亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        云計算中基于多目標(biāo)優(yōu)化的虛擬機整合算法

        2020-04-17 08:54:52胡志剛肖慧李克勤
        關(guān)鍵詞:節(jié)能云計算服務(wù)質(zhì)量

        胡志剛 肖慧 李克勤

        摘? ?要:云數(shù)據(jù)中心中存在著高能耗和高服務(wù)水平協(xié)議違約率的問題,為了解決此問題,提出了一種基于多目標(biāo)優(yōu)化的虛擬機整合算法. 綜合考慮能耗、服務(wù)質(zhì)量和遷移開銷等多種因素,將虛擬機整合問題構(gòu)建為一個具有資源約束的多目標(biāo)優(yōu)化問題. 使用蟻群系統(tǒng)算法對該多目標(biāo)優(yōu)化問題進行求解,進行虛擬機整合,獲得近似最優(yōu)的虛擬機主機映射關(guān)系. 為了減少算法復(fù)雜度,利用CPU利用率雙閾值來判斷主機負(fù)載狀態(tài),根據(jù)主機負(fù)載狀態(tài)分階段進行整合并使用不同的整合策略. 基于CloudSim平臺對多目標(biāo)優(yōu)化的虛擬機整合算法和其他6種虛擬機整合算法進行仿真實驗,將本文算法與現(xiàn)有虛擬機整合算法實驗結(jié)果進行比較,結(jié)果表明本文提出的算法在能耗和服務(wù)水平協(xié)議違約方面優(yōu)化顯著,具有較好的綜合性能.

        關(guān)鍵詞:云計算;虛擬機整合;蟻群系統(tǒng)算法;節(jié)能;服務(wù)質(zhì)量

        中圖分類號:TP338.8? ? ? ??? ? ? ? ? ? 文獻標(biāo)志碼:A

        Abstract:There exist problems of high energy consumption and high Service Level Agreement (SLA) violation rates in cloud data centers,which urgently need to be resolved. In order to solve the above problems,a Multi-objective Virtual Machine Consolidation Algorithm (MOVMC) was proposed to reduce energy consumption and SLA violation. Taking into account multiple factors including energy consumption,service quality and migration overhead,the virtual machine consolidation problem was constructed as a resource-constrained multi-objective optimization problem. Ant colony system algorithm was employed to perform virtual machine consolidation and obtain the near-optimal mapping relation between virtual machines and hosts as the solution to the multi-objective optimization problem. In order to reduce the algorithm complexity,the double thresholds of CPU utilization were leveraged to judge the host load status and a multi-stage consolidation was performed according to the host load status,in which different consolidation strategies were used. Simulation experiments were conducted on CloudSim platform for MOVMC algorithm and six other virtual machine consolidation algorithms. The experimental results show that,compared with the existing virtual machine consolidation algorithm,the proposed algorithm has significant optimization in terms of energy consumption and SLA violation,and an excellent comprehensive performance.

        Key words:cloud computing;virtual machine consolidation;ant colony system;energy saving;quality of service

        近年來,隨著云計算商業(yè)模式和技術(shù)架構(gòu)的越來越成熟,云用戶大幅度增加,為了滿足他們的需求而新建的數(shù)據(jù)中心、新置的服務(wù)器和制冷設(shè)備也隨之大幅度增加,解決數(shù)據(jù)中心的高能耗問題已經(jīng)成為一個大的挑戰(zhàn)[1]. 同時,云用戶對云服務(wù)的性能需求也愈加具體嚴(yán)格化,用戶在交易前會與云服務(wù)商制定服務(wù)水平協(xié)議(Service Level Agreement,SLA)來規(guī)范化質(zhì)量等級(Quality of Service,QoS)需求,以確保本次服務(wù)交易的完美達成[2]. 如果云服務(wù)商無法提供事先商定的QoS,違背用戶的期望,會給用戶造成不可預(yù)估的損失. 因此,在減少數(shù)據(jù)中心能耗的同時,提供用戶所期望的QoS是云計算發(fā)展迫切需要解決的問題.

        虛擬機整合[3]可以根據(jù)變化的資源需求周期性地調(diào)整當(dāng)前的虛擬機主機間映射關(guān)系,在主機間遷移虛擬機以充分并均衡地利用計算資源. 虛擬機整合技術(shù)主要包括啟發(fā)式貪心算法[4-7]、線性/約束規(guī)劃技術(shù)[8-11]和元啟發(fā)式算法[12-15]. 貪心算法因其時間復(fù)雜度低、實現(xiàn)簡單等優(yōu)點被廣泛應(yīng)用來進行虛擬機動態(tài)整合. 貪心算法雖然計算開銷低,但卻容易陷入局部最優(yōu)而錯過最優(yōu)解. 線性/約束規(guī)劃技術(shù)可以獲得最優(yōu)解,但受問題規(guī)模和復(fù)雜性的限制,無法很好地擴展到大型數(shù)據(jù)中心. 近年來研究人員提出了許多基于生物啟發(fā)計算的元啟發(fā)整合算法,例如蟻群算法、基因算法、人工蜂群算法,可以有效幫助解決大規(guī)模問題并避免局部最優(yōu)解. 蟻群系統(tǒng)算法(Ant Colony System,ACS)[16-17],作為蟻群算法的一種,通過在解空間中進行基于概率式的搜索,可以在多項式時間復(fù)雜度里找到近似最優(yōu)解.

        現(xiàn)有的虛擬機整合研究大多只關(guān)注了云數(shù)據(jù)中心的能耗問題. 然而,為了實現(xiàn)云系統(tǒng)交付的QoS,還應(yīng)該同時考慮SLA違約問題. 虛擬機整合可以通過將虛擬機整合到盡可能少的主機上來降低能耗,然而過分整合可能會降低系統(tǒng)性能并導(dǎo)致SLA違

        約[18]. 因此,最優(yōu)虛擬機整合方法應(yīng)在能耗和QoS之間取得平衡.

        本文將虛擬機整合問題構(gòu)建為一個多目標(biāo)組合優(yōu)化問題,優(yōu)化目標(biāo)包括降低能耗、保證QoS要求和減少遷移次數(shù),提出了一種基于多目標(biāo)優(yōu)化的虛擬機整合算法(Multi-objective Virtual Machine Consolidation,MOVMC). 首先使用CPU利用率雙閾值[4]來判斷主機負(fù)載狀態(tài),確定整合時機;然后基于ACS假設(shè)虛擬機和主機之間的映射關(guān)系是食物源,使用人工蟻群同時選擇待遷移虛擬機和目標(biāo)主機,尋找虛擬機和主機之間的最佳映射關(guān)系. 通過在CloudSim平臺上使用真實工作負(fù)載來評估所提出的方法. 實驗結(jié)果表明,該方法在減少能耗、SLA違約和虛擬機遷移方面具有明顯的優(yōu)勢.

        4? ?結(jié)? ?論

        本文提出了一種基于多目標(biāo)組合優(yōu)化的虛擬機整合算法,通過將虛擬機整合到合適的主機中來解決數(shù)據(jù)中心中高能耗和QoS降級的問題. 虛擬機整合問題被構(gòu)建為一個多目標(biāo)優(yōu)化問題,基于雙閾值決定觸發(fā)虛擬機整合的條件. 將虛擬機與主機之間的映射關(guān)系比作食物源,基于ACS通過多階段整合來優(yōu)化映射關(guān)系. 通過人工螞蟻的分布式搜索和協(xié)作,獲得虛擬機與主機之間的全局最優(yōu)映射關(guān)系. 使用實際工作負(fù)載對所提出方法的性能進行評估,仿真結(jié)果表明,與其他方法相比,該方法能有效降低數(shù)據(jù)中心的能耗,并保證高水平QoS.

        在未來的工作中,進一步研究在整合時間決策過程中,針對不斷變化的工作負(fù)載采用自適應(yīng)閾值,做出更合理的遷移決策. 進行更多的仿真實驗來評估所提出的方法在實際工作負(fù)載中的性能.

        參考文獻

        [1]? ? 蔡立軍,何庭欽,孟濤,等. 基于層次拓?fù)錁涞奶摂M機節(jié)能分配算法[J].湖南大學(xué)學(xué)報(自然科學(xué)版),2017,44(2):137—148.

        CAI L J,HE T Q,MENG T,et al. A network-aware two-phase virtual machine allocation algorithm[J]. Journal of Hunan University(Natural Sciences),2017,44(2):137—148.(In Chinese)

        [2]? ? ARDAGNA D,CASALE G,CIAVOTTA M,et al. Quality-of-service in cloud computing:modeling techniques and their applications[J]. Journal of Internet Services & Applications,2014,5(1):11—17.

        [3]? ?FILHO M C S,MONTEIRO C C,IN?CIO P R M,et al. Approaches for optimizing virtual machine placement and migration in cloud environments:A survey[J]. Journal of Parallel & Distributed Computing,2017,111:222—250.

        [4]? ?BELOGLAZOV A,ABAWAJY J,BUYYA R. Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing[J]. Future Generation Computer Systems,2012,28(5):755—768.

        [5] BELOGLAZOV A,BUYYA R. Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers[J]. Concurrency and Computation:Practice and Experience,2012,24(13):1397—1420.

        [6]? ? ZHOU Z,ABAWAJY J,CHOWDHURY M,et al. Minimizing SLA violation and power consumption in cloud data centers using adaptive energy-aware algorithms[J]. Future Generation Computer Systems,2018,86:836—850.

        [7]? ?LI M F,BI J P,LI Z C. Improving consolidation of virtual machine based on virtual switching overhead estimation[J]. Journal of Network and Computer Applications,2016,59:158—167.

        [8]? ?CHEN X,TANG J R,ZHANG Y. Towards a virtual machine migration algorithm based on multi-objective optimization[J]. International Journal of Mobile Computing & Multimedia Communications,2017,8(3):79—89.

        [9]? ?CHEN L H,SHEN H Y,PLATT S. Cache contention aware virtual machine placement and migration in cloud datacenters[C]// 2016 IEEE 24th International Conference on Network Protocols (ICNP). Singapore: IEEE,2016:1—10.

        [10]? JOO K N,KIM S,KANG D K,et al. A VM vector management scheme for QoS constraint task scheduling in cloud environment[C]// International Conference on Cloud Computing. Korea:Springer International Publishing,2015:39—49.

        [11]? HUANG Z,TSANG D H K. M-convex VM Consolidation:Towards a better VM workload consolidation[J]. IEEE Transactions on Cloud Computing,2016,4(4):415—428.

        [12]? LI Z,YAN C,YU L,et al. Energy-aware and multi-resource overload probability constraint-based virtual machine dynamic consolidation method[J]. Future Generation Computer Systems,2018,80:139—156.

        [13]? MOSA A,PATON N W. Optimizing virtual machine placement for energy and SLA in clouds using utility functions[J]. Journal of Cloud Computing,2016,5(1):1—17.

        [14]? LI H J,ZHU G F,CUI C Y,et al. Energy-efficient migration and consolidation algorithm of virtual machines in data centers for cloud computing[J]. Computing,2016,98(3):303—317.

        [15]? ARYANIA A,AGHDASI H S,KHANLI L M. Energy-aware virtual machine consolidation algorithm based on ant colony system[J]. Journal of Grid Computing,2018,16(3):477—491.

        [16]? DORIGO M,CARO G D,GAMBARDELLA L M. Ant algorithms for discrete optimization[J]. Artificial Life,1999,5(2):137—172.

        [17] DORIGO M,GAMBARDELLA L M. Ant colony system:A cooperative learning approach to the traveling salesman problem[J]. IEEE Transactions on Evolutionary Computation,1997,1(1):53—56.

        [18]? ZHAO H,WANG J,LIU F,et al. Power-aware and performance-guaranteed virtual machine placement in the cloud[J]. IEEE Transactions on Parallel & Distributed Systems,2018,29(6):1385—1400.

        [19]? 吳小東,韓建軍. 云數(shù)據(jù)中心基于閾值的虛擬機遷移節(jié)能調(diào)度算法[J]. 華中科技大學(xué)學(xué)報(自然科學(xué)版),2018,46(9):30—34.

        WU X D,HAN J J. Threshold-based energy-efficient VM scheduling in cloud datacenters[J]. Journal of Huazhong University of Science and Technology(Natural Sciences),2018,46(9):30—34. (In Chinese)

        [20]? ZHENG Q H,LI R,LI X Q,et al. A multi-objective biogeography-based optimization for virtual machine placement[C]//2015 15th IEEE/ACM International Symposium on Cluster,Cloud and Grid Computing. Shenzhen:IEEE,2015:687—696.

        [21]? CHEN Q,CHEN J X,ZHENG B Y,et al. Utilization-based VM consolidation scheme for power efficiency in cloud data centers[C]// IEEE International Conference on Communication Workshop. London:IEEE,2015:1928—1933.

        [22]? LI Z H,YAN C Y,YU X R,et al. Bayesian network-based Virtual Machines consolidation method[J]. Future Generation Computer Systems,2018,16(3):477—491.

        [23]? ZHANG F,LIU G,F(xiàn)U X,et al. A survey on virtual machine migration:challenges,techniques and open issues[J]. IEEE Communications Surveys & Tutorials,2018,20(2):1206—1243.

        [24]? CALHEIROS R N,RANJAN R,BELOGLAZOV A,et al. CloudSim:a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms[J]. Software:Practice and Experience,2011,41(1):23—50.

        [25]? DURAO F,CARVALHO J F S,F(xiàn)ONSEKA A,et al. A systematic review on cloud computing[J]. The Journal of Supercomputing,2014,68(3):1321—1346.

        [26]? PARK K S,PAI V S. COMON:A mostly-scalable monitoring system for planetlab[J]. ACM Sigops Operating Systems Review,2006,40(1):65—74.

        猜你喜歡
        節(jié)能云計算服務(wù)質(zhì)量
        論如何提升博物館人性化公共服務(wù)質(zhì)量
        收藏界(2019年2期)2019-10-12 08:26:42
        常規(guī)抽油機的特性及節(jié)能潛力分析
        淺論暖通供熱系統(tǒng)節(jié)能新技術(shù)
        淺談變頻器在球團礦生產(chǎn)中的節(jié)能應(yīng)用
        基于云計算的移動學(xué)習(xí)平臺的設(shè)計
        實驗云:理論教學(xué)與實驗教學(xué)深度融合的助推器
        云計算中的存儲虛擬化技術(shù)應(yīng)用
        科技視界(2016年20期)2016-09-29 13:34:06
        暖通空調(diào)的恒溫恒濕設(shè)計
        科技視界(2016年20期)2016-09-29 11:43:16
        傾聽患者心聲 提高服務(wù)質(zhì)量
        堅持履職盡責(zé) 提升服務(wù)質(zhì)量
        亚洲性爱视频| 中文字日产幕码三区做法| 国产内射一级一片内射视频| 美女张开腿让男人桶爽| 欧美末成年videos在线观看| 涩涩国产在线不卡无码| 国产蜜桃传媒在线观看| 久久精品无码一区二区日韩av| 大地资源在线播放观看mv| 亚洲精品国产老熟女久久| 精品久久人妻一区二区| 风韵丰满熟妇啪啪区老熟熟女| 国产av精国产传媒| 精品一区二区三区久久久| 国产一级黄色片一区二区| 国产aⅴ无码专区亚洲av| 国产自国产在线观看免费观看 | 亚洲国产成人aⅴ毛片大全| 日本中文字幕精品久久 | 亚洲自偷自拍熟女另类| 中日韩欧美成人免费播放| 日本久久久精品免费免费理论| 草色噜噜噜av在线观看香蕉| 无遮挡边吃摸边吃奶边做| 亚洲日韩AV无码美腿丝袜| 国产女优一区在线观看| 国产后入又长又硬| 超91精品手机国产在线| 美女被搞在线观看一区二区三区| 久久精品国产久精国产爱| 久久无码人妻精品一区二区三区| 午夜国产精品久久久久| 日本加勒比精品一区二区视频| 日本无码欧美一区精品久久| 青青视频一区| 精品国精品自拍自在线| 午夜天堂av天堂久久久| 久久无码av三级| 人妻中文字幕一区二区二区| 美丽的小蜜桃在线观看| 亚洲日韩成人av无码网站|