(重慶三峽學(xué)院,智能信息處理與控制重慶高校市級重點實驗室 重慶 萬州 404100;重慶三峽學(xué)院,物聯(lián)網(wǎng)與智能控制技術(shù)重慶市工程研究中心 重慶 萬州 404100)
華人的數(shù)學(xué)學(xué)習(xí)給人的印象是,缺乏主動性,主要靠記憶、模仿和刻意練習(xí)、題海戰(zhàn)術(shù)。然而,在國際數(shù)學(xué)教育測試PISA中,華人地區(qū)的學(xué)生的數(shù)學(xué)成績卻十分優(yōu)異。這個現(xiàn)象被稱為“中國學(xué)習(xí)者悖論”。國際研究者總結(jié)華人地區(qū)數(shù)學(xué)教育的優(yōu)勢時,提出了變式教學(xué)理論。1981年,顧泠沅系統(tǒng)綜合了變式教學(xué)的概念,形成了概念性變式和過程性變式的變式教學(xué)理論。以面積法和體積法為研究對象,從過程性變式的角度來解釋,兩種方法的變式教學(xué)過程以及學(xué)習(xí)心理優(yōu)勢,希望得到一定的借鑒和交流,促進(jìn)教學(xué)改革水平的提升。
過程性變式是在數(shù)學(xué)教學(xué)活動中,按照層次有序推進(jìn)。我們知道,數(shù)學(xué)教學(xué)活動中有兩種知識,一種是陳述性知識(概念),還有一種是程序性知識(過程)。由于程序性知識是動態(tài)的,涉及到學(xué)習(xí)問題解決和元認(rèn)知策略,掌握起來比較困難。然而,數(shù)學(xué)活動過程一般是具有層次性的,它包含為解決問題而采用的一系列不同步驟和策略,采用過程性變式,可以促進(jìn)概念的形成、問題解決的鋪墊、構(gòu)建數(shù)學(xué)經(jīng)驗體系[1]。
面積法這個概念是需要通過一系列的過程促進(jìn)發(fā)展形成的,教師可以從過程性變式來建立面積法的概念。
原 題
已知等腰三角形ΔABC的高AD,從點D分別作DE⊥AB于E,DF⊥AC于F,求證:DE=DF。
解法分析
用三角形全等也可以證明,假如能夠發(fā)現(xiàn)等腰的高分等腰三角形為兩個面積相等的直角三角形。DE,DF分別是這兩個直角三角形斜邊上的高,根據(jù)面積法,可證明。
DE=DF。
變式1
已知等邊三角形ΔABC內(nèi)有一點P,從P點分別向AB,BC,CA作垂線,垂足分別為D,E,F,求證:PD+PE+PF為定值。
解題分析
h1+h2+h3=h(定值)
理論層面,現(xiàn)有研究對國際輿論態(tài)勢的基本判斷仍是“英語霸權(quán)”“西強(qiáng)東弱”。國際傳播的信息流亦呈現(xiàn)從西向東、由北到南、從發(fā)達(dá)國家流向發(fā)展中國家的狀態(tài)。[11]在“一帶一路”背景下,在國際輿論的話語實踐中,中國需要調(diào)整以往在國際傳播中的邊緣心態(tài),增強(qiáng)主動傳播的意識,從被動的對媒介帝國主義的抵抗,轉(zhuǎn)向積極地具有傳播主體意識的議題建構(gòu),[12]從而形成“融通中外的話語體系”。培養(yǎng)合作傳播思維,通過媒介合作共同打造話語空間,與周邊國家和發(fā)展中國家構(gòu)建話語共同體。未來的國際傳播格局同樣需要合作、融合、共贏的思維。相應(yīng)地,未來的研究應(yīng)關(guān)注如何通過媒介合作提高我國在國際傳播中的主體地位問題。
變式2
已知等邊三角形ΔABC,邊長為a,求內(nèi)切圓的半徑r。
解題分析
變式3
已知直角ΔABC的兩個直角邊長為a,b,求它的內(nèi)切圓的半徑。
解題分析
已知四面體S-ABC,SA=SB=SC,底面ΔABC為等邊三角形,求證:ΔABC的中心O到三個側(cè)面的距離相等。
解題分析
從體積法的角度理解,可以發(fā)現(xiàn)這個四面體的對稱性,可以做輔助線,將四面體分解為三個體積相等的四面體,即可證明結(jié)論。
變式1
已知正四面體S-ABC,各邊長分別為a,內(nèi)部有一點P,到每個面的距離分別為h1,h2,h3,h4,求證:h1+h2+h3+h4為定值。
解題分析
h1+h2+h3+h4=h(定值)
變式2
已知四面體S-ABC,SA,SB,SC兩兩相互垂直且長度相等為a,求頂點S到底面三角形ABC的距離。
解題分析
變式3
已知四面體S-ABC,SA,SB,SC兩兩相互垂直且長度相等為a,求這個四面體的內(nèi)切球的半徑。
解題分析
教師實施變式教學(xué),設(shè)計過程性變式。從一系列變式1,2,3,可以讓學(xué)生理解到數(shù)學(xué)問題解決的一個基本思路,把沒有解決的問題轉(zhuǎn)化為已經(jīng)解決的問題,逐步化規(guī)設(shè)置路徑。設(shè)計過程性變式的目的是增加活動的多樣性以及活動的層次性。這些變式就形成了一個劃歸或探索的步驟和策略,這與教學(xué)策略中的“腳手架理論”不謀而合,這些變式就形成了學(xué)習(xí)者的一個經(jīng)驗策略系統(tǒng),成為學(xué)習(xí)心理優(yōu)勢的一個重要部分[1]。雖然沒有定義面積法、體積法,過程性變式的教學(xué)策略使得學(xué)生產(chǎn)生了有意義的學(xué)習(xí),幫助學(xué)生建立了知識之間的聯(lián)系,促進(jìn)了學(xué)生的身心和能力的發(fā)展[1]。教師作為一個反思型實踐者,可以在日常的教學(xué)去設(shè)計變式教學(xué)的案例,促進(jìn)學(xué)生數(shù)學(xué)學(xué)習(xí)[2,3]。