周 陽(yáng),黃 旭,趙海燕,鄭青松,吳田鄉(xiāng),梁永紅,劉清秀,羅朝暉?,管永祥?
麥秸稈和沼液配施對(duì)水稻苗期生長(zhǎng)和土壤微生物的調(diào)控*
周 陽(yáng)1,黃 旭1,趙海燕1,鄭青松1,吳田鄉(xiāng)2,3,梁永紅3,劉清秀1,羅朝暉1?,管永祥2,3?
(1. 南京農(nóng)業(yè)大學(xué)資源與環(huán)境科學(xué)學(xué)院,南京 210095;2. 江蘇省農(nóng)業(yè)技術(shù)推廣總站,南京 210036;3. 江蘇省耕地質(zhì)量與農(nóng)業(yè)環(huán)境保護(hù)站,南京 210036)
研究了等量氮素肥料處理下小麥秸稈全量還田結(jié)合化肥(S-CF)、小麥秸稈全量還田結(jié)合沼液(S-BS)和全量化肥(CF)處理對(duì)水稻幼苗生長(zhǎng)、氮磷積累及土壤微生物群落的影響。結(jié)果表明,不同施肥處理的水稻幼苗生長(zhǎng)明顯被促進(jìn),其中CF處理的促進(jìn)效果最好,其次是S-BS處理。S-BS處理的水稻葉片可溶性糖含量明顯高于其他施肥處理,其葉片含氮量也明顯高于CF處理。CF處理的土壤細(xì)菌總量明顯高于S-BS處理,而S-BS處理的土壤細(xì)菌總量均顯著高于對(duì)照(CK,不施肥)和S-CF處理;其中CF處理變形菌門(mén)細(xì)菌相對(duì)豐度顯著高于其他處理。而CK和S-CF處理的真菌總量明顯高于S-BS和CF處理,S-BS處理的真菌總量最低,其中,CK土壤優(yōu)勢(shì)真菌子囊菌門(mén)、擔(dān)子菌門(mén)的相對(duì)豐度顯著高于其他處理,S-CF處理土壤的壺菌門(mén)真菌相對(duì)豐度也顯著高于其他處理。S-CF和S-BS處理的細(xì)菌Chao1豐富度指數(shù)和香農(nóng)(Shannon)多樣性指數(shù)要明顯高于CF處理和CK,而S-CF處理的土壤真菌的Chao1指數(shù)和香農(nóng)指數(shù)要明顯高于CK,CF處理的土壤真菌Chao1指數(shù)和香農(nóng)指數(shù)最低。秸稈、沼液短期替代化肥的處理下水稻植株生長(zhǎng)低于全化肥處理的,但秸稈、沼液、化肥結(jié)合施用對(duì)水稻幼苗的促生作用依然很明顯,尤其是秸稈還田結(jié)合沼液灌溉的全量替代化肥處理。全量替代化肥處理下,即秸稈和沼液處理的土壤質(zhì)量和細(xì)菌豐富度及多樣性即使在短期施用條件下也被明顯促進(jìn)。
秸稈;沼液;化肥;促生作用;土壤質(zhì)量
在過(guò)去的40年,化肥的施用成倍地增加了世界糧食產(chǎn)量,然而,過(guò)度的化肥施用降低了氮(N)素利用效率,破壞土壤結(jié)構(gòu),導(dǎo)致環(huán)境污染。2001—2005年我國(guó)主要谷類作物生產(chǎn)中肥料N素利用效率僅有26%~28%[1],而美國(guó)和歐洲N素利用效率分別為52%和40%[2],這一差距還在不斷地拉大[3]。秸稈可以作為土壤微生物和作物的最初氮源,中國(guó)的農(nóng)業(yè)生產(chǎn)每年形成的作物殘余物在世界各國(guó)中是最多的,其產(chǎn)量約為每年8×1010kg,其中,32.3%被用來(lái)開(kāi)發(fā)能源,16.8%被用來(lái)作為食物和飼料,16.8%被拋棄或焚燒,僅有14.1%用來(lái)還田[4]。諸多研究[4-6]表明,秸稈還田可以改善土壤結(jié)構(gòu)、保持土壤水分、促進(jìn)N素礦化、提高N素利用效率和減少N素淋溶等。然而,過(guò)量的秸稈還田或秸稈深埋也會(huì)導(dǎo)致土壤水分和N素的丟失;在淹水條件下進(jìn)行小麥秸稈還田,更有利于水稻土中大量有機(jī)酸、H2S等還原性有毒物質(zhì)不斷累積,造成土壤氧化還原電位降低,pH降低,這些會(huì)導(dǎo)致作物根系發(fā)育受阻,秸稈還田使秧苗發(fā)根力減弱,根系發(fā)黑、葉片發(fā)黃,抑制分蘗的發(fā)生,不利于水稻生長(zhǎng)[7]。
沼液,作為生產(chǎn)沼氣的副產(chǎn)物,是有機(jī)物質(zhì)經(jīng)發(fā)酵后形成的褐色明亮的液體,富含氮磷鉀(NPK)、腐植酸、氨基酸、維生素、蛋白質(zhì)等[8-9],可作為優(yōu)良的有機(jī)肥,而且有一般有機(jī)肥所沒(méi)有的快速有效的肥料效應(yīng)特點(diǎn)[10]。沼液中含有的腐植酸和纖維素等物質(zhì),對(duì)增加有機(jī)質(zhì)、維護(hù)土壤結(jié)構(gòu)有直接的正面功效,沼液替代肥料可明顯降低環(huán)境污染、降低肥料成本[11]。在作物根際促生菌的刺激下,沼液中不同的細(xì)菌活動(dòng)可有效調(diào)節(jié)作物的代謝,促進(jìn)植物生長(zhǎng),有效抑制病蟲(chóng)害的發(fā)生[12]。但同時(shí),沼液在農(nóng)田的施用,也可能會(huì)引發(fā)新的環(huán)境風(fēng)險(xiǎn)。過(guò)量施用將會(huì)引起N、P流失等二次污染環(huán)境。此外,沼液用量或用法不當(dāng)還易造成沼液利用率下降、作物生長(zhǎng)受抑、作物產(chǎn)量和品質(zhì)下降等不良影響[13]。同時(shí),沼液中的有害物質(zhì),如重金屬、抗生素及有害病原菌等,也可能對(duì)作物、土壤環(huán)境、產(chǎn)品品質(zhì)等造成不良影響。因此,研究規(guī)模養(yǎng)殖場(chǎng)必須匹配的周邊農(nóng)田面積及農(nóng)田對(duì)沼液沼渣的適宜承載量至關(guān)重要[14]。如何在維持作物產(chǎn)量和維護(hù)農(nóng)田環(huán)境的前提下獲取沼液施用的適宜用量,也是目前研究的熱點(diǎn)之一。
試圖在維持和促進(jìn)農(nóng)作物優(yōu)質(zhì)高產(chǎn)并確保土壤健康的前提下,探索秸稈還田代替部分化肥,實(shí)現(xiàn)作物增產(chǎn)、土壤質(zhì)量提升、環(huán)境污染降低,盡可能地充分利用農(nóng)田生態(tài)系統(tǒng)和作物生產(chǎn)對(duì)沼液的消解和凈化能力,建設(shè)和開(kāi)發(fā)糧食生產(chǎn)和沼液處理相結(jié)合的人工生態(tài)系統(tǒng)[15]。水稻作為我國(guó)最重要的糧食作物之一,秸稈全量還田、大量沼液投入稻田,究竟會(huì)不會(huì)給水稻安全生產(chǎn)帶來(lái)風(fēng)險(xiǎn),并給水環(huán)境、土壤環(huán)境質(zhì)量等帶來(lái)怎樣的影響,是必需關(guān)注的問(wèn)題。秸稈的全量還田等綜合利用,稻田生態(tài)系統(tǒng)消解沼液的量需因地制宜、合理調(diào)控,近幾年來(lái),上述工作不斷地開(kāi)展形成了農(nóng)牧結(jié)合生態(tài)循環(huán)農(nóng)業(yè)的研究熱點(diǎn)。土壤微生物物種多樣性與土壤肥力和生產(chǎn)力密切相關(guān),其種群在很大程度上決定著土壤中有機(jī)質(zhì)的分解、營(yíng)養(yǎng)物質(zhì)的循環(huán)和能量流動(dòng),有關(guān)土壤微生物功能多樣性的信息對(duì)于闡明微生物群落在不同環(huán)境中的作用至關(guān)重要[16]。因此,本研究在溫室中開(kāi)展模擬試驗(yàn),以麥秸桿還田條件下的水稻幼苗生長(zhǎng)特征觀察為切入點(diǎn),設(shè)置等氮的不同處理,即設(shè)置“秸稈還田和化肥配施”、“秸稈還田+沼液配施” 和“全化肥”處理,以“不施肥”為對(duì)照,探討不同處理對(duì)水稻幼苗生長(zhǎng)、土壤地力和微生態(tài)的影響,分析秸稈還田結(jié)合沼液和化肥等施肥條件下水稻幼苗生長(zhǎng)和土壤健康的特征變化,從而為秸稈還田、沼液施用、化肥減量等農(nóng)藝措施的技術(shù)集成規(guī)范提供理論基礎(chǔ),為農(nóng)牧結(jié)合生態(tài)循環(huán)農(nóng)業(yè)探索科學(xué)的途徑。
以水稻“鹽稻12號(hào)”(L.)為試驗(yàn)材料。從南京農(nóng)業(yè)大學(xué)校園內(nèi)采集土壤,將其碾碎至土塊顆粒不超過(guò)1 cm3備用,土壤pH為7.33,其他基本理化性狀如表1所示。
表1 供試土壤基本理化性狀
① Water soluble salt,②Total nitrogen,③Total phosphorus,④Total potassium,⑤Organic matter,⑥Available phosphorus,⑦Alkaline nitrogen,⑧Available potassium,⑨Yellow-brown soil
2016年8月中下旬在南京農(nóng)業(yè)大學(xué)牌樓溫室中開(kāi)展模擬試驗(yàn)。共設(shè)置4個(gè)處理,分別為:(1)對(duì)照(CK):不秸稈還田、不施沼液、不施化肥;(2)秸稈全量還田+化肥處理(25%秸稈N,75%化肥N,記為S-CF);(3)秸稈全量還田+沼液處理(25%秸稈N,75%沼液N,記為S-BS);(4)化肥處理(100%化肥N,記為CF)。本試驗(yàn)用的化肥為NPK酸性復(fù)合肥(15-15-15),各處理的施氮量(130 kg·hm–2,以N計(jì),下同)一致。每處理重復(fù)5次。用長(zhǎng)60 cm、寬44.5 cm、深40 cm的周轉(zhuǎn)箱裝土。清水泡田后7 d,含沼液處理的周轉(zhuǎn)箱澆灌沼液,其他澆清水,次日插秧。供試沼液取自江蘇省常州市武進(jìn)區(qū)農(nóng)業(yè)廢棄物綜合治理中心禮嘉站,成分如表2。全量還田的麥秸(5 000 kg·hm–2,麥秸全氮含量為6.5 g·kg–1、全磷1.8 g·kg–1、全鉀12.6 g·kg–1)經(jīng)切碎后,與土壤拌勻。試驗(yàn)按照處理12、24、36 d對(duì)植株和土壤進(jìn)行取樣。
表2 供試沼液基本理化性狀
① Chemical oxygen demand(COD)
于處理12、24、36 d時(shí)用刻度鋼尺(最小單位1 mm)測(cè)量水稻苗株高。然后將水稻苗從周轉(zhuǎn)箱中取出,先用自來(lái)水沖洗,再用蒸餾水將鮮樣反復(fù)沖洗,用吸水紙吸干表面水分,分為地上部和根部?jī)刹糠?,分別裝在信封袋里于110℃烘箱殺青10 min后再75℃烘干至恒重,稱得干物質(zhì)量(DW)。按照下列公式計(jì)算根冠比:根冠比= 根干物質(zhì)量/地上干物質(zhì)量。
利用DNA Kit試劑盒(Omega Bio-tek,Norcross,GA,美國(guó))提取得到樣本的總DNA,用1%瓊脂糖凝膠電泳檢測(cè)和分光光度法(260 nm/ 280 nm光密度比)進(jìn)行質(zhì)量檢測(cè)[17]。提取得到的DNA樣品檢測(cè)后,于–20℃保存以備后續(xù)試驗(yàn)使用。
微生物多樣性檢測(cè)選取細(xì)菌16S rDNA V3-V4區(qū)與真菌rDNA ITS1區(qū),DNA樣本送至北京奧維森基因科技有限公司,細(xì)菌16S rDNA V3-V4擴(kuò)增引物為338F(5′-ACTCCTACGGGAGGC AGCAG-3′)和806R(5′-GGACTACNNGGG TATCTAAT-3′)[18];真菌ITS rDNA ITS1擴(kuò)增引物為ITS1-(5′-CTTGGT CATTTAGAGGAAGTAA-3′)和ITS2(5′-TGCGTTC TTCATCGATGC-3′)[19]。PCR反應(yīng)體系(總體系為25 μL):12.5 μL KAPA 2G Robust Hot Start Ready Mix、1 μL 正向引物(5 μM)、1 μL 反向引物(5 μM)、5 μL DNA(加入的DNA總量為30 ng),最后加5.5 μL dd H2O補(bǔ)至25 μL。反應(yīng)參數(shù):95℃預(yù)變性5 min;95℃變性45 s,55℃退火50 s,72℃延伸45 s,28個(gè)循環(huán)(細(xì)菌)或34個(gè)循環(huán)(真菌)[18-19];72℃延伸10 min。利用 Illumina Miseq PE300高通量測(cè)序平臺(tái)測(cè)序,測(cè)序原始序列進(jìn)行后續(xù)多樣性分析并上傳至美國(guó)國(guó)立生物技術(shù)信息中心(National Center for Biotechnology Information,NCBI)的SRA(Sequence Read Archive,高通量測(cè)序數(shù)據(jù)的主要?dú)w檔)數(shù)據(jù)庫(kù)。
利用Microsoft Excel2013、SPSS17.0軟件進(jìn)行數(shù)據(jù)的處理、統(tǒng)計(jì)分析,數(shù)據(jù)均為“平均數(shù)±標(biāo)準(zhǔn)差”格式,采用鄧肯(Duncan)新復(fù)極差測(cè)驗(yàn)法(<0.05)進(jìn)行顯著性分析。
微生物群落分析中,通過(guò)Illumina MiSeq平臺(tái)進(jìn)行Paired-end測(cè)序,下機(jī)數(shù)據(jù)經(jīng)過(guò)QIIME(v1.8.0)軟件過(guò)濾、拼接、去除嵌合體,去除堿基質(zhì)量分值低于20、堿基模糊、引物錯(cuò)配或測(cè)序長(zhǎng)度小于150 bp的序列。根據(jù)barcodes歸類各處理組序列信息聚類為用于物種分類的操作分類單元(Operational taxonomic units,OUT),OTU相似性設(shè)置為97%。對(duì)比silva數(shù)據(jù)庫(kù)(細(xì)菌)或nite數(shù)據(jù)庫(kù)(真菌),得到每個(gè)OTU對(duì)應(yīng)的物種分類信息[20-21]。再利用Mothur軟件(version 1.31.2)進(jìn)行阿爾法(Alpha)多樣性分析(香農(nóng)和Chao1指數(shù))。利用統(tǒng)計(jì)學(xué)的方法,觀察樣本在不同分類水平下的群落結(jié)構(gòu)并利用R語(yǔ)言包可視化展現(xiàn)[22]。
與對(duì)照(CK)相比,等氮的三種施肥處理均明顯促進(jìn)生長(zhǎng)(圖1a)),葉片葉綠素含量(圖1b))、株高(圖1c))和干物質(zhì)量(圖1d))顯著上升。其中全化肥(CF)處理的促進(jìn)效果最好,其次是“秸稈全量還田+沼液”(S-BS)處理,隨著處理時(shí)間的延長(zhǎng),施肥處理促進(jìn)生長(zhǎng)愈顯著。定植處理36 d,“秸稈全量還田+化肥”(S-CF)、S-BS、CF處理的葉綠素含量分別較對(duì)照增加29%、33%、42%(圖1b)),株高分別較CK增加68%、86%和88%(圖1c)),其干物質(zhì)量分別較CK增加392%、709%和842%(圖1d))。
注:CK、S-CF、S-BS、CF分別表示不施肥、小麥秸稈全量還田結(jié)合化肥(S-CF)、小麥秸稈全量還田結(jié)合沼液(S-BS)和全量化肥(CF);柱子上不同的小寫(xiě)字母表示差異顯著(P<0.05)。下同。Note:CK,S-CF,S-BS,CF represent “no fertilizer”,“wheat straw returning to the field combined with chemical fertilizer”,“wheat straw returning to the field combined with biogas slurry” and “total fertilizer”;Values by the different small letter on the column are significantly different at the level of 5%. The same below
圖2a)所示,對(duì)照植株根冠比隨著處理時(shí)間的延長(zhǎng),根冠比上升;而CF處理下,植株根冠比下降;S-CF和S-BS處理下,植株根冠比均為先上升后下降,分別在12 d和24 d達(dá)到最大值;處理36 d,CK和S-BS處理的根冠比顯著高于S-CF和CF處理(圖2a))。圖2b)所示,所有處理下,水稻植株葉片可溶性糖(SS)含量均呈現(xiàn)先升后降,均在處理24 d的葉片SS含量達(dá)到最大值,且CK的SS含量始終高于其他處理的,其次是S-BS處理,而CF處理的植株葉片SS含量始終最低,處理36 d,S-CF和CF處理的葉片SS含量差異不顯著。圖3a)和圖3b)所示,S-CF和S-BS處理下葉片和根系的N含量均要高于CK和CF處理,尤其是葉片。而植株葉片和根系的P含量也表現(xiàn)為S-CF和S-BS處理下葉片和根系的P含量均要高于對(duì)照和CF處理,CK葉片和根系的P含量要顯著低于3種施肥處理的,而處理36 d,S-CF處理的葉片和根系P含量顯著高于其他處理(圖3c)和圖3d))。
與各自CK相比,S-CF處理的土壤細(xì)菌和真菌數(shù)量無(wú)顯著變化(0.05)(圖4);但S-BS、CF施肥處理均明顯提高土壤的細(xì)菌數(shù)量,分別較CK增加27%和43%(圖4a));S-BS、CF施肥處理均顯著降低土壤真菌數(shù)量,分別較CK降低91%和39%(圖4b))。
圖2 不同施肥方式對(duì)水稻幼苗根冠比(a))和葉片可溶性糖含量(b))的影響
圖3 不同施肥方式對(duì)水稻幼苗葉片氮(a))、磷(c))和根系氮(b))、磷(d))含量的影響
從圖5a)看出,4個(gè)處理高通量測(cè)序后共獲得22個(gè)細(xì)菌門(mén)和未確定細(xì)菌類群。主要已確定菌門(mén)有11個(gè),由下而上,分別是變形菌門(mén)(Proteobacteria)、擬桿菌門(mén)(Bacteroidetes)、放線菌門(mén)(Actinobacteria)、綠彎菌門(mén)(Chloroflexi)、藍(lán)藻門(mén)(Cyanobacteria)、酸桿菌門(mén)(Acidobacteria)、疣微菌門(mén)(Verrucomicrobia)、厚壁菌門(mén)(Firmicutes)、螺旋體菌門(mén)(Saccharibacteria)、芽單胞菌門(mén)(Gemmatimonadetes)和異常球菌-棲熱菌門(mén)(Deinococcus-Thermus)。經(jīng)分析,在這些處理中變形菌門(mén)占有絕對(duì)優(yōu)勢(shì),其中CF處理的土壤變形菌門(mén)豐度占全部的76.87%,而CK(不施肥)的變形菌門(mén)豐度僅占60.88%。CF處理的擬桿菌門(mén)的相對(duì)豐度為6.88%,而CK、S-CF、S-BS處理的分別為10.22%、10.02%和9.23%。CK、S-CF、S-BS和CF處理的放線菌門(mén)相對(duì)豐度分別為5.47%、5.20%、5.73%和4.56%,其中CF處理土壤放線菌門(mén)相對(duì)豐度較低。CK、S-CF、S-BS和CF處理的綠彎菌門(mén)相對(duì)豐度分別為4.50%、5.89%、4.06%和3.12%,即S-CF處理的相對(duì)豐度較高,CF處理的相對(duì)豐度較低。而藍(lán)藻門(mén)細(xì)菌在CK條件下相對(duì)豐度最高,達(dá)到7.56%,其次是S-BS處理(5.23%),化肥處理下為1.82%,而S-CF處理下其相對(duì)豐度僅為0.61%。最高酸桿菌門(mén)的相對(duì)豐度在S-CF處理下,為5.36%,最低在CK條件下,為1.83%,而S-BS和CF處理下的差異很小。疣微菌門(mén)的相對(duì)豐度由高到低依次是CK(3.92%)、S-BF(2.22%)、S-CF(1.67%)和CF(1.29%)。厚壁菌門(mén)的相對(duì)豐度主要在S-BS較高。
圖4 不同施肥方式對(duì)水稻根圍土壤細(xì)菌(a))和真菌(b))數(shù)量的影響
從圖5b)看出,4個(gè)處理高通量測(cè)序后共獲得4個(gè)真菌門(mén)和未確定真菌類群。子囊菌門(mén)(Ascomycota)在4個(gè)處理中均是已知真菌中最豐富的門(mén),其中CK條件下的相對(duì)豐度最高,達(dá)到62.94%,其次是S-BS(57.49%),S-CF和CF處理的相近(42.59%~45.21%)。擔(dān)子菌門(mén)(Basidiomycota)的相對(duì)豐度僅次于子囊菌門(mén),且其相對(duì)豐度在對(duì)照條件下最高,達(dá)到16.99%,其次是CF處理(5.44%),S-CF和S-BS處理的相近(1.50%~1.71%)。接合菌門(mén)(Zygomycota)的相對(duì)豐度最高出現(xiàn)在CF處理下,達(dá)到4.59%,其次為S-CF(1.74%),CK條件下接合菌門(mén)的相對(duì)豐度極低。壺菌門(mén)(Chytridiomycota)是S-CF中較豐富的菌門(mén),相對(duì)豐度為5.46%,其次為S-BS處理(1.2%),CK和CF處理下其相對(duì)豐度值極低。
圖5 不同施肥土壤中細(xì)菌(a))和真菌(b))菌門(mén)組成和相對(duì)豐度的特征
微生物群落豐富度用Chao1指數(shù)表示,其值越高,表明群落物種豐富度越高;香農(nóng)指數(shù)反映樣品的多樣性程度,其值越高表明群落物種的多樣性越高。結(jié)果顯示,S-CF處理和S-BS處理細(xì)菌、真菌的Chao1指數(shù)與香農(nóng)指數(shù)均高于CK和CF處理(表3)。CF處理的細(xì)菌Chao1指數(shù)高于CK,而其真菌Chao1指數(shù)低于相應(yīng)的CK;CF處理的細(xì)菌和真菌的香農(nóng)指數(shù)均低于各自的CK(表3)。
表3 不同處理土壤細(xì)菌和真菌阿爾法多樣性
秸稈含有大量的C、N、P、K等營(yíng)養(yǎng)元素,因此秸稈還田是當(dāng)今世界上普遍重視的一項(xiàng)培肥地力的增產(chǎn)措施,在杜絕了秸稈焚燒所造成的大氣污染的同時(shí)還有增肥增產(chǎn)作用,是作物生長(zhǎng)重要的有機(jī)肥料來(lái)源之一[5-6,23]。秸稈還田腐解后,會(huì)使土壤養(yǎng)分含量增加,促進(jìn)作物的生長(zhǎng)發(fā)育。諸多研究[4,24]發(fā)現(xiàn),秸稈還田在水稻生育前期促進(jìn)生長(zhǎng)并不明顯,甚至抑制生長(zhǎng),因?yàn)辂湺捲谒锵託鉅顟B(tài)下腐解,易使土壤還原性增強(qiáng),產(chǎn)生Fe2+、H2S等有害物質(zhì),毒害水稻根系,使水稻前期形成僵苗,分蘗起步和發(fā)苗較對(duì)照慢;秸稈還田后,在水稻生育前期秸稈分解過(guò)程與作物發(fā)生“爭(zhēng)氮”現(xiàn)象。而在水稻生育后期,秸稈還田才逐漸顯現(xiàn)對(duì)水稻生長(zhǎng)有利的一面。本研究模擬試驗(yàn)表明,在等量氮的基肥施用下,氨態(tài)氮肥為主的全化肥處理促進(jìn)水稻幼苗生長(zhǎng)最為明顯,其葉片葉綠素含量、植株干重、根系發(fā)育明顯高于其他處理;其次是“秸稈還田+沼液肥”處理,而“秸稈還田+化肥”處理的促進(jìn)生長(zhǎng)作用要明顯低于其他施肥處理(圖1)。本研究中的結(jié)果、現(xiàn)象與前人的結(jié)論[7,25]相一致,沼液中富含銨態(tài)氮,對(duì)于喜銨植物水稻就表現(xiàn)出顯著的促進(jìn)作用。秸稈全量還田再添加沼液處理明顯提高根冠比,對(duì)根生長(zhǎng)的促進(jìn)作用要明顯優(yōu)于“秸稈還田+化肥”處理(圖2)。
本研究表明,與不施肥相比,單施化肥處理的土壤細(xì)菌數(shù)量增加最為顯著,其次為替代化肥的”秸稈+沼液”配施(圖4),說(shuō)明細(xì)菌對(duì)土壤養(yǎng)分有很強(qiáng)的依賴性,這與顏志雷等[26]研究結(jié)果相一致。與常規(guī)化肥施用相比,沼液部分替代施用可增加西蘭花種植土壤細(xì)菌和放線菌數(shù)量,提高土壤有機(jī)質(zhì)含量,真菌含量反而下降[27]。解開(kāi)治等[28]研究表明,與單施化肥相比,化肥配施豬糞、牛糞、雞糞,均顯著提高土壤中細(xì)菌數(shù)量,提高水稻籽粒產(chǎn)量。Yu等[29]發(fā)現(xiàn)小麥和玉米秸稈長(zhǎng)期還田,對(duì)細(xì)菌的數(shù)量和多樣性無(wú)顯著影響。土壤真菌多為病原菌,不利于植物生長(zhǎng),因此一般栽培土壤中真菌數(shù)量明顯低于細(xì)菌。本研究也顯示土壤中細(xì)菌數(shù)量為真菌的100倍~300倍?!敖斩?化肥”復(fù)合處理的土壤細(xì)菌含量低于其他施肥處理,但其土壤真菌含量卻顯著高于另外兩個(gè)施肥處理(圖4)。“秸稈+沼液”復(fù)合施肥處理的真菌含量很低,極顯著低于其他任何處理(圖4b))。這些現(xiàn)象需要進(jìn)一步結(jié)合大田試驗(yàn)去做全面闡述。
Wang等[30]研究表明,施生物肥明顯調(diào)控水稻根圍土壤的細(xì)菌群落,如增加有益菌變形菌門(mén)(Proteobacteria)、擬桿菌門(mén)(Bacteroidetes)、芽單胞菌門(mén)(Gemmatimonadetes)和厚壁菌門(mén)(Firmicutes)的豐富度,但是對(duì)土壤細(xì)菌的多樣性無(wú)顯著影響。無(wú)論是香農(nóng)指數(shù),還是Chao 1指數(shù),土壤中細(xì)菌的豐富度和多樣性明顯高于真菌。減量施用化肥或完全替代化肥(結(jié)合秸稈或沼液)的細(xì)菌多樣性要顯著高于不施肥和全量施用化肥處理。而真菌的香農(nóng)指數(shù)和Chao 1指數(shù),均為全量化肥處理的最低。結(jié)合秸稈的化肥減量施用處理的香農(nóng)指數(shù)和Chao 1指數(shù)均為最高,不施肥處理下土壤的Chao 1指數(shù)要顯著高于全量化肥處理(圖5)。
變形菌門(mén)(Proteobacteria)是細(xì)菌中最大的一門(mén),包括很多病原菌,如大腸桿菌、沙門(mén)氏菌、霍亂弧菌、幽門(mén)螺桿菌等著名的種類,也有自由生活的種類,包括很多可以進(jìn)行固氮或釋放植物激素的細(xì)菌,并能夠適應(yīng)各種復(fù)雜的環(huán)境[29]。本研究顯示變形菌門(mén)在不同處理下相對(duì)豐度達(dá)到61%~77%,尤其是CF處理下,其豐度最高(圖5),同時(shí)植株生長(zhǎng)被顯著促進(jìn)(圖1),與李芳[31]的研究結(jié)果相一致。說(shuō)明單施化肥可直接提供大量可利用氮素,而秸稈腐熟釋放養(yǎng)分過(guò)程較慢。與上海南匯東灘濕地測(cè)序結(jié)果[32]相同,本研究中水稻栽培土壤中擬桿菌門(mén)(Bacteroidetes)的相對(duì)豐度僅次于變形菌門(mén),施肥均降低其相對(duì)豐度,越是促生的處理,其擬桿菌門(mén)相對(duì)豐度越低(圖1和圖5)。卞方圓等[33]研究也表明越是土壤細(xì)菌多樣性高的土壤,擬桿菌門(mén)相對(duì)豐度越低。放線菌門(mén)在土壤樣品中也是優(yōu)勢(shì)菌門(mén),其形體多樣、生理活性豐富,還能夠產(chǎn)生種類繁多的胞外酶和次生代謝產(chǎn)物,在生態(tài)系統(tǒng)中扮演著重要的角色[34],但本研究中不同處理間差異較不明顯(圖5)。酸桿菌門(mén)為嗜酸菌,在土壤及沉積物中廣泛存在。本研究中施用化肥的處理酸桿菌門(mén)相對(duì)豐度增加(圖5),很可能與化肥導(dǎo)致土壤酸化,從而對(duì)土壤中酸桿菌門(mén)的生長(zhǎng)起到促進(jìn)作用。
土壤微生物在土壤生態(tài)系統(tǒng)中發(fā)揮著重要作用,其多樣性與土壤質(zhì)量息息相關(guān)。雖然單施化肥處理生長(zhǎng)最優(yōu),但是其土壤細(xì)菌和真菌的香農(nóng)指數(shù)均低于替代化肥處理,甚至低于不施肥處理(表3)。每一種微生物均有其獨(dú)特的生態(tài)位并具有相應(yīng)的功能,微生物多樣性的降低,很可能會(huì)造成生態(tài)功能的缺失,從而負(fù)面影響生態(tài)系統(tǒng)的功能穩(wěn)定。而通過(guò)秸稈還田配施化肥或進(jìn)行沼液灌溉能極顯著地增加土壤微生物阿爾法多樣性(表3),由此可見(jiàn),秸稈還田顯著改善了土壤的理化性質(zhì),為微生物的生長(zhǎng)創(chuàng)造了良好的生長(zhǎng)環(huán)境[29];而沼液中含有的腐植酸和纖維素等物質(zhì),對(duì)增加有機(jī)質(zhì)、維護(hù)土壤結(jié)構(gòu)有直接的正面功效[10]。
秸稈、沼液短期替代化肥的處理下水稻植株生長(zhǎng)低于全化肥處理,但是秸稈、沼液、化肥結(jié)合施用替代化肥對(duì)水稻幼苗的促生作用依然很明顯,尤其是秸稈還田結(jié)合沼液灌溉的全量替代化肥處理,全量替代化肥處理下(秸稈和沼液處理)的土壤質(zhì)量和細(xì)菌豐富度和多樣性即使在短期施用條件下也有明顯提高。本研究?jī)H關(guān)注了土壤微生物群落的整體變化,未來(lái)將對(duì)這方面進(jìn)行深入研究,探索出施肥及秸稈還田短期或長(zhǎng)期對(duì)土壤微生物群落結(jié)構(gòu)的影響機(jī)制,結(jié)合秸稈還田建立科學(xué)的無(wú)機(jī)和有機(jī)相結(jié)合的施肥制度,為探究環(huán)境友好型可持續(xù)發(fā)展農(nóng)業(yè)打下堅(jiān)實(shí)基礎(chǔ)。
[1] Zhang F S,Cui Z L,Wang J Q,et al. Current status of soil and plant nutrient management in China and improvement strategies. Chinese Bulletin of Botany,2007,42(6):687—694. [張福鎖,崔振嶺,王激清,等. 中國(guó)土壤和植物養(yǎng)分管理現(xiàn)狀與改進(jìn)策略. 植物學(xué)通報(bào),2007,42(6):687—694.]
[2] Ladha J K,Pathak H,Krupnik T J,et al. Efficiency of fertilizer nitrogen in cereal production:Retrospects and prospects. Advances in Agronomy,2005:85—156.
[3] Padilla F M,Gallardo M,Manzano-Agugliaro F. Global trends in nitrate leaching research in the 1960—2017 period. Science of the Total Environment,2018,643:400—413.
[4] Yang S H,Xiao Y N,Xu J Z,et al. Effect of straw return on soil respiration and NEE of paddy fields under water-saving irrigation. PLoS One,2018,13(10):e0204597.
[5] Chen Y L,Jia Z,Shi J L,et al. Effect of straw return on diffusion,translocation and transformation of zinc in calcareous soil. Acta Pedologica Sinica,2018,55(3):721—733. [陳艷龍,賈舟,師江瀾,等. 秸稈還田對(duì)石灰性土壤Zn擴(kuò)散遷移及形態(tài)轉(zhuǎn)化的影響. 土壤學(xué)報(bào),2018,55(3):721—733.]
[6] Huang T,Ju X T,Yang H. Nitrate leaching in a winter wheat-summer maize rotation on a calcareous soil as affected by nitrogen and straw management. Scientific Reports,2017,7:Article 42247.
[7] Fang F F. Study on the effect of wheat straw returning to the field on the early growth of rice and its mechanism. Yangzhou,Jiangsu:Yangzhou University,2018. [方菲菲. 麥秸還田對(duì)水稻前期生長(zhǎng)的影響及其機(jī)制研究. 江蘇揚(yáng)州:揚(yáng)州大學(xué),2018.]
[8] Nzila A. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons under anaerobic conditions:Overview of studies,proposed pathways and future perspectives. Environmental Pollution,2018,239:788—802.
[9] Wentzel S,Schmidt R,Piepho H P,et al. Response of soil fertility indices to long-term application of biogas and raw slurry under organic farming. Applied Soil Ecology,2015,96:99—107.
[10] Xu C M,Tian Y,Sun Y X,et al. Effects of biogas slurry irrigation on growth,photosynthesis,and nutrient status ofseedlings. Communications in Soil Science and Plant Analysis,2013,44(22):3381—3390.
[11] Shahbaz M,Akhtar M J,Ahmed W,et al. Integrated effect of different N-fertilizer rates and bioslurry application on growth and N-use efficiency of okra(L.). Turkish Journal of Agriculture and Forestry,2014,38:311—319.
[12] Manyi-Loh C,Mamphweli S,Meyer E,et al. An overview of the control of bacterial pathogens in cattle manure[J]. International Journal of Environmental Research and Public Health,2016,13(9):843.
[13] M?ller K. Effects of anaerobic digestion on soil carbon and nitrogen turnover,N emissions,and soil biological activity. A review. Agronomy for Sustainable Development,2015,35(3):1021—1041.
[14] Wang Z C,Liang Y H,Sheng J,et al. Analysis of water environment risk on biogas slurry disposal in paddy field. Transactions of the Chinese Society of Agricultural Engineering,2016,32(5):213—220. [王子臣,梁永紅,盛婧,等. 稻田消解沼液工程措施的水環(huán)境風(fēng)險(xiǎn)分析. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(5):213—220.]
[15] Yasar A,Rasheed R,Tabinda A B,et al. Life cycle assessment of a medium commercial scale biogas plant and nutritional assessment of effluent slurry. Renewable and Sustainable Energy Reviews,2017,67:364—371.
[16] Kubota H,Iqbal M,Quideau S,et al. Agronomic and physiological aspects of nitrogen use efficiency in conventional and organic cereal-based production systems. Renewable Agriculture and Food Systems,2018,33(5):443—466.
[17] Amend A S,Seifert K A,Samson R,et al. Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics. Proceedings of the National Academy of Sciences of the United States of America,2010,107(31):13748—13753.
[18] Munyaka P M,Eissa N,Bernstein C N,et al. Antepartum antibiotic treatment increases offspring susceptibility to experimental colitis:A role of the gut microbiota. PLoS One,2015,10(11):e0142536.
[19] Zhang W,Yuan,Yang S,et al. ITS2 secondary structure improves discrimination between medicinal “mu Tong” species when using DNA barcoding. PLoS One,2015,10(7):e0131185.
[20] Huson D H,Richter D C,Rausch C,et al. Dendroscope:An interactive viewer for large phylogenetic trees. BMC Bioinformatics,2007,8(1):Article 460.
[21] Dickie I A. Insidious effects of sequencing errors on perceived diversity in molecular surveys. New Phytologist,2010,188(4):916—918.
[22] Cole J R,Wang Q,Cardenas E,et al. The ribosomal database project:improved alignments and new tools for rRNA analysis. Nucleic Acids Research,2009,37,Database issue:D141—D145.
[23] Yang S Q,Wang Y S,Liu R L,et al. Improved crop yield and reduced nitrate nitrogen leaching with straw return in a rice-wheat rotation of Ningxia irrigation district. Scientific Reports,2018,8:Article 9458.
[24] Chen S,Liu S W,Zheng X,et al. Effect of various crop rotations on rice yield and nitrogen use efficiency in paddy-upland systems in southeastern China. The Crop Journal,2018,6(6):576—588.
[25] Xu M,Xian Y,Wu J,et al. Effect of biogas slurry addition on soil properties,yields,and bacterial composition in the rice-rape rotation ecosystem over 3 years. Journal of Soils and Sediments,2019,19(5):2534—2542.
[26] Yan Z L,F(xiàn)ang Y,Chen J C,et al. Effect of turning over Chinese milk vetch(L.)on soil nutrients and microbial properties in paddy fields. Journal of Plant Nutrition and Fertilizer,2014,20(5):1151—1160. [顏志雷,方宇,陳濟(jì)琛,等. 連年翻壓紫云英對(duì)稻田土壤養(yǎng)分和微生物學(xué)特性的影響. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2014,20(5):1151—1160.]
[27] Yang Z F,Chen W Q,Wang W,et al. Effects of biogas slurry on soil microbial characteristics of broccoli. Chinese Agricultural Science Bulletin,2017,33(29):112—115. [楊子峰,陳偉強(qiáng),王偉,等. 沼液施用對(duì)西蘭花耕作土壤微生物特性的影響. 中國(guó)農(nóng)學(xué)通報(bào),2017,33(29):112—115.]
[28] Xie K Z,Xu P Z,Jiang R P,et al. Combined application of inorganic and organic fertilizers improve rice yield and the abundance of soil nitrogen-cycling microbes in cold waterlogged paddy fields. Journal of Plant Nutrition and Fertilizer,2016,22(5):1267—1277. [解開(kāi)治,徐培智,蔣瑞萍,等. 有機(jī)無(wú)機(jī)肥配施提升冷浸田土壤氮轉(zhuǎn)化相關(guān)微生物豐度和水稻產(chǎn)量. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2016,22(5):1267—1277.]
[29] Yu D L,Wen Z G,Li X M,et al. Effects of straw return on bacterial communities in a wheat-maize rotation system in the North China Plain. PLoS One,2018,13(6):e0198087.
[30] Wang M,Li S S,Chen S B,et al. Manipulation of the rhizosphere bacterial community by biofertilizers is associated with mitigation of cadmium phytotoxicity. Science of the Total Environment,2019,649:413—421.
[31] Li F. Succession of upland soil microbial structure under long-term fertilization in Huang-Huai-Hai Plain. Zhengzhou:Henan Agricultural University,2018. [李芳. 長(zhǎng)期不同施肥條件下黃淮海平原旱作土壤微生物群落結(jié)構(gòu)特征的演變. 鄭州:河南農(nóng)業(yè)大學(xué),2018.]
[32] Zhao M,Yin C S,Li C W,et al. Using Miseq sequencing to analyze seasonal soil microbial community dynamics in reclaimedcoastal wetlands. Journal of Shanghai Ocean University,2018,27(5):718—727. [趙萌,印春生,厲成偉,等. Miseq測(cè)序分析圍墾后海三棱藨草濕地土壤微生物群落多樣性的季節(jié)變化. 上海海洋大學(xué)學(xué)報(bào),2018,27(5):718—727.]
[33] Bian F Y,Zhong Z K,Zhang X P,et al. Remediation of heavy metal contaminated soil by moso bamboo()intercropping withand the impact on microbial community Structure. Scientia Silvae Sinicae,2018,54(8):106—116. [卞方圓,鐘哲科,張小平,等. 毛竹和伴礦景天對(duì)重金屬污染土壤的修復(fù)作用和對(duì)微生物群落的影響. 林業(yè)科學(xué),2018,54(8):106—116.]
[34] Singh R,Dubey A K. Diversity and applications of endophytic actinobacteria of plants in special and other ecological niches. Frontiers in Microbiology,2018,9:Article 1767.
Regulation of Wheat Straw and Biogas Slurry Application on Rice Seedling Growth and Soil Microorganism
ZHOU Yang1, HUANG Xu1, ZHAO Haiyan1, ZHENG Qingsong1, WU Tianxiang2, 3, LIANG Yonghong3, LIU Qingxiu1, LUO Zhaohui1?, GUAN Yongxiang2, 3?
(1. College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; 2. Jiangsu Agricultual Technology Extension Station, Nanjing 210036, China; 3. Jiangsu Station of Agro-Environmental Monitoring and Protection, Nanjing 210036, China)
The effects of straw returning and biogas liquid replacing chemical fertilizer on the growth of early rice seedlings and paddy soil quality were studied, which provided the theoretical basis for the combination of agriculture and animal husbandry with nutrient recycling.The comparative effects of “wheat straw returning to the field combined with chemical fertilizer” (S-CF), “wheat straw returning to the field combined with biogas slurry” (S-BS) and “total fertilizer” (CF) on the growth of rice seedlings, nitrogen and phosphorus accumulation, soil nutrients and microbial communities under the condition of equal amount of nitrogen application were studied in greenhouse experiment.The growth of rice seedlings with different fertilization application treatments was obviously promoted, with the extension of treatment time, the promoting effect of fertilization treatment was more significant, among which CF treatment was the best, followed by S-BS treatment. The improvement effects of S-BS and CF on root growth were similar, which were significantly better than those of S-CF and CK. The content of soluble sugar in leaves of rice treated with S-BS was significantly higher than that of other fertilization treatments, and the content of N in leaves of rice treated with S-BS was significantly higher than that of treatment of CF. The total bacteria of CF treatment was significantly higher than that of S-BS treatment, while that of S-BS treatment was significantly higher than that of CK and S-CF treatment. The relative abundance of Proteobacteria treated with CF was significantly higher than that of other treatments. The total amount of fungi in CK and S-CF treatments was significantly higher than that in S-BS and CF treatments, and that in S-BS treatment was the lowest. The relative abundance of soil dominant Ascomycota and Basidiomycota in the CK group was significantly higher than that in other treatments. The relative abundance of Chytridiomycota treated with S-CF was also significantly higher than that of other treatments. Alpha diversity analysis showed that the bacterial richness (Chao1 index) and diversity (Shannon index) of S-CF and S-BS treatments were significantly higher than those of CF treatment and CK, and the richness and diversity of soil fungi treated with S-CF was significantly higher than that of CK, and that of soil fungi treated with CF was the lowest.Under the treatment of straw and biogas liquid as a short-term substitute for chemical fertilizer, the growth of rice plant is lower than that of the whole chemical fertilizer treatment. However, the effects of straw, biogas liquid and chemical fertilizer on the growth of rice seedlings were still very obvious, especially the total substitution chemical fertilizer treatment of straw returning to the field and irrigation with biogas liquid. The soil quality, bacterial richness and diversity of straw and biogas treatment were significantly improved even under short-term application conditions.
Straw; Biogas slurry; Fetilizer; Growth promoting effect; Soil quality
S154.4
A
10.11766/trxb201905060077
周陽(yáng),黃旭,趙海燕,鄭青松,吳田鄉(xiāng),梁永紅,劉清秀,羅朝暉,管永祥. 麥秸稈和沼液配施對(duì)水稻苗期生長(zhǎng)和土壤微生物的調(diào)控[J]. 土壤學(xué)報(bào),2020,57(2):479–489.
ZHOU Yang,HUANG Xu,ZHAO Haiyan,ZHENG Qingsong,WU Tianxiang,LIANG Yonghong,LIU Qingxiu,LUO Zhaohui,GUAN Yongxiang. Regulation of Wheat Straw and Biogas Slurry Application on Rice Seedling Growth and Soil Microorganism[J]. Acta Pedologica Sinica,2020,57(2):479–489.
* 江蘇省農(nóng)業(yè)科技自主創(chuàng)新資金項(xiàng)目[cx(16)1003—4]、江蘇省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(BE2018680)和南京農(nóng)業(yè)大學(xué)SRT計(jì)劃(1813C26)共同資助Supported by Jiangsu Independent Innovation Program of Agricultural Science and Technology(No. cx(16)1003-4),the Primary Research Development Project of Jiangsu Prorince of China(No.BE2018680)and the SRT Project of Nanjing Agricultural University(No. 1813C26)
,E-mail:lzhui@njau.edu.cn;gyx5598@126.com
周 陽(yáng)(1994—),男,江蘇靖江人,碩士研究生。主要從事生態(tài)循環(huán)農(nóng)業(yè)研究。E-mail:2016103025@qq.com
2019–05–06;
2019–07–02;
優(yōu)先數(shù)字出版日期(www.cnki.net):2019–12–30
(責(zé)任編輯:陳榮府)