胡春梅
摘? 要:矩陣的廣義逆的概念是由美國學者E.H.Moore首先提出的。1920年,他用投影矩陣定義了矩陣唯一的廣義逆。廣義逆在微分方程、數(shù)值代數(shù)、線性統(tǒng)計推斷、最優(yōu)化、電網(wǎng)絡(luò)分析等問題中起著非常重要的作用。2007年,岑建苗教授在文中首次引入了長方矩陣的加權(quán)群逆的概念。加權(quán)群逆不同于Cline與Greville提出的長方矩陣的加權(quán)Drazin逆的概念。因此,對它的研究是有意義且很有必要的。本文主要研究長方矩陣加權(quán)群逆的計算。利用矩陣的1-逆和群逆,從加權(quán)群逆的不同表示方法中給出加權(quán)群逆的計算。
關(guān)鍵詞:長方矩陣? 群逆? 加權(quán)群逆? 計算
中圖分類號:O151? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻標識碼:A? ? ? ? ? ? ? ? ? ? 文章編號:1674-098X(2020)07(b)-0212-05
Abstract: The concept of generalized inverse of matrix was first proposed by American scholar E.H. Ore. In 1920, he defined the unique generalized inverse of a matrix by a projection matrix. Generalized inverse plays an important role in differential equations, numerical algebra, linear statistical inference, optimization, and electrical network analysis. In 2007, Professor Cen Jianmiao first introduced the concept of weighted group inverse of rectangular matrix in his paper The weighted group inverse is different from the weighted Drazin inverse of the rectangular matrix proposed by Cline and Greville. Therefore, it is meaningful and necessary to study it. This paper mainly studies the calculation of weighted group inverse of rectangular matrix. By using 1- inverse and group inverse of matrix, the calculation of weighted group inverse is given from different representation methods of weighted group inverse.
Key Words: Rectangular matrix; Group of inverse; Weighted group inverse; To calculate
參考文獻
[1] 柯圓圓,李怡錚.關(guān)于環(huán)上矩陣乘積的{1,3}-逆、{1,4}-逆和Moore-Penrose逆的注記[J].江漢大學學報自然科學版,2019,47(5):389-394.
[2] 楊凱迪,尹幼奇.態(tài)射的雙加權(quán)廣義Moore-Penrose逆[J].湖州師范學院學報,2019,41(8):25-30.
[3] 劉桂香.環(huán)上矩陣的加權(quán)Moore-Penrose逆[J].揚州職業(yè)大學學報,2018,22(2):31-33.
[4] 楊陽,任苗苗,王錦鈺.半環(huán)上矩陣的加權(quán)群逆[J].紡織高?;A(chǔ)科學學報,2016,29(3):294-298.
[5] 劉萍.長方矩陣結(jié)合方案的偽辛分裂方案及其應(yīng)用[D].石家莊:河北師范大學,2019.
[6] 康孟.長方矩陣結(jié)合方案的S-辛分裂方案及其應(yīng)用[D].石家莊:河北師范大學,2019.
[7] 郭雪娜.基于有限域上方陣的結(jié)合方案[D].石家莊:河北師范大學,2017.