亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        面向數(shù)字土壤制圖的土壤采樣設(shè)計(jì)研究進(jìn)展與展望*

        2020-04-25 01:54:22黃思華濮勵(lì)杰解雪峰闞博穎譚言飛
        土壤學(xué)報(bào) 2020年2期
        關(guān)鍵詞:樣點(diǎn)制圖土壤

        黃思華,濮勵(lì)杰?,解雪峰,朱 明,闞博穎,譚言飛

        面向數(shù)字土壤制圖的土壤采樣設(shè)計(jì)研究進(jìn)展與展望*

        黃思華1,2,濮勵(lì)杰1,2?,解雪峰3,朱 明1,2,闞博穎1,2,譚言飛1,2

        (1. 南京大學(xué)地理與海洋科學(xué)學(xué)院,南京 210023;2. 自然資源部海岸帶開發(fā)與保護(hù)重點(diǎn)實(shí)驗(yàn)室,南京 210023;3. 浙江師范大學(xué)地理與環(huán)境科學(xué)學(xué)院,浙江金華 321004)

        全球化土壤環(huán)境問題的出現(xiàn)對(duì)基礎(chǔ)輸入數(shù)據(jù)的精度、尺度和時(shí)序提出了更高要求,面向數(shù)字土壤制圖的土壤采樣研究得到了快速發(fā)展。首先利用文獻(xiàn)計(jì)量學(xué)的方法定量化分析國(guó)內(nèi)外土壤采樣研究學(xué)科分布和研究熱點(diǎn)變化;隨后重點(diǎn)梳理了國(guó)內(nèi)外土壤采樣研究的文獻(xiàn),根據(jù)不同的土壤調(diào)查目的、調(diào)查區(qū)歷史采樣點(diǎn)將土壤采樣設(shè)計(jì)分為:土壤全面采樣設(shè)計(jì)、土壤補(bǔ)充采樣設(shè)計(jì)、土壤驗(yàn)證采樣設(shè)計(jì)和土壤監(jiān)測(cè)采樣設(shè)計(jì);最后介紹了基于樣點(diǎn)的推理制圖方法。在此基礎(chǔ)上,對(duì)未來在多尺度的土壤采樣設(shè)計(jì)、土壤–環(huán)境因子關(guān)系的新型假設(shè)和采樣設(shè)計(jì)中現(xiàn)實(shí)問題的量化等方面進(jìn)行了展望,旨在為數(shù)字土壤調(diào)查工作的開展提供參考依據(jù)。

        數(shù)字土壤制圖;土壤調(diào)查;采樣策略;土壤-環(huán)境關(guān)系

        土壤調(diào)查是獲取土壤屬性特征和時(shí)空演變信息的有效方式[1]。傳統(tǒng)土壤調(diào)查服務(wù)于農(nóng)業(yè)生產(chǎn)和管理,土壤專家憑借土壤知識(shí)及主觀判斷在野外采樣,存在周期長(zhǎng)、成本高、過程復(fù)雜和主觀性等缺點(diǎn)[2]。21世紀(jì)初,基于地理信息系統(tǒng)、地表數(shù)據(jù)獲取技術(shù)和數(shù)據(jù)挖掘技術(shù)的數(shù)字土壤制圖(Digital Soil Mapping,DSM)逐漸興起,成為高效表達(dá)土壤空間分布的技術(shù)方法,為全球化研究、生態(tài)水文動(dòng)態(tài)模擬、土壤資源管理、可持續(xù)土地利用提供大尺度、高精度土壤信息[1-2]。

        土壤采樣通過選擇代表性樣點(diǎn)為數(shù)字土壤制圖提供數(shù)據(jù)源。土壤采樣往往結(jié)合統(tǒng)計(jì)推斷、模型模擬和數(shù)字制圖形成完整映射鏈,科學(xué)的采樣設(shè)計(jì)能有效避免后續(xù)統(tǒng)計(jì)推斷問題[1]?;谠O(shè)計(jì)的采樣方法受傳統(tǒng)抽樣設(shè)計(jì)中概率統(tǒng)計(jì)理論的影響,認(rèn)為土壤屬性的空間變異具有隨機(jī)性,樣本的選擇基于給定的誤差和概率,主要包括簡(jiǎn)單隨機(jī)采樣、系統(tǒng)采樣和分層隨機(jī)采樣等[3-4]。然而,土壤屬性變化在地理空間中呈現(xiàn)空間自相關(guān)性,屬于地統(tǒng)計(jì)學(xué)研究對(duì)象,由此,以地統(tǒng)計(jì)學(xué)理論為基礎(chǔ)形成了基于模型的采樣方法,主要工具包括協(xié)方差函數(shù)和變異函數(shù),結(jié)合克里金插值方法,依據(jù)土壤的空間變異性和自相關(guān)特性來獲取全局代表性樣點(diǎn)[5];近年來,土壤采樣研究開始挖掘土壤本身的形成、發(fā)生以及與環(huán)境協(xié)變量之間的協(xié)同變化關(guān)系,在土壤-景觀模型理論的基礎(chǔ)上利用環(huán)境因子輔助采樣,如基于專家知識(shí)采樣、基于環(huán)境因子分層的拉丁超立方體采樣、基于環(huán)境因子相似性的多等級(jí)代表性采樣、基于環(huán)境因子變化程度的方差四叉樹采樣和基于土壤-環(huán)境因子關(guān)系的響應(yīng)表面采樣等[2,6-9]。土壤推理制圖反映了土壤空間分布特征和規(guī)律,主要利用土壤-環(huán)境因子關(guān)系和土壤屬性空間自相關(guān)性選擇相應(yīng)的數(shù)學(xué)方法或空間模型實(shí)現(xiàn)點(diǎn)面拓展[10]。土壤采樣和推理制圖相互聯(lián)系,采樣點(diǎn)質(zhì)量是制約制圖精度的關(guān)鍵因素[11],制圖精度常被用于控制所需的樣本量,而樣點(diǎn)的布設(shè)規(guī)則直接影響推理模型的選擇[12]。

        土壤調(diào)查的歷史采樣點(diǎn)由于數(shù)量有限、分布不符合某種規(guī)則、典型性不夠或缺乏精確的地理參考,難以滿足數(shù)字土壤制圖的要求,往往需要重新采樣獲取額外樣點(diǎn)[13]。實(shí)際土壤調(diào)查過程中,土壤采樣造成的誤差遠(yuǎn)超過樣品處理、實(shí)驗(yàn)室數(shù)據(jù)分析相關(guān)的誤差,很大程度上決定了制圖精度,同時(shí)采樣工作受成本、時(shí)間和精度的限制。采樣設(shè)計(jì)實(shí)際上是權(quán)衡精度和成本的過程,一方面可以通過增加樣點(diǎn)數(shù)量提高精度,同時(shí)又要通過控制代表性樣點(diǎn)的數(shù)量降低采樣成本[14]。本文據(jù)此梳理了國(guó)內(nèi)外學(xué)者關(guān)于土壤采樣的研究,系統(tǒng)總結(jié)了當(dāng)前常用的幾種土壤采樣策略和推理制圖的方法,并進(jìn)一步討論土壤采樣設(shè)計(jì)的未來研究趨勢(shì)。

        1 國(guó)內(nèi)外土壤采樣研究熱點(diǎn)變化

        基于中國(guó)知網(wǎng)數(shù)據(jù)庫(kù)和Web of Science核心數(shù)據(jù)庫(kù),分別以“土壤采樣”、“土壤采樣優(yōu)化”、“土壤樣點(diǎn)”和“soil sampling design”、“soil sampling strategy”、“soil sampling optimization”為關(guān)鍵詞檢索國(guó)內(nèi)外土壤采樣研究公開發(fā)表文獻(xiàn),去除重復(fù)和無關(guān)條目,統(tǒng)計(jì)文獻(xiàn)發(fā)表數(shù)量隨時(shí)間變化特征(如表1)。結(jié)果表明1980年至2018年間共發(fā)表了458、8 923篇中、英文論文;1990年初系統(tǒng)開展土壤采樣的研究,這一時(shí)期主要得益于GIS、遙感技術(shù)的支持和地統(tǒng)計(jì)學(xué)的應(yīng)用,21世紀(jì)以來伴隨全球數(shù)字土壤制圖的興起,土壤采樣研究快速發(fā)展;國(guó)內(nèi)在該領(lǐng)域的研究起步較晚,早期將地統(tǒng)計(jì)學(xué)應(yīng)用于采樣數(shù)量和采樣密度的研究中,近年來發(fā)展迅速,主要集中在耕地質(zhì)量監(jiān)測(cè)樣點(diǎn)、樣帶的布設(shè)和基于土壤-景觀模型的采樣方法的應(yīng)用,其次作為數(shù)字土壤制圖的子研究,國(guó)內(nèi)學(xué)者在國(guó)際期刊發(fā)表了大量新型采樣方法和策略的相關(guān)成果。

        以文獻(xiàn)為數(shù)據(jù)源,通過CiteSpace(版本5.3.R4.SE)軟件[15]定量分析土壤采樣研究學(xué)科和熱點(diǎn)的變化并進(jìn)行可視化展示。圖1為研究學(xué)科、主題和關(guān)鍵詞的聚類結(jié)果,節(jié)點(diǎn)代表分析對(duì)象,越大表示研究熱度越高,節(jié)點(diǎn)間的連線表示兩者之間具有相關(guān)性。從圖中可以看出,國(guó)外對(duì)土壤采樣的研究從農(nóng)學(xué)、工程學(xué)、土壤科學(xué)、環(huán)境科學(xué)和地理學(xué)等多學(xué)科交叉的角度進(jìn)行,運(yùn)用遙感、物理、化學(xué)分析和計(jì)算機(jī)技術(shù);國(guó)內(nèi)主要從土壤科學(xué)的角度研究,關(guān)鍵詞包括空間變異、土壤養(yǎng)分、耕地質(zhì)量、重金屬和地統(tǒng)計(jì)學(xué)等。表2展示了不同時(shí)期土壤采樣的研究熱點(diǎn),國(guó)外研究主要涉及土壤采樣方法和技術(shù)手段、采樣策略、土壤管理應(yīng)用、數(shù)字土壤制圖等方面,而國(guó)內(nèi)則主要應(yīng)用地統(tǒng)計(jì)學(xué)方法探討土壤特性的空間分異,以此進(jìn)行采樣設(shè)計(jì)。從整體來看,土壤采樣的研究從土壤科學(xué)的單一領(lǐng)域走向多學(xué)科交叉研究,在方法技術(shù)手段上從概率理論的應(yīng)用走向?qū)Φ亟y(tǒng)計(jì)學(xué)模型、深度學(xué)習(xí)和知識(shí)挖掘的算法結(jié)合,應(yīng)用研究上也重點(diǎn)關(guān)注生態(tài)監(jiān)測(cè)與保護(hù)、精準(zhǔn)農(nóng)業(yè)、污染修復(fù)等全球化問題。

        表1 土壤采樣研究論文發(fā)表數(shù)量

        2 土壤采樣設(shè)計(jì)方法

        采樣設(shè)計(jì)中合理利用先驗(yàn)知識(shí)可以提高樣點(diǎn)全局代表性、降低采樣時(shí)間和成本。先驗(yàn)知識(shí)來自輔助地圖、專家知識(shí)、歷史土壤圖和歷史采樣點(diǎn)數(shù)據(jù)。其中,輔助地圖包括數(shù)字地形圖和遙感影像,從中提取的全局環(huán)境因子包括與土壤形成相關(guān)的環(huán)境因子以及其他可能影響土壤屬性空間變化的因素(如表3),作為輔助數(shù)據(jù)可直接應(yīng)用于后續(xù)建模。專家知識(shí)以描述性知識(shí)為主,包括土壤專家對(duì)土壤類型和屬性真假判斷以及對(duì)土壤-景觀環(huán)境關(guān)系的描述。這部分知識(shí)的應(yīng)用往往借助布爾邏輯理論和感知計(jì)算理論將描述性單詞映射至制圖單元,獲取典型土壤類型/屬性對(duì)應(yīng)的環(huán)境知識(shí)并集成至土壤預(yù)測(cè)模型,目前已有的方法包括專家知識(shí)系統(tǒng)(Expert Systems)[16]和模糊隸屬函數(shù)[17]。歷史土壤圖是土壤調(diào)查者對(duì)區(qū)域土壤、景觀、地形、自然環(huán)境等的綜合認(rèn)識(shí),利用神經(jīng)網(wǎng)絡(luò)[18]、決策樹[19]、隨機(jī)森林[19]和貝葉斯[20]等方法獲取其中包含的土壤-環(huán)境關(guān)系知識(shí)可以指導(dǎo)采樣。歷史遺留土壤樣點(diǎn)是不同時(shí)段、不同目的下土壤調(diào)查的成果,大多存在分布不遵循統(tǒng)計(jì)標(biāo)準(zhǔn)、典型性不夠和缺乏精確的地理參考等問題[13,21]。評(píng)估歷史采樣點(diǎn)數(shù)據(jù)的可用性、時(shí)效性、代表性和信息完整性,是后續(xù)歷史采樣點(diǎn)參與土壤采樣和制圖的前提。對(duì)此,張忠啟等[22]提出了揭示特定時(shí)段土壤有機(jī)碳變化所需采樣數(shù)量的方法,解決了不同歷史時(shí)段土壤樣點(diǎn)的利用問題。Carré等[21]和Stumpf等[23]通過拉丁超立方法確定歷史采樣點(diǎn)在環(huán)境協(xié)變量超立方體的占有率,從而評(píng)估歷史采樣點(diǎn)的質(zhì)量,指導(dǎo)布設(shè)補(bǔ)充采樣的位置,實(shí)現(xiàn)了歷史土壤樣本的整合。An等[24]利用環(huán)境協(xié)變量聚類來近似代替土壤變化類型,選擇位于環(huán)境協(xié)變量聚類質(zhì)心的歷史采樣點(diǎn)為代表性樣品參與采樣和制圖。

        圖1 土壤采樣研究學(xué)科、主題和關(guān)鍵詞的共線分布示意圖

        表2 不同時(shí)期土壤采樣研究關(guān)鍵詞

        表3 土壤采樣設(shè)計(jì)中常用的環(huán)境協(xié)變量指標(biāo)

        注:①任何尺度All,②全球/國(guó)家/區(qū)域Global/National/Regional,③平緩小流域區(qū)域Gentle small watershed area

        根據(jù)土壤調(diào)查者的采樣目的將土壤采樣設(shè)計(jì)劃分為:基于不同先驗(yàn)知識(shí)對(duì)區(qū)域的全面采樣,基于歷史采樣點(diǎn)的補(bǔ)充采樣,用于評(píng)價(jià)制圖質(zhì)量的驗(yàn)證采樣和反映土壤空間分布實(shí)時(shí)信息的監(jiān)測(cè)采樣(如圖2)。

        2.1 土壤全面采樣設(shè)計(jì)

        2.1.1 無歷史采樣點(diǎn)區(qū)域的全面采樣 無歷史采樣點(diǎn)區(qū)域進(jìn)行全面采樣,方法的選擇取決于先驗(yàn)知識(shí)。大尺度土壤調(diào)查對(duì)制圖精度的要求較低,簡(jiǎn)單隨機(jī)采樣和網(wǎng)格采樣無疑是快速而實(shí)用的方法[41]。中小尺度土壤調(diào)查對(duì)制圖精度要求較高,需要借助環(huán)境因子輔助采樣提高采樣點(diǎn)的全局代表性。特征空間是由一組環(huán)境變量范圍限定形成的虛擬空間[31]。環(huán)境因子輔助采樣的主要原則是選擇樣點(diǎn)覆蓋或者優(yōu)化這個(gè)虛擬空間。為了實(shí)現(xiàn)特征空間的全局覆蓋,樣點(diǎn)常被布設(shè)于能夠完整代表環(huán)境空間差異性的區(qū)域。在地理空間上,這些區(qū)域可以通過某種典型的環(huán)境梯度組合切割分層,如Mckenzie等[42]結(jié)合地形地質(zhì)參數(shù)和植被數(shù)據(jù)對(duì)研究區(qū)分層后隨機(jī)選擇樣點(diǎn);Hengl等[31]將環(huán)境協(xié)變量分布頻率作為分層依據(jù),通過等距設(shè)計(jì)樣點(diǎn)實(shí)現(xiàn)特征空間的均勻擴(kuò)展;Minasny等[8]基于方差四叉樹法根據(jù)環(huán)境因子的變化程度對(duì)研究區(qū)分層采樣。從優(yōu)化特征空間的角度,將環(huán)境協(xié)變量進(jìn)行聚類或分層,在特定環(huán)境組合區(qū)域布設(shè)采樣點(diǎn),形成的特征空間能夠最大程度代表現(xiàn)實(shí)空間的特征屬性,常用方法包括模糊均值聚類采樣[43]、均值聚類采樣[39]、多等級(jí)代表性采樣[44]、拉丁超立方體采樣[7]、條件拉丁超立方體采樣[14]等。此外,樣點(diǎn)在地理空間的良好分布也是采樣設(shè)計(jì)的重要原則之一。平衡采樣是優(yōu)化地理空間分布引導(dǎo)的空間覆蓋采樣,利用目標(biāo)變量與環(huán)境協(xié)變量之間的線性關(guān)系抽樣,樣點(diǎn)的布設(shè)需要滿足樣點(diǎn)環(huán)境協(xié)變量均值等于總體均值[34]。實(shí)現(xiàn)平衡采樣的方法包括Horvitz-Thompson估計(jì)器、排斥程序、枚舉法、局部關(guān)鍵算法、空間相關(guān)泊松采樣、立方體方法和廣義隨機(jī)-曲面分層抽樣法等[45-47]。雙重平衡空間采樣在平衡采樣的基礎(chǔ)上進(jìn)行了優(yōu)化,可以實(shí)現(xiàn)空間平衡良好分布的同時(shí)避免選擇相鄰單元[34,48]。響應(yīng)表面采樣是基于模型預(yù)測(cè)的采樣,在目標(biāo)變量和環(huán)境協(xié)變量之間的關(guān)系可以擬合線性或二次回歸模型的假設(shè)下,通過布設(shè)樣點(diǎn)優(yōu)化模型參數(shù),降低模型殘差的空間自相關(guān)效應(yīng)[6]。響應(yīng)表面采樣最初利用土壤電導(dǎo)率數(shù)據(jù)估算土壤鹽度,隨后開發(fā)的ESAP軟件允許輸入環(huán)境遙感數(shù)據(jù),為大尺度土壤采樣提供可能性,但只能生成6、12或20個(gè)樣本[6]。

        2.1.2 有歷史采樣點(diǎn)區(qū)域的全面采樣 有歷史采樣點(diǎn)區(qū)域進(jìn)行全面采樣,方法的選擇取決于歷史采樣點(diǎn)中隱含知識(shí),包括土壤變異信息和土壤-環(huán)境知識(shí)。經(jīng)典統(tǒng)計(jì)學(xué)Cochran公式是目前計(jì)算區(qū)域最優(yōu)采樣數(shù)的常用方法[41],該公式的參數(shù)涉及置信水平、精度和先驗(yàn)樣本的變異系數(shù)。在此基礎(chǔ)上,最適分配法計(jì)算確定分層采樣中每層最佳采樣數(shù)[49]。經(jīng)典統(tǒng)計(jì)學(xué)計(jì)算方法可以對(duì)區(qū)域進(jìn)行整體大致趨勢(shì)和特征的研究,但無法決定樣點(diǎn)的空間位置,同時(shí)也忽略了區(qū)域土壤特征的空間變異性[50]。基于模型的采樣方法能夠彌補(bǔ)這些不足,該方法利用大量歷史樣點(diǎn)建立可靠的空間變異模型,進(jìn)而擬合克里金插值模型繪制土壤圖。伴隨以上過程產(chǎn)生的空間變異模型相關(guān)參數(shù)和未知點(diǎn)插值預(yù)測(cè)誤差可以指導(dǎo)現(xiàn)階段土壤采樣。對(duì)此,國(guó)內(nèi)學(xué)者展開了一系列合理采樣數(shù)的研究,如張志霞等[50]結(jié)合半方差函數(shù)模型和克里金插值結(jié)果交叉驗(yàn)證,綜合精度評(píng)價(jià)指標(biāo)RMSE、2和空間結(jié)構(gòu)性指標(biāo)最小化時(shí)確定合理采樣數(shù);趙業(yè)婷等[51]通過對(duì)比普通克里金法和協(xié)同克里金法的合理采樣數(shù)和優(yōu)化采樣數(shù)量的適用性,認(rèn)為協(xié)同克里金方法能夠更好地優(yōu)化采樣數(shù)量,提供更多局部變異信息。地統(tǒng)計(jì)學(xué)模型除了應(yīng)用于確定合理采樣數(shù),還能指導(dǎo)采樣點(diǎn)的空間優(yōu)化布局,如空間變異模型的變程值可以反映網(wǎng)格采樣的間隔[50]。一些研究中采樣點(diǎn)的布設(shè)以減少預(yù)測(cè)誤差為目標(biāo),如陳天恩等[52]根據(jù)克里金插值繪制估計(jì)值方差等值線,在估計(jì)誤差的方差大于給定閾值的區(qū)域加密采樣點(diǎn);Li等[53]利用方差四叉樹算法結(jié)合半方差函數(shù)對(duì)目標(biāo)變量插值的方差較大的區(qū)域不斷四分得到等方差的區(qū)層,對(duì)變異較大的區(qū)域增加采樣密度。而歷史采樣點(diǎn)相對(duì)較少的區(qū)域,難以建立模型準(zhǔn)確描述區(qū)域土壤屬性的空間變異情況,通常將已有樣點(diǎn)與環(huán)境因子進(jìn)行相關(guān)性分析,選取典型的環(huán)境協(xié)變量組合,借助環(huán)境因子輔助采樣實(shí)現(xiàn)樣點(diǎn)布設(shè)[23]?;蚧趯?duì)土壤景觀關(guān)系的不同假設(shè),通過建立多元回歸函數(shù)、協(xié)同克里金、泛克里金、隨機(jī)森林等模型作為目標(biāo)函數(shù),通過模擬退火算法優(yōu)化生成最優(yōu)空間布局的樣點(diǎn)集[5,23]。

        2.2 土壤補(bǔ)充采樣設(shè)計(jì)

        當(dāng)歷史采樣點(diǎn)在數(shù)量、分布和典型性上無法達(dá)到制圖要求時(shí),需要設(shè)計(jì)典型補(bǔ)充樣點(diǎn)去提高土壤信息空間表達(dá)精度,這樣的采樣設(shè)計(jì)稱為補(bǔ)充采樣。土壤補(bǔ)充采樣的關(guān)鍵在于整合現(xiàn)有資源,挖掘遺留樣本中包含的局部土壤-環(huán)境知識(shí)和空間屬性變異信息。

        2.2.1 基于環(huán)境因子相似性的補(bǔ)充采樣設(shè)計(jì) 基于推理不確定性的思想來源于樣點(diǎn)個(gè)體代表性預(yù)測(cè)土壤制圖[54]。在景觀單元環(huán)境越相似其土壤性質(zhì)越相似的假設(shè)下,通過已有樣本與未采樣點(diǎn)之間的環(huán)境相似性推測(cè)兩者之間土壤性質(zhì)的相似性,以此估計(jì)土壤屬性預(yù)測(cè)的不確定性[54]。劉京等[55]提出了度量土壤屬性推理不確定性的方法并成功應(yīng)用于大尺度土壤制圖?;谠摾碚?,未采樣點(diǎn)和采樣點(diǎn)的環(huán)境越不相似,其土壤屬性推測(cè)的不確定性越高,當(dāng)未采樣點(diǎn)的不確定性值高達(dá)一定程度,那么該點(diǎn)屬性值無法通過采樣點(diǎn)推理獲得[55]。基于環(huán)境相似性的補(bǔ)充采樣設(shè)計(jì)以推理不確定信息分布圖為指導(dǎo),樣點(diǎn)的布設(shè)考慮如何擴(kuò)大可預(yù)測(cè)范圍或降低推理結(jié)果的不確定性[13]。張淑杰等[13]提出了逐次、高效地設(shè)計(jì)補(bǔ)充樣點(diǎn)方案,在不確定性較高的區(qū)域布設(shè)補(bǔ)充樣點(diǎn)直至新樣點(diǎn)集的空間代表范圍覆蓋整個(gè)研究區(qū),具有確定補(bǔ)充樣點(diǎn)的數(shù)量、位置和重要性次序等優(yōu)點(diǎn),但未考慮如何提高推理精度。以降低推理結(jié)果不確定性為目標(biāo)的補(bǔ)充樣點(diǎn)布設(shè)方案通過模擬退火算法實(shí)現(xiàn),該方法不能提供補(bǔ)充樣本的采樣順序,也沒有明確最優(yōu)補(bǔ)樣數(shù)[56]。啟發(fā)式不確定性補(bǔ)充采樣考慮了以上兩種原則,利用遍歷算法和貪婪算法補(bǔ)充最少的樣點(diǎn)擴(kuò)展預(yù)測(cè)區(qū)域覆蓋整個(gè)研究區(qū),在不確定性值和面積較大的區(qū)域?qū)Νh(huán)境因子聚類,在最大的環(huán)境類別上布設(shè)樣點(diǎn)以減少土壤屬性預(yù)測(cè)的不確定性[26]。張磊等[57]提出了一種基于分融策略的樣點(diǎn)設(shè)計(jì)方法,能有效避免冗余樣點(diǎn),包括分化階段和融合階段,分化階段分化推測(cè)可信度低的樣點(diǎn),增加樣點(diǎn)來降低推測(cè)不確定性,融和階段將環(huán)境條件過于相似的樣點(diǎn)進(jìn)行融合以降低冗余。

        2.2.2 基于預(yù)測(cè)制圖不確定性的補(bǔ)充采樣設(shè)計(jì) 基于預(yù)測(cè)制圖不確定性的補(bǔ)充采樣目的是通過添加樣點(diǎn)降低目標(biāo)地理變量的整體空間預(yù)測(cè)不確定性。土壤空間插值模型和土壤-環(huán)境關(guān)系預(yù)測(cè)模型的預(yù)測(cè)制圖誤差可以指示空間預(yù)測(cè)的不確定性。在不同的克里金模型中,泛克里金模型在精度上更有優(yōu)勢(shì),其方差包含趨勢(shì)估計(jì)誤差和空間插值誤差的方差兩個(gè)分量,能有效平衡特征空間和地理空間[5]。相對(duì)于構(gòu)建克里金模型對(duì)樣本密度、統(tǒng)計(jì)假設(shè)等要求,隨機(jī)森林模型預(yù)測(cè)方差是土壤制圖的副產(chǎn)品,不需要額外的處理步驟,避免了統(tǒng)計(jì)復(fù)雜性,能夠滿足實(shí)際不確定性度量的需求[5,23]。補(bǔ)充采樣的候補(bǔ)區(qū)是具有較大預(yù)測(cè)方差的區(qū)域,補(bǔ)充樣點(diǎn)布設(shè)方法包括拉丁超立方體和模擬退火算法,在迭代過程中通過設(shè)定算法停止的閾值(足夠小的預(yù)測(cè)誤差)決定樣本數(shù)量和位置,實(shí)現(xiàn)環(huán)境協(xié)變量空間與采樣效果之間的平衡[58]。

        Li等[59]提出基于屬性域和空間域的不確定性補(bǔ)充采樣方法,結(jié)合了上述兩種思想。屬性域是環(huán)境協(xié)變量的關(guān)系域,在屬性域中補(bǔ)充采樣借鑒了啟發(fā)式不確定性補(bǔ)樣,將不確定性由高至低排序選擇補(bǔ)樣點(diǎn);空間域?yàn)榭臻g自相關(guān)域,依據(jù)平均/最大克里金方差劃分不確定性,利用模擬退火算法選擇補(bǔ)樣點(diǎn),最終補(bǔ)樣點(diǎn)為兩種方案的并集。

        2.3 土壤驗(yàn)證采樣設(shè)計(jì)

        對(duì)生產(chǎn)者和使用者而言預(yù)測(cè)制圖的質(zhì)量驗(yàn)證必不可少[60-61]。部分基于模型(如克里金插值)或基于環(huán)境相似度的土壤制圖會(huì)產(chǎn)生不確定性分布圖等附加產(chǎn)品,可以指示制圖結(jié)果的可靠性[2,55,62]。目前常規(guī)的定量評(píng)價(jià)土壤制圖精度的方法包括數(shù)據(jù)分裂、交叉驗(yàn)證和附加概率采樣驗(yàn)證[61]。前兩種方法基于已有樣點(diǎn)實(shí)現(xiàn),數(shù)據(jù)分裂將校準(zhǔn)樣點(diǎn)依據(jù)一定比例(20%~30%)隨機(jī)分為訓(xùn)練樣點(diǎn)和驗(yàn)證樣點(diǎn),訓(xùn)練樣點(diǎn)推理制圖后由驗(yàn)證樣點(diǎn)評(píng)價(jià)制圖精度[50,63]。交叉驗(yàn)證通過重復(fù)分割校準(zhǔn)樣點(diǎn)集去驗(yàn)證,本質(zhì)上是數(shù)據(jù)分裂的迭代過程,相對(duì)于數(shù)據(jù)分裂更有效,包括留一交叉驗(yàn)證和多折交叉驗(yàn)證[64]。目的采樣獲得的制圖樣點(diǎn)集,分割形式無法改變樣點(diǎn)本身的偏向性,預(yù)測(cè)誤差或分類錯(cuò)誤率存在著空間自相關(guān),驗(yàn)證精度高估了實(shí)際精度,因此,數(shù)據(jù)分裂和交叉驗(yàn)證難以實(shí)現(xiàn)無偏和有效的地圖精度估計(jì)[61,65]。而附加概率采樣驗(yàn)證通過概率抽樣選擇獨(dú)立驗(yàn)證點(diǎn)與預(yù)測(cè)地圖單元進(jìn)行比較,不需要模型估算地圖精度,避免對(duì)預(yù)測(cè)誤差的空間自相關(guān)做出假設(shè),能夠有效地指示制圖精度[65]。Brus等[61]提出利用基于設(shè)計(jì)的采樣方法布設(shè)附加驗(yàn)證點(diǎn),包括簡(jiǎn)單隨機(jī)采樣、分層簡(jiǎn)單隨機(jī)采樣、系統(tǒng)隨機(jī)采樣、聚類采樣和兩階段隨機(jī)采樣。在保證驗(yàn)證質(zhì)量的前提下,Gruijter等[66]提供了上述不同采樣方法所需的最小樣本量的計(jì)算方法,通過抽樣概率和參數(shù)估計(jì)的方差計(jì)算驗(yàn)證樣點(diǎn)總數(shù),并根據(jù)其特有的布設(shè)方式分配樣點(diǎn)。一般而言,增加驗(yàn)證采樣強(qiáng)度有利于提升預(yù)測(cè)質(zhì)量,但并不能增加實(shí)際的制圖精度,因此實(shí)際驗(yàn)證采樣設(shè)計(jì)中需要權(quán)衡驗(yàn)證采樣成本與驗(yàn)證質(zhì)量的關(guān)系。

        圖2 基于先驗(yàn)知識(shí)的土壤采樣方法選擇決策樹

        前人研究表明,綜合實(shí)際操作性、誤差估計(jì)及精度,可優(yōu)先選擇分層簡(jiǎn)單隨機(jī)采樣獲取驗(yàn)證樣點(diǎn)[61],而大尺度地圖驗(yàn)證采樣受成本和可達(dá)性的限制,選擇聚類采樣和兩階段隨機(jī)采樣更有效[60]。有學(xué)者提出利用成本限制下的條件拉丁超立方體采樣選取驗(yàn)證點(diǎn)[67],該方法雖然隨機(jī)選取樣點(diǎn)位置但并不屬于概率抽樣設(shè)計(jì),難以保證對(duì)地圖質(zhì)量的無偏估計(jì)[68]。對(duì)此,Yang等[68]提出將逐點(diǎn)訪問成本作為衡量變量加入簡(jiǎn)單隨機(jī)采樣、成比例概率采樣和分層隨機(jī)采樣選擇驗(yàn)證點(diǎn)。

        2.4 土壤監(jiān)測(cè)采樣設(shè)計(jì)

        目前,世界許多國(guó)家或區(qū)域已經(jīng)建立了土壤監(jiān)測(cè)網(wǎng)絡(luò),用于定期觀測(cè)土壤肥力、土壤污染和土壤侵蝕等變化。監(jiān)測(cè)站點(diǎn)的選取一方面基于歷史采樣點(diǎn)或者預(yù)設(shè)樣點(diǎn)的空間變異性信息實(shí)現(xiàn)監(jiān)測(cè)樣點(diǎn)的再優(yōu)化,如歐洲土壤監(jiān)測(cè)系統(tǒng)應(yīng)用50 km×50 km格網(wǎng)采樣[69],國(guó)內(nèi)耕地質(zhì)量監(jiān)測(cè)系統(tǒng)應(yīng)用地統(tǒng)計(jì)學(xué)變異函數(shù)[70]優(yōu)化布設(shè)樣點(diǎn)。另一方面,通過土壤或者景觀環(huán)境信息實(shí)現(xiàn)監(jiān)測(cè)樣帶的選擇,如德國(guó)BDF-SH長(zhǎng)期土壤監(jiān)測(cè)計(jì)劃通過景觀單元、土壤類型和土地利用選擇代表區(qū)[71],國(guó)內(nèi)耕地質(zhì)量監(jiān)測(cè)系統(tǒng)依據(jù)自然條件、利用水平和收益水平等因素組合確定耕地質(zhì)量均值區(qū)域選擇監(jiān)測(cè)點(diǎn)[72]。以上采樣方法均從靜態(tài)層面上選取樣點(diǎn),未考慮土壤屬性的時(shí)空變異性,缺乏數(shù)學(xué)模型的統(tǒng)計(jì)推斷和空間抽樣理論的驗(yàn)證。

        土壤屬性特征具有時(shí)空變異性。近十年,國(guó)外土壤監(jiān)測(cè)采樣研究從時(shí)間、空間兩個(gè)維度考慮,分為時(shí)間采樣設(shè)計(jì)、空間采樣設(shè)計(jì)和時(shí)空采樣設(shè)計(jì)[66]?;诟怕食闃永碚摗⒌亟y(tǒng)計(jì)理論和時(shí)間序列分析,形成完全基于設(shè)計(jì)、完全基于模型和混合方法的土壤監(jiān)測(cè)的樣本布設(shè)方法[66,73]。完全基于設(shè)計(jì)的方法利用概率采樣選擇抽樣單元和抽樣時(shí)間,其統(tǒng)計(jì)參數(shù)通過概率采樣所確定的包含概率推斷,具有對(duì)時(shí)空平均值的無偏估計(jì)和量化抽樣誤差所導(dǎo)致的估計(jì)總量不確定性等優(yōu)點(diǎn)[74-75]。完全基于模型的方法通過歷史數(shù)據(jù)建立隨機(jī)模型來描述土壤屬性的時(shí)空變化,利用模型推斷參數(shù)和預(yù)測(cè)時(shí)空平均值[66]?;旌戏椒ㄉ婕傲嘶谠O(shè)計(jì)和模型的推理,對(duì)樣本位置進(jìn)行概率采樣構(gòu)建離散化空間均值的時(shí)間序列模型[73-75]。土壤監(jiān)測(cè)網(wǎng)中最佳采樣數(shù)量需要滿足兩個(gè)目標(biāo):能代替土壤屬性空間均值和空間變化,通過功率分析法和最小可檢測(cè)差異法計(jì)算[76]。Brus等[73]提出四種時(shí)空設(shè)計(jì)概念性例子:獨(dú)立同步設(shè)計(jì)、靜態(tài)同步設(shè)計(jì)、補(bǔ)充面板設(shè)計(jì)和旋轉(zhuǎn)面板設(shè)計(jì),對(duì)監(jiān)測(cè)采樣設(shè)計(jì)具有重要指導(dǎo)意義。

        理論模型和算法確定的采樣點(diǎn)在現(xiàn)場(chǎng)操作過程中受成本、時(shí)間和地形等限制,預(yù)設(shè)位置可能會(huì)落在無法訪問區(qū)。針對(duì)這些現(xiàn)實(shí)問題,選擇容易到達(dá)的替換位置采樣是其中一個(gè)解決思路,如基于道路網(wǎng)不同距離設(shè)置采樣尺度,尋找最佳的土壤采樣布局[77];有學(xué)者嘗試結(jié)合不同方法進(jìn)行交替采樣,對(duì)于初始采樣方案中無法到達(dá)的點(diǎn),通過環(huán)境因子聚類選擇具有相似環(huán)境因子組合的代替點(diǎn)[78];此外,通過到達(dá)采樣點(diǎn)所花費(fèi)的時(shí)間或成本量化可達(dá)性限制,將其加入條件拉丁超立方體目標(biāo)函數(shù),這樣選取的采樣點(diǎn)既能夠滿足統(tǒng)計(jì)有效性又落入了可到達(dá)區(qū)域,但避開成本過高的采樣點(diǎn)后其精度會(huì)有所下降[14];對(duì)于拉丁超立方體采樣的樣本量不確定性產(chǎn)生的計(jì)算需求量過大的問題,漸進(jìn)拉丁超立方體采樣可以生成一系列較小的子集進(jìn)行多階段或順序抽樣,可以有效改進(jìn)相關(guān)分析的收斂性和采樣結(jié)果的穩(wěn)定性[79]。靈活拉丁超立方體采樣通過帕累托優(yōu)化對(duì)多目標(biāo)同時(shí)進(jìn)行優(yōu)化,實(shí)現(xiàn)特征空間的覆蓋以及成本的控制,適合大區(qū)域采樣[80]。

        3 推理制圖

        土壤推理制圖是以數(shù)學(xué)方法和空間分析為手段,利用土壤屬性的空間自相關(guān)性和土壤-環(huán)境協(xié)變量關(guān)系,將點(diǎn)映射至面以體現(xiàn)土壤空間分布特征和規(guī)律的過程[10]。盡管大尺度數(shù)字土壤制圖更多地借助于土壤近地傳感、土壤光譜和衛(wèi)星遙感技術(shù),但野外采樣點(diǎn)仍是至關(guān)重要的數(shù)據(jù)源。土壤樣點(diǎn)的數(shù)量和布設(shè)規(guī)則將影響土壤空間推理模型的選擇[1]?;跇狱c(diǎn)的土壤制圖方法和采樣設(shè)計(jì)的思路相似,大致可概括為利用土壤-環(huán)境因子關(guān)系、土壤屬性空間自相關(guān)性推測(cè)區(qū)域土壤的空間分布[81]。前者主要利用機(jī)器學(xué)習(xí)、數(shù)據(jù)挖掘和數(shù)學(xué)模型等方法挖掘土壤屬性與環(huán)境協(xié)變量的關(guān)系知識(shí)作為制圖依據(jù),后者則利用給定的一組離散土壤樣點(diǎn)建立目標(biāo)屬性的空間自相關(guān)模型,通過空間插值模型,如趨勢(shì)面分析、克里金插值、樣條函數(shù)、反距離加權(quán)法和最鄰近法等制圖[2,82]。以上兩者結(jié)合的制圖法同時(shí)考慮了土壤屬性的空間自相關(guān)特征和土壤與環(huán)境因子的關(guān)系,主要方法包括回歸克里金插值、協(xié)同克里金插值和地理加權(quán)回歸模型[82-84]。

        一般而言,制圖精度會(huì)隨著樣點(diǎn)的數(shù)量增加而逐漸提高,在方法上,土壤-環(huán)境模型制圖法相對(duì)普通克里金法和線性回歸模型更有效,回歸克里金法能有效結(jié)合土壤-環(huán)境模型法和空間插值的優(yōu)勢(shì),制度精度優(yōu)于普通克里金法[84-86]。然而,一些方法對(duì)比研究發(fā)現(xiàn),土壤預(yù)測(cè)制圖效果并不完全取決于方法的精密和復(fù)雜性,也需要關(guān)注輔助環(huán)境因子的應(yīng)用以及方法對(duì)樣點(diǎn)變量信息的利用效率[82]。土壤采樣和推理制圖是兩個(gè)相互聯(lián)系的過程,制圖精度常被用于控制所需的樣本量,而樣點(diǎn)的布設(shè)規(guī)則是選擇推理模型的關(guān)鍵因素[12]?;谀P偷牟蓸釉O(shè)計(jì)的樣點(diǎn)以模型參數(shù)估算方差和插值預(yù)測(cè)誤差最小化為目標(biāo),所建立的空間自相關(guān)模型具有較小的預(yù)測(cè)不確定性,利用空間插值模型制圖,或者在空間自相關(guān)基礎(chǔ)上引入環(huán)境因子輔助推測(cè)制圖具有較好的效果[1]。環(huán)境因子輔助采樣點(diǎn)相對(duì)于基于模型的采樣點(diǎn)具有數(shù)量較少、代表性高且包含土壤-環(huán)境關(guān)系的特點(diǎn),適合基于土壤-環(huán)境關(guān)系制圖的方法[2]。制圖者需要根據(jù)特定制圖要求選擇相應(yīng)的土壤-環(huán)境關(guān)系表達(dá)模型推理制圖。采樣設(shè)計(jì)其中一個(gè)重要依據(jù)是土壤-環(huán)境因子間線性或非線性假設(shè),土壤屬性制圖也通常利用這一關(guān)系推理制圖,廣泛使用的方法包括線性回歸模型[87]、隨機(jī)森林[82]、決策樹[85]和人工神經(jīng)網(wǎng)絡(luò)模型[85]等。土壤類型制圖則依據(jù)特定的土壤類型-環(huán)境組合知識(shí)推理制圖,代表方法包括土壤-景觀推理模型(Soil-Landscape Inference Model,SoLIM)[88]和語(yǔ)義模型模糊推理模型[12]。近年來,大尺度的土壤采樣設(shè)計(jì)如多等級(jí)代表性采樣、基于不確定性的補(bǔ)充采樣等,樣點(diǎn)布設(shè)基于環(huán)境越相似土壤屬性越相似的假設(shè),點(diǎn)面拓展方法涉及模糊隸屬加權(quán)平均法和個(gè)體預(yù)測(cè)土壤制圖法[54,89]。隨著全球數(shù)字土壤制圖工作的開展,對(duì)大尺度采樣設(shè)計(jì)和推理制圖提出挑戰(zhàn),加強(qiáng)環(huán)境協(xié)變量的應(yīng)用,提升推理方法對(duì)樣點(diǎn)變量信息的利用效率成為重要研究方向。

        4 結(jié)論與展望

        本文系統(tǒng)梳理了國(guó)內(nèi)外關(guān)于土壤采樣策略的研究,根據(jù)不同的土壤調(diào)查目的、調(diào)查區(qū)歷史采樣點(diǎn)將土壤采樣分為:土壤全面采樣設(shè)計(jì)、土壤補(bǔ)充采樣設(shè)計(jì)、土壤驗(yàn)證采樣設(shè)計(jì)和土壤監(jiān)測(cè)采樣設(shè)計(jì)。無歷史采樣點(diǎn)區(qū)域的全面采樣通過基于設(shè)計(jì)的采樣方法隨機(jī)選擇樣本位置實(shí)現(xiàn)地理空間均勻覆蓋,或通過環(huán)境因子輔助樣本布設(shè)實(shí)現(xiàn)特征空間的覆蓋和優(yōu)化,有歷史采樣點(diǎn)區(qū)域的全面采樣更適合基于模型的采樣方法。補(bǔ)充采樣的樣點(diǎn)應(yīng)布設(shè)于環(huán)境因子相似性較低、預(yù)測(cè)制圖不確定性較高或兩者兼?zhèn)涞奈恢谩r?yàn)證采樣選擇基于設(shè)計(jì)的方法獲取獨(dú)立驗(yàn)證點(diǎn)更可取。監(jiān)測(cè)采樣分為空間采樣、時(shí)間采樣和時(shí)空采樣,將基于設(shè)計(jì)和基于模型的方法組合布設(shè)樣點(diǎn)?;跇狱c(diǎn)的推理制圖方法主要包括基于土壤-環(huán)境因子關(guān)系制圖和基于土壤屬性空間自相關(guān)性制圖。制圖者應(yīng)關(guān)注環(huán)境因子的應(yīng)用及方法對(duì)樣點(diǎn)變量信息的利用效率,根據(jù)特定制圖要求選擇相應(yīng)的推理模型完成土壤信息的空間表達(dá)。未來土壤采樣研究的發(fā)展趨勢(shì)應(yīng)包括:

        (1)多尺度的土壤采樣設(shè)計(jì)。目前土壤采樣的研究尺度以流域、農(nóng)場(chǎng)、田塊為主,選取的調(diào)查區(qū)土地利用/覆被結(jié)構(gòu)相對(duì)簡(jiǎn)單,對(duì)已提出的采樣方法具有良好的應(yīng)用性。在國(guó)家以及全球尺度上,由于土壤變異情況、土地利用結(jié)構(gòu)和人類活動(dòng)更復(fù)雜,現(xiàn)有提出的大尺度采樣一般是基于設(shè)計(jì)的方法,這樣得到的結(jié)果公正且有效,但樣點(diǎn)缺乏代表性且需要較多成本和時(shí)間[69]。因此,為滿足全球數(shù)字土壤制圖和全球化研究的需要,探索大尺度基于土壤-景觀模型的采樣設(shè)計(jì)和基于預(yù)測(cè)不確定性的補(bǔ)充采樣設(shè)計(jì)等新型采樣方法的適用性,實(shí)現(xiàn)采樣方法尺度擴(kuò)張是未來重要的研究方向。

        (2)土壤-環(huán)境因子關(guān)系的新型假設(shè)。土壤采樣并不是一個(gè)獨(dú)立的過程,往往會(huì)結(jié)合統(tǒng)計(jì)推斷、模型模擬和制圖形成完整的映射鏈,這種映射關(guān)系基于一定的假設(shè)。在采樣方法中,部分不依賴于這種假設(shè),如概率采樣,因?yàn)樗鼘?duì)總體參數(shù)的估計(jì)無偏。其他采樣方法基于的假設(shè)大致可分為兩類,一是基于克里金插值模型后具有獨(dú)立殘差的假設(shè),如基于模型和模擬退火算法的采樣方法;其次就是基于土壤-環(huán)境因子關(guān)系,如響應(yīng)表面采樣和平衡采樣,認(rèn)為土壤屬性與環(huán)境因子之間存在線性關(guān)系[90]。由于土壤-環(huán)境關(guān)系是一個(gè)黑箱,難以通過簡(jiǎn)單的線性關(guān)系進(jìn)行表達(dá)[2]。通過機(jī)器學(xué)習(xí)和數(shù)學(xué)挖掘等方法來獲取新型土壤屬性與環(huán)境因子關(guān)系,指導(dǎo)建立更加有效的采樣方法是未來重要的研究方向。

        (3)采樣設(shè)計(jì)中量化現(xiàn)實(shí)問題?,F(xiàn)有土壤采樣設(shè)計(jì)的目標(biāo)主要針對(duì)單一目標(biāo)土壤屬性,并不適用于大尺度土壤調(diào)查,如何通過一次采樣滿足多個(gè)土壤屬性變量空間分布已有初步研究,有學(xué)者通過建立線性模型同時(shí)最小化多個(gè)土壤變量的平均克里金方差得到最優(yōu)樣本量和樣本分布模式[91]。此外,多數(shù)采樣方案確定的樣本位置在野外操作過程中受成本、時(shí)間及可達(dá)性限制而無法準(zhǔn)確獲取該樣點(diǎn)。有學(xué)者嘗試在拉丁超立方體采樣和概率采樣中加入成本限制來解決這一問題,但導(dǎo)致采樣精度降低[67]。因此,如何在采樣設(shè)計(jì)中滿足多個(gè)目標(biāo)土壤屬性分布以及權(quán)衡提升野外可操作性帶來了精度降低等現(xiàn)實(shí)需求,還需要深入研究。

        [1] McBratney A B,Odeh I O A,Bishop T F A,et al. An overview of pedometric techniques for use in soil survey.Geoderma,2000,97(3/4):293—327.

        [2] Zhu A X,Yang L,F(xiàn)an N Q,et al. The review and outlook of digital soil mapping. Progress in Geography,2018,37(1):66—78. [朱阿興,楊琳,樊乃卿,等. 數(shù)字土壤制圖研究綜述與展望.地理科學(xué)進(jìn)展,2018,37(1):66—78.]

        [3] Wallenius K,Niemi R M,Rita H. Using stratified sampling based on pre-characterisation of samples in soil microbiological studies.Applied Soil Ecology,2011,51(1):111—113.

        [4] Zhang J,Zhang C. Sampling and sampling strategies for environmental analysis. International Journal of Environmental Analytical Chemistry,2012,92(4):466—478.

        [5] Brus D J,Heuvelink G B M. Optimization of sample patterns for universal kriging of environmental variables. Geoderma,2007,138(1/2):86—95.

        [6] Corwin D L,Lesch S M,Segal E,et al. Comparison of sampling strategies for characterizing spatial variability with apparent soil electrical conductivity directed soil sampling. Journal of Environmental & Engineering Geophysics,2010,15(3):147—162.

        [7] Minasny B,McBratney A B. Latin hypercube sampling as a tool for digital soil mapping. Developments in Soil Science,2007,31:153—165,606.

        [8] Minasny B,McBratney A B,Walvoort D J J. The variance quadtree algorithm:Use for spatial sampling design. Computers & Geosciences,2007,33(3):383—392.

        [9] Yang L,Zhu A X,Qin C Z,et al. A soil sampling method based on representativeness grade of sampling points. Acta Pedologica Sinica,2011,48(5):938—946. [楊琳,朱阿興,秦承志,等. 一種基于樣點(diǎn)代表性等級(jí)的土壤采樣設(shè)計(jì)方法.土壤學(xué)報(bào),2011,48(5):938—946.]

        [10] Lagacherie P,McBratney A. Spatial soil information systems and spatial soil inference systems:Perspectives for digital soil mapping. Developments in Soil Science, 2006,31:3—22.

        [11] Vaysse K,Lagacherie P. Evaluating Digital Soil Mapping approaches for mapping global soil map soil properties from legacy data in Languedoc-Roussillon(France). Geoderma Regional,2015,4:20—30.

        [12] Yang L. Relationships between sample selection and mapping accuracy under purposive sampling:A case study in digital soil mapping.Beijing:Institute of Geographical Sciences and Natural Resources Research,Chinese Academy of Sciences,2009. [楊琳. 目的性采樣下樣本設(shè)計(jì)與制圖精度的關(guān)系研究:以數(shù)字土壤制圖為例.北京:中國(guó)科學(xué)院地理科學(xué)與資源研究所,2009.]

        [13] Zhang S J,Zhu A X,Liu J,et al. An integrative sampling scheme for digital soil mapping. Progress in Geography,2012,31(10):1318—1325. [張淑杰,朱阿興,劉京,等. 整合已有土壤樣點(diǎn)的數(shù)字土壤制圖補(bǔ)樣方案.地理科學(xué)進(jìn)展,2012,31(10):1318—1325.]

        [14] Godinho Silva S H,Owens P R,Silva B M,et al. Evaluation of conditioned Latin hypercube sampling as a support for soil mapping and spatial variability of soil properties. Soil Science Society of America Journal,2015,79(2):603—611.

        [15] Chen C M. Science mapping:A systematic review of the literature. Journal of Data and Information Science,2017,2(2):1—40.

        [16] de Menezes M D,Silva S H G,Owens P R,et al. Digital soil mapping approach based on fuzzy logic and field expert knowledge. Ciência e Agrotecnologia,2013,37(4):287—298.

        [17] Zhu A X,Yang L,Li B L,et al. Construction of membership functions for predictive soil mapping under fuzzy logic. Geoderma,2010,155(3/4):164—174.

        [18] Li Q,Cheng J,Hu Y,et al. Spatial interpolation of soil nutrients based on bp neural network. Agricultural Science & Technology,2014,15(3):506.

        [19] Subburayalu S K,Slater B K. Soil series mapping by knowledge discovery from an ohio county soil map. Soil Science Society of America Journal,2013,77(4):1254—1268.

        [20] Brus D J,Bogaert P,Heuvelink G B M. Bayesian maximum entropy prediction of soil categories using a traditional soil map as soft information. European Journal of Soil Science,2008,59(2):166—177.

        [21] Carré F,McBratney A B,Minasny B. Estimation and potential improvement of the quality of legacy soil samples for digital soil mapping. Geoderma,2007,141(1/2):1—14.

        [22] Zhang Z Q,Yu F Z,Yu D S,et al. Temporal variability of soil organic carbon and rational sample size in red soil region. Acta Pedologica Sinica,2016,53(4):891—900. [張忠啟,于法展,于東升,等. 紅壤區(qū)土壤有機(jī)碳時(shí)間變異及合理采樣點(diǎn)數(shù)量研究.土壤學(xué)報(bào),2016,53(4):891—900.]

        [23] Stumpf F,Schmidt K,Behrens T,et al. Incorporating limited field operability and legacy soil samples in a hypercube sampling design for digital soil mapping. Journal of Plant Nutrition and Soil Science,2016,179(4):499—509.

        [24] An Y M,Yang L,Zhu A X,et al. Identification of representative samples from existing samples for digital soil mapping. Geoderma,2018,311:109—119.

        [25] McBratney A B,Mendon?a Santos M,Minasny B. On digital soil mapping. Geoderma,2003,117(1/2):3—52.

        [26] Zhang S J,Zhu A X,Liu J,et al. An heuristic uncertainty directed field sampling design for digital soil mapping. Geoderma,2016,267:123—136.

        [27] de Brogniez D,Ballabio C,Stevens A,et al. A map of the topsoil organic carbon content of Europe generated by a generalized additive model. European Journal of Soil Science,2015,66(1):121—134.

        [28] Yang R M,Zhang G L,Liu F,et al. Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem. Ecological Indicators,2016,60:870—878.

        [29] Ashtekar J M,Owens P R. Remembering knowledge:An expert knowledge based approach to digital soil mapping. Soil Horizons,2013,54(5):1—6.

        [30] Brungard C W,Boettinger J L.Conditioned Latin hypercube sampling:Optimal sample size for digital soil mapping of arid rangelands in Utah,USA//Digital Soil Mapping. Dordrecht:Springer Netherlands,2010:67—75.

        [31] Hengl T,Rossiter D G,Stein A. Soil sampling strategies for spatial prediction by correlation with auxiliary maps. Australian Journal of Soil Research,2003,41(8):1403—1422.

        [32] Qin C Z,Lu Y J,Qiu W L,et al. Application of fuzzy slope positions in predicting spatial distribution of soil property at finer scale. Geographical Research,2010,29(9):1706—1714. [秦承志,盧巖君,邱維理,等. 模糊坡位信息在精細(xì)土壤屬性空間推測(cè)中的應(yīng)用.地理研究,2010,29(9):1706—1714.]

        [33] Hengl T,Mendes de Jesus J,Heuvelink G B M,et al. Soilgrids250m:Global gridded soil information based on machine learning. PLoS One,2017,12(2):e0169748.

        [34] Brus D J. Balanced sampling:A versatile sampling approach for statistical soil surveys. Geoderma,2015,253/254:111—121.

        [35] Noller J S. Applying geochronology in predictive digital mapping of soils//Digital Soil Mapping:Dordrecht:Springer Netherlands,2010:43—53.

        [36] Song M,Yang L,Zhu A X,et al. Mapping soil organic matter in farming areas with crop rotation. Chinese Journal of Soil Science,2017,48(4):778—785. [宋敏,楊琳,朱阿興,等. 輪作模式在農(nóng)耕區(qū)土壤有機(jī)質(zhì)推測(cè)制圖中的應(yīng)用.土壤通報(bào),2017,48(4):778—785.]

        [37] Viscarra Rossel R A,McBratney A B,Minasny B. Proximal soil sensing. Dordrecht:Springer Netherlands,2010.

        [38] Shi Z,Ji W,Viscarra Rossel R A,et al. Prediction of soil organic matter using a spatially constrained local partial least squares regression and the Chinese vis–NIR spectral library. European Journal of Soil Science,2015,66(4):679—687.

        [39] Brus D J,de Gruijter J J,van Groenigen J W. Designing spatial coverage samples using the k-means clustering algorithm//Developments in Soil Science. Amsterdam:Elsevier 2006:183—192.

        [40] Poggio L,Gimona A. 3D mapping of soil texture in Scotland. Geoderma Regional,2017,9:5—16.

        [41] Zhang S M,Xu M X,Zhang Z X,et al. Methods of sampling soil organic carbon in farmlands with different landform types on the Loess Plateau. Journal of Natural Resources,2018,33(4):634—643. [張圣民,許明祥,張志霞,等. 黃土高原不同地貌類型區(qū)農(nóng)田土壤有機(jī)碳采樣布點(diǎn)方法研究.自然資源學(xué)報(bào),2018,33(4):634—643.]

        [42] McKenzie N J,Ryan P J. Spatial prediction of soil properties using environmental correlation. Geoderma,1999,89(1/2):67—94.

        [43] Lin Q H,Li H,Luo W,et al. Optimal soil-sampling design for rubber tree management based on fuzzy clustering. Forest Ecology & Management,2013,308(4):214—222.

        [44] Yang L,Zhu A X,Zhao Y G,et al. Regional soil mapping using multi-grade representative sampling and a fuzzy membership-based mapping approach. Pedosphere,2017,27(2):344—357.

        [45] Deville J C. Efficient balanced sampling:The cube method. Biometrika,2004,91(4):893—912.

        [46] Stevens D L Jr,Olsen A R. Spatially balanced sampling of natural resources. Journal of the American Statistical Association,2004,99(465):262—278.

        [47] Tillé Y. Ten years of balanced sampling with the cube method:An appraisal. Survey Methodology,2011,37(2):215—226.

        [48] Grafstr?m A,Tillé Y. Doubly balanced spatial sampling with spreading and restitution of auxiliary totals. Environmetrics,2013,24(2):120—131.

        [49] Yao R J,Yang J S,Jiang L. Study on spatial variability and appropriate sampling quantity of soil salinity in Yellow River Delta. Journal of Soil and Water Conservation,2006,20(6):89—94. [姚榮江,楊勁松,姜龍. 黃河三角洲土壤鹽分空間變異性與合理采樣數(shù)研究.水土保持學(xué)報(bào),2006,20(6):89—94.]

        [50] Zhang Z X,Xu M X,Liu J,et al. Spatial variation and reasonable sampling number of soil organic carbon under different geomorphic types on the Loess Plateau. Journal of Natural Resources,2014,29(12):2103—2113. [張志霞,許明祥,劉京,等. 黃土高原不同地貌區(qū)土壤有機(jī)碳空間變異與合理取樣數(shù)研究. 自然資源學(xué)報(bào),2014,29(12):2103—2113.]

        [51] Zhao Y T,Chang Q R,Li Z P,et al. Study on spatial distribution of total nitrogen in arable soil layer and optimization of number of soil samples for the study based on cokriging. Acta Pedologica Sinica,2014,51(2):415—422. [趙業(yè)婷,常慶瑞,李志鵬,等. 基于cokriging的耕層土壤全氮空間特征及采樣數(shù)量?jī)?yōu)化研究. 土壤學(xué)報(bào),2014,51(2):415—422.]

        [52]Chen T E,Chen L P,Wang Y J,et al. Optimal arrangement of soil nutrient sampling based on geo-statistics. Transactions of the Chinese Society of Agricultural Engineering,2009,25(S2):49—55. [陳天恩,陳立平,王彥集,等. 基于地統(tǒng)計(jì)的土壤養(yǎng)分采樣布局優(yōu)化. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(S2):49—55.]

        [53] Li Y,Shi Z,Wu C F,et al. Optimised spatial sampling scheme for soil electriclal conductivity based on Variance Quad-Tree(VQT)method. Agricultural Sciences in China,2007,6(12):1463—1471.

        [54] Zhu A X,Liu J,Du F,et al. Predictive soil mapping with limited sample data. European Journal of Soil Science,2015,66(3):535—547.

        [55] Liu J,Zhu A X,Zhang S J,et al. Large-scaled soil attribute mapping method based on individual representativeness of sample sites. Acta Pedologica Sinica,2013,50(1):12—20. [劉京,朱阿興,張淑杰,等. 基于樣點(diǎn)個(gè)體代表性的大尺度土壤屬性制圖方法.土壤學(xué)報(bào),2013,50(1):12—20.]

        [56] Zhang S J,Zhu A X,Liu J,et al. Soil sampling scheme based on simulated annealing method. Chinese Journal of Soil Science,2013,44(4):820—825. [張淑杰,朱阿興,劉京,等. 基于模擬退火算法的土壤樣點(diǎn)設(shè)計(jì)方法研究.土壤通報(bào),2013,44(4):820—825.]

        [57] Zhang L,Zhu A X,Yang L,et al. A sample differentiation and fusion strategy for designing of soil sampling. Acta Pedologica Sinica,2017,54(5):1079—1090. [張磊,朱阿興,楊琳,等. 基于分融策略的土壤采樣設(shè)計(jì)方法,土壤學(xué)報(bào),2017,54(5):1079—1090.]

        [58] Zhu Z Y,Stein M L. Spatial sampling design for prediction with estimated parameters. Journal of Agricultural Biological & Environmental Statistics,2006,11(1):24—44.

        [59] Li Y,Zhu A X,Shi Z,et al. Supplemental sampling for digital soil mapping based on prediction uncertainty from both the feature domain and the spatial domain. Geoderma,2016,284:73—84.

        [60] Bishop T F A,Horta A,Karunaratne S B. Validation of digital soil maps at different spatial supports. Geoderma,2015,241/242:238—249.

        [61] Brus D J,Kempen B,Heuvelink G B M. Sampling for validation of digital soil maps. European Journal of Soil Science,2011,62(3):394—407.

        [62] Webster R,Oliver M A. Geostatistics for environmental scientists. Journal of the Royal Statistical Society,2009,43(4):499.

        [63] Ramirez-Lopez L,Schmidt K,Behrens T,et al. Sampling optimal calibration sets in soil infrared spectroscopy. Geoderma,2014,226/227(4):140—150.

        [64] Schmidt K,Behrens T,Daumann J,et al. A comparison of calibration sampling schemes at the field scale. Geoderma,2014,232/234(12):243—256.

        [65] Knotters M,Brus D J. Purposive versus random sampling for map validation:A case study on ecotope maps of floodplains in the Netherlands. Ecohydrology,2013,6(3):425—434.

        [66] de Gruijter J J,Bierkens M F P,Brus D J,et al. Sampling for natural resource monitoring. Berlin,Heidelberg:Springer Berlin Heidelberg,2006.

        [67] Godinho Silva S H,Owens P R,Duarte de Menezes M,et al. A technique for low cost soil mapping and validation using expert knowledge on a watershed in Minas Gerais,Brazil. Soil Science Society of America Journal,2014,78(4):1310—1319.

        [68] Yang L,Brus D J,Zhu A X,et al. Accounting for access costs in validation of soil maps:A comparison of design-based sampling strategies. Geoderma,2018,315:160—169.

        [69] Morvan X,Saby N P A,Arrouays D,et al. Soil monitoring in Europe:A review of existing systems and requirements for harmonisation. Science of the Total Environment,2008,391(1):1—12.

        [70] Zhu J X,Xu B G,Zhang L Y. Optimization layout method of monitoring sample points of cultivated land quality based on semi-variance analysis and grade combination. Transactions of the Chinese Society of Agricultural Engineering,2015,31(19):254—261. [祝錦霞,徐保根,章琳云. 基于半方差函數(shù)與等別的耕地質(zhì)量監(jiān)測(cè)樣點(diǎn)優(yōu)化布設(shè)方法. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(19):254—261.]

        [71] Nerger R,Beylich A,F(xiàn)ohrer N. Long-term monitoring of soil quality changes in Northern Germany. Geoderma Regional,2016,7(2):239—249.

        [72] Yu S Q,Zhang B B,Xiang H,et al. Layout method for monitoring sample point of arable land quality level based on combination of factors. Transactions of the Chinese Society of Agricultural Engineering,2014,30(24):288—297. [余述瓊,張蚌蚌,相慧,等. 基于因素組合的耕地質(zhì)量等級(jí)監(jiān)測(cè)樣點(diǎn)布控方法. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(24):288—297.]

        [73] Brus D J. Statistical sampling approaches for soil monitoring. European Journal of Soil Science,2014,65(6):779—791.

        [74] Brus D,Gilkes R J,Prakongkep N. Design-based and model-based sampling strategies for soil monitoring. World Congress of Soil Science:Soil Solutions for A Changing World,2010.

        [75] Brus D J,de Gruijter J J. A hybrid design-based and model-based sampling approach to estimate the temporal trend of spatial means. Geoderma,2012,173/174(2):241—248.

        [76] Chang X F,Bao X Y,Wang S P,et al. Exploring effective sampling design for monitoring soil organic carbon in degraded Tibetan grasslands. Journal of Environmental Management,2016,173:121—126.

        [77] Han Z W,Huang W,Luo Y,et al. Application of simulated annealing method and neural network on optimizing soil sampling schemes based on road distribution. Chinese Journal of Applied Ecology,2015,26(3):891—900. [韓宗偉,黃魏,羅云,等. 基于路網(wǎng)的土壤采樣布局優(yōu)化——模擬退火神經(jīng)網(wǎng)絡(luò)算法. 應(yīng)用生態(tài)學(xué)報(bào),2015,26(3):891—900.]

        [78] Kidd D,Malone B,McBratney A,et al. Operational sampling challenges to digital soil mapping in Tasmania,Australia. Geoderma Regional,2015,4:1—10.

        [79] Sheikholeslami R,Razavi S. Progressive Latin Hypercube sampling:An efficient approach for robust sampling-based analysis of environmental models. Environmental Modelling & Software,2017,93:109—126.

        [80]Clifford D,Payne J E,Pringle M J,et al. Pragmatic soil survey design using flexible Latin hypercube sampling. Computers & Geosciences,2014,67(3):62—68.

        [81] Minasny B,McBratney A B. Digital soil mapping:A brief history and some lessons. Geoderma,2016,264:301—311.

        [82] Zhao Y F,Li H J,Chen J,et al. Comparison between soil mapping approaches based on their ability explaining soil variability-A case of mapping soil organic carbon density of soil(0~1 m)in Nanyang district. Acta Pedologica Sinica,2018,55(1):43—53. [趙彥鋒,李豪杰,陳杰,等. 基于土壤變異解釋力的幾種土壤制圖方法的對(duì)比研究——以南陽(yáng)市 1m 土體土壤有機(jī)碳密度制圖為例. 土壤學(xué)報(bào),2018,55(1):43—53.]

        [83] Keskin H,Grunwald S. Regression kriging as a workhorse in the digital soil mapper's toolbox. Geoderma,2018,326:22—41.

        [84] Li X,Pan Y C,Zhao C J,et al. Estimation of soil organic matter based or four methods and effect of sampling number on estimation accuracy. Scientia Geographica Sinica,2007,27(5):689—694. [李翔,潘瑜春,趙春江,等. 利用不同方法估測(cè)土壤有機(jī)質(zhì)及其對(duì)采樣數(shù)的敏感性分析. 地理科學(xué),2007,27(5):689—694.]

        [85] Heung B,Ho H C,Zhang J,et al. An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping. Geoderma,2016,265:62—77.

        [86]Guo Z X,Yuan Y Z,Guo Y,et al. Optimal estimation model of soil organic carbon based on the terrain factor. Acta Pedologica Sinica,2017,54(2):331—343. [郭治興,袁宇志,郭穎,等. 基于地形因子的土壤有機(jī)碳最優(yōu)估算模型. 土壤學(xué)報(bào),2017,54(2):331—343.]

        [87] Odeha I O A,McBratney A B,Chittleborough D J. Spatial prediction of soil properties from landform attributes derived from a digital elevation model. Geoderma,1994,63(3):197—214.

        [88]Zhu A X,Hudson B,Burt J,et al. Soil mapping using GIS,expert knowledge,and fuzzy logic. Soil Science Society of America Journal,2001,65(5):1463—1472.

        [89] Yang L,Zhu A X,Zhao Y G,et al. Regional soil mapping using multi-grade representative sampling and a fuzzy membership-based mapping approach. Pedosphere,2017,27(2):344—357.

        [90] Brus D J. Sampling for digital soil mapping:A tutorial supported by R scripts. Geoderma,2019,338:464—480.

        [91] Va?át R,Heuvelink G B M,Bor?vka L. Sampling design optimization for multivariate soil mapping. Geoderma,2010,155(3/4):147—153.

        Review and Outlook of Designing of Soil Sampling for Digital Soil Mapping

        HUANG Sihua1, 2, PU Lijie1, 2?, XIE Xuefeng3, ZHU Ming1, 2, KAN Boying1, 2, TAN Yanfei1, 2

        (1. School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; 2. Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing 210023, China; 3. College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China)

        The appearance of soil environmental problems, such as pollution and degradation, has stimulated researches on hydro-ecological simulation, soil resource management, soil carbon and nitrogen monitoring, etc., thus putting forward higher requirements on basic input data, like types and attributes of soils, in accuracy, scale and timing sequence and causing rapid development of the research on soil sampling oriented towards digital soil mapping. In this study, the bibliometric method was applied to quantitatively analyze variation of the researches at home and abroad in distribution of disciplines hotpot during the recent four decades since 1980. Based on collation and review of the literature, summarization was performed of methods widely used nowadays in soil sampling and speculative mapping, and discussions conducted about future trends of the research on sampling designing for digital soil mapping, in an attempt to provide a reference for development of digital soil survey. Results show: (1) Over the last four decades, hotspots of the research on soil sampling have been focused on theories, methods, techniques, means and strategies of soil sampling, soil management and utilization, digital soil mapping, etc., involving disciplines that have developed from a single field of soil science into a transdisciplinary research covering agronomy, engineering, soil science, environmental science and geography, etc., with theories, techniques and means turning from mere application of probability theory into combination of geostationary models, deep learning and knowledge mining, and focuses laid on application in ecological monitoring and protection, precision agriculture and polluted remediation. (2) Soil sampling designing is a process of selecting an appropriate sampling method to meet the specific goal of a soil survey based on certain prior knowledge. According to the purposes of a soil survey and soil sampling history of the surveyed area, soil sampling designs can be divided into four categories, i.e. comprehensive sampling, supplemental sampling, verification sampling and monitoring sampling. In regions lacking historical soil sampling data, comprehensive sampling can be implemented by appointing sampling sites randomly based on the designed sampling method to achieve uniform coverage of their geospatial space, or by laying out sampling sites with reference to environmental factors to realize coverage and optimization of feature spaces, while in regions rich in data, comprehensive sampling may better adopt model-based sampling methods. For supplemental sampling, sampling points should be laid out in locations low in similarity of environmental factors, or high in uncertainty of predictive mapping or both. For validation sampling, independent sampling points should be arranged in line with the sampling design for better validation effect. And monitoring sampling could be designed into spatial sampling and temporal sampling or both with sampling sites laid out based on the design and the model in combination. And (3) soil mapping is a process of realizing point-plane expansion with the aid of mathematical methods or spatial models based on soil-environment relationship and spatial autocorrelation of soil attributes. In soil mapping, cartographers should pay attention to adoption of environmental factors and efficiency of the method utilizing the information of variables of the sampling sites. Hereby, cartographers should choose a corresponding inference model to implement spatial expression of soil information. So studies in future should be oriented towards application and theory, like designing of multi-scale soil sampling, new hypothesis of soil-environment relationship hypothesis and quantification of realistic problems in soil sampling designing.

        Digital soil mapping; Soil survey; Sampling strategy; Soil-environment relationship

        S159.3

        A

        10.11766/trxb201903180031

        黃思華,濮勵(lì)杰,解雪峰,朱明,闞博穎,譚言飛. 面向數(shù)字土壤制圖的土壤采樣設(shè)計(jì)研究進(jìn)展與展望[J]. 土壤學(xué)報(bào),2020,57(2):259–272.

        HUANG Sihua,PU Lijie,XIE Xuefeng,ZHU Ming,KAN Boying,TAN Yanfei. Review and Outlook of Designing of Soil Sampling for Digital Soil Mapping[J]. Acta Pedologica Sinica,2020,57(2):259–272.

        * 國(guó)家自然科學(xué)基金項(xiàng)目(41871083,41230751)、江蘇省國(guó)土資源科技項(xiàng)目(2018018)資助 Supported by the National Natural Science Foundation of China(Nos. 41871083,41230751),Land and Resources Technology Research Program of Jiangsu Province(No. 2018018)

        ,E-mail:ljpu@nju.edu.cn

        黃思華(1995—),女,廣西桂林人,博士研究生,主要研究領(lǐng)域?yàn)橥恋乩门c環(huán)境效應(yīng)。E-mail:huangsihua@smail.nju.edu.cn

        2019–03–18;

        2019–05–31;

        優(yōu)先數(shù)字出版日期(www.cnki.net):2019–07–18

        (責(zé)任編輯:檀滿枝)

        猜你喜歡
        樣點(diǎn)制圖土壤
        小麥條銹病田間為害損失的初步分析
        湖北植保(2022年4期)2022-08-23 10:51:52
        土壤
        基于空間模擬退火算法的最優(yōu)土壤采樣尺度選擇研究①
        土壤(2021年1期)2021-03-23 07:29:06
        無聲手槍如何消音?
        靈感的土壤
        識(shí)破那些優(yōu)美“擺拍”——鏟除“四風(fēng)”的土壤
        基于分融策略的土壤采樣設(shè)計(jì)方法*
        二向反射模型在土地覆被制圖中的應(yīng)用
        靈感的土壤
        工程制圖課程教學(xué)改革探析
        肥老熟妇伦子伦456视频| 如何看色黄视频中文字幕| 国产一区二区三区av观看| 一区二区三区美女免费视频| 亚洲av永久精品爱情岛论坛| 国产精品搭讪系列在线观看| 蜜臀av国内精品久久久人妻| 亚洲精品一区二区三区52p| 国产成人精品a视频一区| 亚洲精品国产美女久久久| 午夜视频免费观看一区二区| 精品国产黄一区二区三区| 少妇人妻精品一区二区三区| 无码中文字幕色专区| av网站影片在线观看| 91精品久久久老熟女91精品| 国产精品久久777777| 久久亚洲精品成人| 日韩精品久久不卡中文字幕| 亚洲精一区二区三av| 亚洲av日韩综合一区在线观看| 国产乱色国产精品免费视频| 女同重口味一区二区在线| 国产三级a三级三级| 亚洲国产综合精品 在线 一区 | 欧妇女乱妇女乱视频| 中文字幕一区二区三区人妻精品| 手机在线播放成人av| 国产欧美亚洲精品第一页| 日韩精品一区二区三区视频| 亚洲高清在线观看免费视频| 亚洲视频免费一区二区| 久久精品麻豆日日躁夜夜躁| 女女同性黄网在线观看| 亚洲hd高清在线一区二区| 日韩人妻ol丝袜av一二区| 日本高清一区二区三区水蜜桃 | 亚洲精品女优中文字幕| 无码av天天av天天爽| 亚洲xxxx做受欧美| 一区二区三区蜜桃在线视频|