933–945.
[58] Yan S, Tu ZC, LIU ZM, Fan NN, Yang HM, Yang S, Yang WL, Zhao Y, Ouyang Z, Lai CD, Yang HQ, Li L, Liu QS, Shi H, Xu GQ, Zhao H, Wei HJ, Pei Z, Li SH, Lai LX, Li XJ. A huntingtin knockin pig model recapitulates features of selective neurodegeneration in huntington's disease., 2018, 173(4): 989–1002.e13.
[59] Kimura Y, Hisano Y, Kawahara A, Higashijima SI. Efficient generation of knock-in transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering., 2014, 4: 6545.
[60] Tong XL, Fang CY, Gai TT, Shi J, Lu C, Dai FY. Applications of the CRISPR/Cas9 system in insects., 2018, 40(4): 266–278.童曉玲, 方春燕, 蓋停停, 石津, 魯成, 代方銀. CRISPR/ Cas9系統(tǒng)在昆蟲(chóng)中的應(yīng)用. 遺傳, 2018, 40(4): 266–278.
[61] Liu PF, Wu Q. Probing 3D genome by CRISPR/Cas9., 2020, 42(1): 18–31.劉沛峰, 吳強(qiáng). CRISPR/Cas9基因編輯在三維基因組研究中的應(yīng)用. 遺傳, 2020, 42(1): 18–31.
[62] Wang J, Huang J, Xu R. Seamless genome editing in Drosophila by combining CRISPR/Cas9 and piggyBac technologies., 2019, 41(5): 422–429.王玨, 黃娟, 許蕊. 利用CRISPR/Cas9和piggyBac實(shí)現(xiàn)果蠅基因組無(wú)縫編輯. 遺傳, 2019, 41(5): 422–429.
[63] Tang LC, Gu F. Next-generation CRISPR-Cas for genome editing: focusing on the Cas protein and PAM., 2020, 42(3): 236–249.唐連超, 谷峰. CRISPR-Cas基因編輯系統(tǒng)升級(jí):聚焦Cas蛋白和PAM. 遺傳, 2020, 42(3): 236–249.
[64] Wen L, Tang FC. Single-cell sequencing in stem cell biology., 2016, 17: 71.
[65] Li L, Dong J, Yan LY, Yong J, Liu XX, Hu YQ, Fan XY, Wu XL, Guo HS, Wang XY, Zhu XH, Li R, Yan J, Wei Y, Zhao YY, Wang W, Ren YX, Yuan P, Yan ZQ, Hu BQ, Guo F, Wen L, Tang FC, Qiao J. Single-Cell RNA-Seq analysis maps development of human germline cells and gonadal niche interactions., 2017, 20(6): 858–873.
[66] Bian SH, Hou Y, Zhou X, Li XL, Yong J, Wang YC, Wang WD, Yan J, Hu BQ, Guo HS, Wang JL, Gao S, Mao yn, Dong J, Zhu P, Xiu DR, Yan LY, Wen L, Qiao J, Tang FC, Fu W. Single-cell multiomics sequencing and analyses of human colorectal cancer., 2018, 362(6418): 1060– 1063.
[67] Kanesaka Y, Okada M, Ito S, Oyama T. Monitoring single- cell bioluminescence of Arabidopsis leaves to quantita-tively evaluate the efficiency of a transiently introduced CRISPR/Cas9 system targeting the circadian clock gene ELF3., 2019, 36(3): 187–193.
[68] Diaz-Hernandez ME, Khan NM, Trochez CM, Yoon T, Maye P, Presciutti SM, Gibson G, Drissi H. Derivation of notochordal cells from human embryonic stem cells reveals unique regulatory networks by single cell-transcriptomics., 2019, 235(6): 5241–5255.
Progress on genome-wide CRISPR/Cas9 screening for functional genes and regulatory elements
Siyuan Liu1,2, Guoqiang Yi2, Zhonglin Tang2,3, Bin Chen1
The CRISPR/Cas9 system is a powerful tool which has been extensively used for genome editing in the past few years. Nuclease-dead Cas9 (CRISPR/dCas9), a Cas9 protein mutant without splicing ability, along with loss-of- function (LOF), gain-of-function (GOF), or non-coding genes scanning approaches can reveal genome-scale functional determinants. CRISPR/Cas9 has been widely adopted to decipher disease mechanisms and pinpoint drug targets in the life science field, and also provide novel insights into animal genetics and breeding. In this review, we summarize the research progress in high-throughput CRISPR/Cas9 screening for revealing the functional genes and regulatory elements in the whole genome. We also highlight the applications of CRISPR/Cas9 system in the animal cells, providing a reference for gene editing and other related research in related fields.
CRISPR/Cas9; genome-wide screening; functional gene; regulatory elements
2020-01-02;
2020-04-08
湖南省生豬產(chǎn)業(yè)技術(shù)體系崗位專家項(xiàng)目(編號(hào):2019-2021),深圳市技術(shù)攻關(guān)項(xiàng)目(編號(hào):JSGG20180507182028625),轉(zhuǎn)基因生物新品種培育重大專項(xiàng)(編號(hào):2016ZX08006002-005)和廣東省重點(diǎn)領(lǐng)域研發(fā)計(jì)劃(現(xiàn)代種業(yè))項(xiàng)目(編號(hào):2018B020203002)資助[Supported by Position Expert of Hunan Province Pig Industry Technology System (No. 2019-2021), Shenzhen Key Technology Projects (No.JSGG20180507182028625), National Science and Technology Major Project of China (No. 2016ZX08006002-005), and the Key R&D Programmes of Guangdong Province (No. 2018B020203002)]
劉思遠(yuǎn),在讀博士研究生,專業(yè)方向:動(dòng)物遺傳育種與繁殖。E-mail: 515970802@qq.com易國(guó)強(qiáng),研究員,研究方向:功能基因組和表觀遺傳學(xué)。E-mail: yiguoqiang@caas.cn劉思遠(yuǎn)和易國(guó)強(qiáng)為并列第一作者。
唐中林,研究員,博士生導(dǎo)師,研究方向:動(dòng)物基因組與育種。E-mail: tangzhonglin@caas.cn陳斌,教授,博士生導(dǎo)師,研究方向:豬的遺傳育種。E-mail: chenbin7586@126.com
10.16288/j.yczz.19-390
2020/4/24 13:09:02
URI: http://kns.cnki.net/kcms/detail/11.1913.R.20200424.1053.002.html
(責(zé)任編委: 李明洲)