趙敏華 劉吉 徐晨曦 蔡曉鋒 王全華 王小麗
摘? 要: 植物硝酸鹽轉(zhuǎn)運蛋白(NRT)不僅參與硝態(tài)氮的吸收及運轉(zhuǎn),還通過介導(dǎo)激素轉(zhuǎn)運、信號傳遞,或直接作為其他離子轉(zhuǎn)運子參與植物根系生長發(fā)育及其他礦質(zhì)離子的吸收運轉(zhuǎn)等過程,并影響植物在這些離子脅迫下的耐受表現(xiàn)。部分NRT可能在植物養(yǎng)分綜合利用及抗性培育中同時具有重要作用。該文從根系發(fā)育及非生物脅迫兩方面綜述了NRT的最新研究進展,總結(jié)了其可能的作用機制。
關(guān)鍵詞: 硝酸鹽轉(zhuǎn)運蛋白(NRT); 側(cè)根; 鉀(K); 鎘(Cd); 磷(P); 鹽脅迫
中圖分類號: Q 945.12; S 60? ? 文獻標志碼: A? ? 文章編號: 1000-5137(2020)06-0709-10
Abstract: Nitrate transporters (NRT) can not only participate nitrate uptake and transport in plants,but also play key roles in many other physiological processes,such as root system development,uptake and transport process of other mineral ions in plants through hormone transport,signal transduction and even act as other ion transporter,and accordingly affect the plant stress performance which related to these ions.Some NRT members may act as candidate genes for improving plant multiple-nutrition use and stress tolerance.This article reviewed the recent NRT research progress from two aspects:root development and abiotic stress.The possible mechanisms of NRT in these processes were also discussed.Key words: nitrate transporter (NRT); root system; potassium (K); cadmium (Cd); phosphorus (P); salt stress
0? 引? 言
硝態(tài)氮(NO3--N)是植物最重要的氮素來源之一。植物對NO3-的吸收和體內(nèi)運轉(zhuǎn)依賴細胞膜上的硝酸鹽轉(zhuǎn)運蛋白(NRT),并在細胞膜質(zhì)子泵(H+-ATPase)協(xié)助下執(zhí)行主動運輸過程。目前已在多個物種中鑒定出大量硝酸鹽轉(zhuǎn)運蛋白[1],分別屬于不同的亞家族,如NRT1(NPF),NRT2,CLC(氯離子通道蛋白)等[2]。部分NRT的生物學(xué)功能已得到驗證,并在植物適應(yīng)NO3-脅迫過程中發(fā)揮重要作用[2-3]。越來越多的研究發(fā)現(xiàn),植物硝酸鹽轉(zhuǎn)運蛋白不僅能夠吸收、運轉(zhuǎn)NO3-,而且在植物根系發(fā)育、離子運轉(zhuǎn)以及逆境響應(yīng)中發(fā)揮著重要作用[4]。此外,考慮到植物養(yǎng)分高效利用是建立在各營養(yǎng)離子互作的基礎(chǔ)上,并與植物養(yǎng)分脅迫等非生物脅迫過程密切相關(guān),因此單純關(guān)注NRT在NO3-吸收運轉(zhuǎn)方面的作用還不夠,有必要進一步分析其在其他離子吸收運轉(zhuǎn)中的調(diào)控作用,探尋植物離子間互作的分子機制,進而在系統(tǒng)生物學(xué)水平上綜合提高植物養(yǎng)分的利用效率。同時,由于根系是植物吸收離子的主要部位,理想的根系是植物高效吸收養(yǎng)分的基礎(chǔ),本文作者從根系發(fā)育及非生物脅迫(主要為除NO3-脅迫外的其他礦質(zhì)離子脅迫)兩方面綜述了目前NRT研究的最新進展,以期充分認識NRT在根系發(fā)育和離子互作中的作用機制,為后續(xù)研究提供參考依據(jù)。
1? 根系發(fā)育
發(fā)達的側(cè)根有利于增加根系吸收面積,提高營養(yǎng)吸收能力,緩解低營養(yǎng)脅迫對植物生長的抑制。研究證實,擬南芥AtNRT1.1參與側(cè)根的發(fā)育,并受外源氮素濃度水平的調(diào)節(jié)。局部供應(yīng)NO3-,可以顯著促進擬南芥供氮一側(cè)側(cè)根的生長[5]。根系局部供應(yīng)NO3-條件下,NO3-低濃度一側(cè),AtNRT1.1將側(cè)根生長素轉(zhuǎn)移[6],并通過抑制生長素合成基因TAR2及生長素內(nèi)流載體LAX3的表達,抑制側(cè)根的發(fā)育[7]。相反,NO3-高濃度一側(cè)AtNRT1.1對生長素輸出功能受抑制,生長素大量積累,促進側(cè)根生長[5,8]。CIPK23通過調(diào)節(jié)AtNRT1.1結(jié)構(gòu)中第101位蘇氨酸(Thr-101)的磷酸化水平,切換其在不同NO3-濃度下的生長素運輸功能[9]。NO3-可能通過轉(zhuǎn)錄后調(diào)控參與AtNRT1.1介導(dǎo)的側(cè)根發(fā)育過程[10]。AtNRT1.1還作為NO3-信號受體參與NO3-信號對側(cè)根生長的影響,首先NRT1.1將感受到的局部高濃度NO3-信號傳導(dǎo)給Arabidopsis Nitrate Regulated 1(ANR1),促進ANR1的表達,并可能在MADs-box相關(guān)基因參與下,調(diào)控未知的下游基因,促進側(cè)根的伸長[11-12](圖1(a))。此外,也有研究認為NO3-響應(yīng)系統(tǒng)中大量轉(zhuǎn)錄因子,如CBL7,NLP7,TCP20,NRG2,RSA1,及LBDs等,也參與了NRT1對根系發(fā)育的調(diào)控,但缺乏直接實驗結(jié)果的證實[13]。
均勻供氮條件下,中低等氮物質(zhì)的量濃度(0.5~10 mmol?L-1)能促進擬南芥?zhèn)雀L,而極低或極高氮濃度(大于10 mmol?L-1)則將抑制側(cè)根生長;5 mmol?L-1氮條件下,生長素經(jīng)AtNRT1.1運輸后,其濃度變化信號傳遞給生長素受體Auxin Signaling F-Box 3(AFB3),進而調(diào)控一些對生長素敏感的基因(如ARF,NAC4和OBP4)的表達,導(dǎo)致植物主根伸長受抑制,并誘導(dǎo)側(cè)根的生長[14]。此途徑中,AFB3很快被miR393抑制,后者受NO3-同化還原后的有機氮產(chǎn)物誘導(dǎo),進而抑制側(cè)根的生長,說明植物側(cè)根的發(fā)育調(diào)控極其復(fù)雜,受體內(nèi)碳氮平衡的動態(tài)調(diào)節(jié)[15](圖1(b))。
AtNRT1.1還參與擬南芥根毛形成(圖1(b))。在5 mmol?L-1 NO3-濃度下,AtNRT1.1將硝酸鹽信號傳遞給轉(zhuǎn)錄因子TGA1/TGA4,后者直接調(diào)節(jié)根毛細胞發(fā)育特異基因CPC的表達,促進擬南芥根毛的形成[16]。TGA1/TGA4還能通過影響AtNRT2.1和AtNRT2.2的表達參與側(cè)根形成[14]。在極低NO3-濃度(0.01 mmol?L-1)條件下,AtNRT2.1抑制側(cè)根起始[17],而在0.5 mmol?L-1 NO3-濃度條件下,AtNRT2.1促進側(cè)根原基發(fā)育,并且通過調(diào)節(jié)NO3-的吸收量來決定側(cè)根發(fā)育狀況[18]。
水稻OsNRT2.1參與不定根伸長生長。在0.5 mmol?L-1 NO3-濃度下,過表達水稻OsNRT2.1增加了水稻總根長,生長素轉(zhuǎn)運蛋白基因(OsPIN1a/b/c和OsPIN2)的表達量也顯著增加;生長素抑制劑(N-1-萘酚酸,NPA)處理下,野生型(WT)和過表達植株的根長及基因表達無顯著差異,以上說明OsNRT2.1參與了依賴NO3-的生長素運輸過程,過表達OsNRT2.1有利于根的伸長和生長[19]。還有研究發(fā)現(xiàn),0.2 mmol?L-1 NO3-濃度下,OsMADS57參與根系伸長、生長,而OsNRT2.3a可以與OsMADS57直接互作,推測OsNRT2.3a可能在OsMADS57調(diào)控的根系伸長中起作用[20]。此外,在0.5 mmol?L-1 NO3-濃度下,敲除黃瓜的CsNRT2.1基因顯著降低了黃瓜的根長和側(cè)根數(shù),說明CsNRT2.1可能也參與植物根系的生長調(diào)控,但具體機理未見報道[21]。
水稻高親和硝態(tài)氮轉(zhuǎn)運蛋白OsNRT2的伴侶蛋白OsNAR2.1參與水稻側(cè)根發(fā)育[22]。YUAN等[23]發(fā)現(xiàn):與野生型植物相比,在低NO3-濃度(0.2 mmol?L-1)下敲除OsNAR2.1能顯著抑制側(cè)根形成,降低根系NO3-含量,同時生長素由地上部到根部的運輸也減少;局部補充根系NO3-含量并不能消除OsNAR2.1基因突變對側(cè)根的抑制效應(yīng),說明OsNAR2.1可能同時通過NO3-吸收和NO3-信號途徑參與低NO3-濃度下水稻側(cè)根的發(fā)育。OsMADS57可能作為OsNAR2.1的下游基因參與側(cè)根發(fā)育的調(diào)控[24]。
除上述NRT1.1,NRT2及NAR外,研究還發(fā)現(xiàn)AtNRT1.5參與缺磷(P)和缺鉀(K)條件下植物根系的發(fā)育調(diào)控。CUI等[25]發(fā)現(xiàn):缺P條件下atnrt1.5突變體主根變長,側(cè)根減少,乙烯信號途徑可能參與了缺P條件下AtNRT1.5對植物根系發(fā)育的調(diào)控。缺K條件下,atnrt1.5突變體側(cè)根密度顯著降低,但具體的作用機制尚不清楚[26]。
NRT除通過影響生長素的運輸與合成參與根系結(jié)構(gòu)調(diào)控外,還參與脫落酸(ABA)、乙烯介導(dǎo)的根系發(fā)育調(diào)節(jié)。ABA、乙烯是抑制根系發(fā)育的重要激素,通過過高氮濃度誘導(dǎo)ABA和乙烯信號途徑上調(diào),進而抑制生長素合成及生長素信號途徑,并通過調(diào)節(jié)AFB3-miR393途徑抑制側(cè)根發(fā)生[27]。一些參與ABA運輸及乙烯信號途徑的NRT在上述側(cè)根抑制過程中起到一定作用。TIAN等[28]發(fā)現(xiàn):高NO3-濃度(10 mmol?L-1)下,當(dāng)乙烯合成增加的同時,AtNRT1.1表達水平上調(diào)而AtNRT2.1表達下調(diào),進一步研究證明,AtNRT1.1和AtNRT2.1表達受乙烯影響,高氮下NRT1.1上調(diào)和NRT2.1的下調(diào)受乙烯合成抑制劑(AVG)抑制,而被乙烯合成前體(ACC)誘導(dǎo)。chl1-5,nrt2.1-1,以及乙烯信號突變體(etr1和ein2)中的NRT1.1和NRT2.1表達模式不受高氮影響,說明乙烯是影響AtNRT1.1和AtNRT2.1表達的重要調(diào)控因素,通過影響AtNRT1.1和AtNRT2.1表達參與高氮濃度下擬南芥根系形態(tài)的構(gòu)成。除擬南芥外,也有報道發(fā)現(xiàn)蒺藜苜蓿MtNPF6.8與ABA共同參與NO3-對主根生長抑制的調(diào)控。mtnfp6.8突變體中NO3-對主根伸長的抑制作用消失,外源ABA能恢復(fù)nfp6.8突變體中NO3-對主根伸長的抑制作用;爪蟾卵母細胞電生理實驗發(fā)現(xiàn),MtNPF6.8具有ABA轉(zhuǎn)運功能,其作者推測MtNPF6.8作用于ABA上游,參與主根生長的調(diào)控[29]。
以上研究表明:NRT在根系發(fā)育調(diào)控中發(fā)揮重要作用,既可以作為根系生長發(fā)育關(guān)鍵激素生長素、ABA等的運轉(zhuǎn)載體,又參與其信號轉(zhuǎn)導(dǎo)途徑,并可能從轉(zhuǎn)錄、轉(zhuǎn)錄后調(diào)控等多個調(diào)控水平介導(dǎo)根系形態(tài)構(gòu)成。后續(xù)有必要深入開展NRT調(diào)控途徑上下游基因的挖掘,完善NRT介導(dǎo)的根系發(fā)育調(diào)控通路,為深入解析植物根系發(fā)育調(diào)控機理提供新思路。
2? NRT與非生物脅迫
植物吸收離子時,不同離子間存在協(xié)同或拮抗等互作效應(yīng)。有研究認為增加地上部陽(陰)離子的含量,在一定程度上會刺激負(陽)離子的吸收和轉(zhuǎn)運[47]。植物對NO3-的吸收過程受其他離子的影響,并也影響著其他離子的吸收運輸過程[48],如充足的NO3-有助于水稻中鎘(Cd)的積累[49],而具有高氮素利用率(NUE)的甘藍對Cd脅迫更敏感[42];過量的銅離子(Cu2+)會降低水稻根系對NO3-的吸收[50]。NRT作為NO3-吸收轉(zhuǎn)運蛋白,已被發(fā)現(xiàn)能通過調(diào)節(jié)NO3-轉(zhuǎn)運、信號途徑,或直接作為離子轉(zhuǎn)運子影響植物對其他離子(如K+,Zn2+,Na+,F(xiàn)e,Cd2+,Cu2+,Pb2+,Cl-)的吸收及體內(nèi)運轉(zhuǎn)過程,進而調(diào)控植物對這些離子脅迫的耐受性(表1)。2.1 NRT1.1與非生物脅迫
AtNRT1.1是雙親和硝酸鹽轉(zhuǎn)運蛋白,在高、低親和性NO3-吸收系統(tǒng)中均發(fā)揮重要作用。充足NO3-供應(yīng)條件下,AtNRT1.1對根系硝酸鹽的吸收貢獻率能達到70%左右[51]??紤]到植物離子間吸收的相互影響,推測AtNRT1.1介導(dǎo)大量NO3-吸收時會影響植物對陽離子的吸收,研究確實也發(fā)現(xiàn)AtNRT1.1參與調(diào)控植物Zn2+,Pb2+,F(xiàn)e2+,NH4+,H+,Cd2+,Na+,K+等多個陽離子的吸收過程(表1)。
AtNRT1.1跨膜轉(zhuǎn)運NO3-時均會耦合2份H+進行協(xié)同轉(zhuǎn)運,同時伴隨ATP 酶水解ATP向外釋放1份H+,即從生長介質(zhì)中每吸收一份NO3-,會消耗一份H+,進而導(dǎo)致根際pH值上升,因此,AtNRT1.1介導(dǎo)的NO3-吸收有助于緩解H+脅迫對植物的傷害[35]。此外,由于介質(zhì)堿化效應(yīng)降低了培養(yǎng)土壤Pb2+的生物可利用性,AtNRT1.1還能夠提高植物對Pb2+的耐受力[31]。
AtNRT1.1還能參與植物Cd脅迫耐受性調(diào)控,但作用機制與AtNRT1.5/1.8不同。后兩者通過調(diào)控Cd2+在地上地下的分配從而影響Cd2+脅迫耐受性,而AtNRT1.1通過間接調(diào)節(jié)根部吸收Cd2+的量,負向調(diào)控植物對Cd2+脅迫的耐受性,此過程依賴NO3-的吸收;可能由于NO3-是Cd2+的反離子,抑制根系NO3-吸收可同時減少植物對Cd2+的吸收,從而減輕Cd2+對植物的毒害[37]。相似的解釋可能也適用于AtNRT1.1介導(dǎo)的植物Zn2+,Na+,NH4+離子吸收轉(zhuǎn)運過程[30-31,38]。
K+作為NO3-重要的反離子,兩者在吸收轉(zhuǎn)運上存在明顯的正相關(guān)關(guān)系,也是AtNRT1.1影響植物對K+吸收的因素之一。當(dāng)外源K+,NO3-供應(yīng)充足時,K+,NO3-吸收及向地上運輸增多,相反,當(dāng)外源供應(yīng)不足時,兩者吸收及地上部分轉(zhuǎn)運均下降[48]。K+,NO3-吸收運轉(zhuǎn)的相關(guān)關(guān)系還與兩者早期信號轉(zhuǎn)導(dǎo)途徑部分重疊有關(guān):在缺乏外源K+條件下,Ca2+將信號傳遞給CBL1/CBL9,激活CIPK23活性,CIPK23通過磷酸化激活A(yù)KT1(低親和K+轉(zhuǎn)運子)/HAK5(高親和K+轉(zhuǎn)運子)轉(zhuǎn)運活性,CIPK23同時還能改變NRT1.1第101位蘇氨酸位點的磷酸化狀態(tài),轉(zhuǎn)換AtNRT1.1的低親或高親活性,使植物響應(yīng)外源硝酸鹽濃度的變化[51]。
2.2 AtNRT1.5,AtNRT1.8與非生物脅迫
逆境條件下,植物地上NO3-含量減少,更多的NO3-在根中積累,這種逆境下植物NO3-向根分配(SINAR)現(xiàn)象被認為與植物脅迫耐受能力密切相關(guān)[3]。當(dāng)NO3-在根系中積累的同時,Cd2+、鹽(NaCl)離子等在滲透及離子平衡等作用下可能也在根中積累,向地上部分運輸減少,從而減輕了Cd2+、鹽對地上部分的毒害。研究證實AtNRT1.5與AtNRT1.8參與了植物SINAR過程,其中AtNRT1.5負調(diào)控植物耐Cd2+、鹽及干旱脅迫,而AtNRT1.8能提高植物Cd2+耐受性[40-41]。兩者相反的調(diào)控作用與其在調(diào)節(jié)NO3-地上根系分配中的不同作用有關(guān):AtNPF7.3(AtNRT1.5)負責(zé)木質(zhì)部NO3-裝載,將NO3-運送到地上部分[52],而AtNPF7.2(AtNRT1.8)將NO3-從木質(zhì)部卸載,有利于NO3-在根系積累[41]。ET/JA(乙烯/茉莉酸)-NRT介導(dǎo)的信號途徑通過促進AtNRT1.8表達、抑制NRT1.5表達參與了SINAR過程[53](圖2(a))。
LIU等[54]發(fā)現(xiàn)ABA也參與了AtNRT1.5對植物Cd2+脅迫響應(yīng)的調(diào)控:Cd2+脅迫誘導(dǎo)植物體內(nèi)ABA合成,抑制AtNRT1.5表達(NRT1.8表達不受影響),從而促進NO3-向根部積累,增強植物Cd2+耐受性;與此同時根系液胞質(zhì)子泵活性(V-ATPase,V-PPase)增強,Cd2+向根液胞中貯存,減少細胞質(zhì)中Cd2+積累,進一步增強了植物對Cd2+的耐受性(圖2(b))。施用外源ABA能夠抑制甘藍中的Cd2+積累。
除NRT1.1外,NRT1.5也參與植物對K+的吸收利用。NRT1.5不僅是NO3-長距離轉(zhuǎn)運蛋白,還作為K+轉(zhuǎn)運子,直接參與K+經(jīng)由木質(zhì)部,由根向地上部分的運輸[39,52,56]。低K+(0.1 mmol?L-1)條件下,nrt1.5突變體功能回補后缺K+表型消失,說明NRT1.5能參與植物耐低K+響應(yīng)[39]。轉(zhuǎn)錄因子MYB59可與NRT1.5啟動子區(qū)域結(jié)合,調(diào)控NRT1.5的表達,高K+,NO3-濃度下,MYB59上調(diào)NRT1.5表達,促進K+,NO3-向地上部分運輸;反之抑制NRT1.5表達,降低地上部分K+,NO3-積累[57]。
2.3 其他NRT與非生物脅迫
其他NRT成員也參與植物非生物脅迫響應(yīng)。擬南芥CLCa突變體atclca-2中液胞CLCa轉(zhuǎn)運體活性受抑制,減少了與液胞Cd2+轉(zhuǎn)運子CAX4對質(zhì)子泵的競爭,從而促進了CAX4介導(dǎo)的液胞眾Cd2+的積累,提高了植物對Cd2+脅迫的耐受性[42]。在鹽脅迫下,突變體atnpf2.3 向地上部分轉(zhuǎn)運的NO3-減少,地上部分NO3-含量降低,生長受抑制[45],AtNPF2.3可能通過影響NO3-吸收改變鹽脅迫表型。
AtNPF2.4和AtNPF2.5通過不同方式參與植物Cl-調(diào)節(jié),影響植物對鹽脅迫的耐受性。AtNPF2.4負責(zé)木質(zhì)部Cl-裝載,參與了Cl-在植物體內(nèi)的長距離運輸。敲除npf2.4后地上部Cl-累積減少,而過表達npf2.4則使Cl-增加,說明NPF2.4參與了在鹽脅迫下擬南芥根系木質(zhì)部Cl-的調(diào)節(jié)[43]。AtNPF2.5表達受NaCl顯著誘導(dǎo),與野生型相比,擬南芥npf2.5 T-DNA敲除突變株的根Cl-流出量顯著降低,而Cl-在地上部大量積累量,說明AtNPF2.5參與地上部和根部的Cl-卸載[44],有助于提高植物對鹽脅迫的耐受性。
水稻中發(fā)現(xiàn)NRT與磷吸收利用有關(guān)。水稻中過表達OsNRT2.3b能顯著提高植株總P含量[58]。HU等[46]發(fā)現(xiàn):在NO3-,P均充足條件下,osnrt1.1b突變體生長遲緩,推測OsNRT1.1b可能與植物P吸收途徑有關(guān)聯(lián)。進一步研究發(fā)現(xiàn):在NO3-充足條件下,OsNRT1.1B通過水解P信號阻遏物OsSPX4并釋放P信號關(guān)鍵轉(zhuǎn)錄因子OsPHR2,激活P同化基因,參與了植物P信號的傳導(dǎo)過程。MEDICI等[59]發(fā)現(xiàn):NRT1.1還通過與E2泛素結(jié)合酶PHO2在轉(zhuǎn)錄水平的相互影響,參與植物缺P響應(yīng)途徑,證實了NRT1.1在植物氮磷交互信號途徑中的重要性。
以上研究結(jié)果說明,NRT不僅對于氮營養(yǎng)意義重大,在其他養(yǎng)分離子的吸收運轉(zhuǎn)中也發(fā)揮重要作用。開展NRT介導(dǎo)的其他礦質(zhì)離子吸收運轉(zhuǎn)研究,將有助于闡明離子吸收間的協(xié)作或拮抗機制,對綜合提高植物養(yǎng)分吸收利用效率,降低有害離子積累具有重要意義。
3? 總? 結(jié)
植物NRT不僅參與NO3-的吸收及運轉(zhuǎn),還能通過激素運轉(zhuǎn)、信號轉(zhuǎn)導(dǎo)途徑參與植物根系生長及構(gòu)型調(diào)控;其能通過NO3-吸收、信號傳導(dǎo)或直接參與目標離子吸收運轉(zhuǎn)等途徑,參與植物對其他離子的吸收利用,并影響與這些離子脅迫相關(guān)的各種非生物脅迫表型。部分NRT參與根系發(fā)育與非生物脅迫的反應(yīng)比較明確,但作用機制還有待進一步深入研究。部分兼顧根系發(fā)育、營養(yǎng)吸收轉(zhuǎn)運和抗逆響應(yīng)的NRT可能在綜合改良作物養(yǎng)分利用效率及抗逆性中發(fā)揮重要作用,具有潛在的應(yīng)用價值。但是目前針對NRT的研究主要集中在擬南芥等模式作物上,在其他重要經(jīng)濟作物中的相關(guān)研究還較少,后續(xù)有必要在其他作物中開展相關(guān)研究,充分挖掘NRT在作物養(yǎng)分利用及非生物脅迫中的潛力,解析NRT在多種養(yǎng)分或重金屬離子吸收利用中的調(diào)控途徑,為綜合提高植物養(yǎng)分利用效率及品質(zhì)改良提供理論基礎(chǔ)。
參考文獻:
[1] WITTGENSTEIN N J,LE C H,HAWKINS B J,et al.Evolutionary classification of ammonium,nitrate,and peptide transporters in land plants [J].BMC Evolutionary Biology,2014,14:11.
[2] DECHORGNAT J,NGUYEN C T,ARMENGAUD P,et al.From the soil to the seeds:the long journey of nitrate in plants [J].Journal of Experimental Botany,2011,62(4):1349-1359.
[3] ZHANG G B,MENG S,GONG J M.The expected and unexpected roles of nitrate transporters in plant abiotic stress resistance and their regulation [J].International Journal of Molecular Sciences,2018,19(11):e3535.
[4] 宋田麗,周建建,徐晨曦,等.植物硝酸鹽轉(zhuǎn)運蛋白功能及表達調(diào)控研究進展 [J].上海師范大學(xué)學(xué)報(自然科學(xué)版),2017,46(5):740-750.
SONG T L,ZHOU J J,XU C X,et al.Progress in function and regulation of nitrate transporters in plants [J].Journal of Shanghai Normal University (Natural Sciences),2017,46(5):740-750.
[5] BOUGUYON E,GOJON A,NACRY P.Nitrate sensing and signaling in plants [J].Seminars in Cell and Developmental Biology,2012,23(6):648-654.
[6] BEECKMAN T,F(xiàn)RIML J.Nitrate contra auxin:nutrient sensing by roots [J].Developmental Cell,2010,18(6):877-878.
[7] MAGHIAOUI A,BOUGUYON E,CUESTA C,et al.The Arabidopsis NRT1.1 transceptor coordinately controls auxin biosynthesis and transport to regulate root branching in response to nitrate [J].Journal of Experimental Botany,2020,71:4480-4494.
[8] KROUK G,LACOMBE B,BIELACH A,et al.Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants [J].Developmental Cell,2010,18(6):927-937.
[9] ZHANG X,CUI Y,YU M,et al.Phosphorylation-mediated dynamics of nitrate transceptor NRT1.1 regulate auxin flux and nitrate signaling in lateral root growth [J].Plant Physiology,2019,181(2):480-498.
[10] BOUGUYON E,PERRINE-WALKER F,PERVENT M,et al.Nitrate controls root development through posttranscriptional regulation of the NRT1.1/NPF6.3 transporter/sensor [J].Plant Physiology,2016,172(2):1237-1248.
[11] REMANS T,NACRY P,PERVENT M,et al.The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches [J].Proceedings of the National Academy of Sciences of the United States of America,2006,103(50):19206-19211.
[12] DESNOS T.Root branching responses to phosphate and nitrate [J].Current Opinion in Plant Biology,2008,11(1):82-87.
[13] ASIM M,ULLAH Z,OLUWASEUN A,et al.Signalling overlaps between nitrate and auxin in regulation of the root system architecture:insights from the Arabidopsis thaliana [J].International Journal of Molecular Sciences,2020,21(8):2880.
[14] UNDURRAGA S.F,IBARRA-HENRIQUEZ C,F(xiàn)REDES I,et al.Nitrate signaling and early responses in Arabidopsis roots [J].Journal of Experimental Botany,2017,68(10):2541-2551.
[15] VIDAL E A,ARAUS V,LU C,et al.Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana [J].Proceedings of the National Academy of Sciences of the United States of America,2010,107(9):4477-4482.
[16] CANALES J,CONTRERAS-L?PES O,?LVAREZ J M.et al.Nitrate induction of root hair density is mediated by TGA1/TGA4 and CPC transcription factors in Arabidopsis thaliana [J].Plant Journal,2017,92(2):305-316.
[17] LITTLE D Y,RAO H,OLIVA S,et al.The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues [J].Proceedings of the National Academy of Sciences of the United States of America,2005,102(38):13693-13698.
[18] REMANS T,NACRY P,PERVENT M,et al.A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis [J].Plant Physiology,2006,140(3):909-921.
[19] NAZ M,LUO B B,GUO X Y,et al.Overexpression of nitrate transporter OsNRT2.1 enhances nitrate-dependent root elongation [J].Genes,2019,10(4):290.
[20] HUANG S J,LIANG Z H,CHEN S,et al.A transcription factor,OsMADS57,regulates long-distance nitrate transport and root elongation [J].Plant Physiology,2019,180(2):882-895.
[21] LI Y,LI J,YAN Y,et al.Knock-down of CsNRT2.1,a cucumber nitrate transporter,reduces nitrate uptake,root length,and lateral root number at low external nitrate concentration [J].Frontiers in Plant Science,2018,9:e722.
[22] ISLAM M S.Sensing and uptake of nitrogen in rice plant:a molecular view [J].Rice Science,2019,26(6):343-355.
[23] YUAN J Z,CUI Y N,LI X T,et al.ZxNPF7.3/NRT1.5 from the xerophyte Zygophyllum xanthoxylum modulates salt and drought tolerance by regulating NO3-,Na+ and K+ transport [J].Environmental and Experimental Botany,2020,177:104123.
[24] 陳思.硝運輸輔助蛋白基因OsNAR2.1參與硝酸鹽調(diào)控水稻側(cè)根發(fā)育的機制 [D].南京:南京農(nóng)業(yè)大學(xué),2015.
CHEN S.The nitrate transport auxiliary protein gene OsNAR2.1 participates in the mechanism of nitrate-regulated rice lateral root development [D].Nanjing:Nanjing Agricultural University,2015.
[25] CUI Y N,LI X T,YUAN J Z,et al.Nitrate transporter NPF7.3/NRT1.5 plays an essential role in regulating phosphate deficiency responses in Arabidopsis [J].Biochemical and Biophysical Research Communications,2019,508(1):314-319.
[26] ZHENG Y,DRECHSLER N,RAUSCH C,et al.The Arabidopsis nitrate transporter NPF7.3/NRT1.5 is involved in lateral root development under potassium deprivation [J].Plant Signaling and Behavior,2016,11(5):1176819.
[27] TEIXEIRA J A S,TUSSCHER K H.The systems biology of lateral root formation:connecting the dots [J].Molecular Plant,2019,12(6):784-803.
[28] TIAN Q Y,SUN P,ZHANG W H.Ethylene is involved in nitrate-dependent root growth and branching in Arabidopsis thaliana [J].New Phytologist,2009,184(4):918-931.
[29] PELLIZZARO A,CLOCHARD T,CUKIER C,et al.The nitrate transporter MtNPF6.8 (MtNRT1.3) transports abscisic acid and mediates nitrate regulation of primary root growth in Medicago truncatula [J].Plant Physiology,2014,166(4):2152-2165.
[30] JIAN S F,LIAO Q,SONG H X,et al.NRT1.1-related NH4+ toxicity is associated with a disturbed balance between NH4+ uptake and assimilation [J].Plant Physiology,2018,178(4):1473-1488.
[31] PAN W,YOU Y,WENG Y N,et al.Zn stress facilitates nitrate transporter 1.1-mediated nitrate uptake aggravating Zn accumulation in Arabidopsis plants [J].Ecotoxicology and Environmental Safety,2020,190:110104.
[32] IQBAL A,QIANG D,ALAMZEB M,et al.Untangling the molecular mechanisms and functions of nitrate to improve nitrogen use efficiency [J].Journal of the Science of Food and Agriculture,2020,100(3):904-914.
[33] GUO F,YOUNG J,CRAWFORD N M.The nitrate transporter AtNRT1.1 (CHL1) functions in stomatal opening and contributes to drought susceptibility in Arabidopsis [J].The Plant Cell,2003,15(1):107-117.
[34] ZHU J,F(xiàn)ANG X Z,DAI Y J,et al.Nitrate transporter 1.1 alleviates lead toxicity in Arabidopsis by preventing rhizosphere acidification [J].Journal of Experimental Botany,2019,70(21):6363-6374.
[35] FANG X Z,TIAN W H,LIU X X,et al.Alleviation of proton toxicity by nitrate uptake specifically depends on nitrate transporter 1.1 in Arabidopsis [J].New Phytologist,2016,211(1):149-158.
[36] 方先芝.NRT1.1在植物耐酸和低鉀脅迫中的作用及機制 [D].杭州:浙江大學(xué),2019.
FANG X Z.The role and mechanism of NRT1.1 in plant acid tolerance and low potassium stress [D].Hangzhou:Zhejiang University,2019.
[37] MAO Q Q,GUAN M Y,LU K X,et al.Inhibition of nitrate transporter 1.1-controlled nitrate uptake reduces cadmium uptake in Arabidopsis [J].Plant Physiology,2014,166(2):934-944.
[38] ?LVAREZ-ARAG?N R,RODR?GEU-NAVARRO A.Nitrate-dependent shoot sodium accumulation and osmotic functions of sodium in Arabidopsis under saline conditions [J].Plant Journal,2017,91(2):208-219.
[39] LI H,YU M,DU X Q,et al.NRT1.5/NPF7.3 functions as a proton-coupled H+/K+ antiporter for K+ loading into the xylem in Arabidopsis [J].Plant Cell,2017,29(8):2016-2026.
[40] CHEN C Z,L? X F,LI J Y,et al.Arabidopsis NRT1.5 is another essential component in the regulation of nitrate reallocation and stress tolerance [J].Plant Physiology,2012,159(4):1582-1590.
[41] LI J Y,F(xiàn)U Y L,PIKE S M,et al.The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance [J].Plant Cell,2010,22(5):1633-1646.
[42] LI H,HU B,WANG W,et al.Identification of microRNAs in rice root in response to nitrate and ammonium [J].Journal of Genetics and Genomics,2016,43(11):651-661.
[43] LI B,BYRT C,QIU J,et al.Identification of a stelar-localized transport protein that facilitates root-to-shoot transfer of chloride in Arabidopsis [J].Plant Physiology,2016,170(2):1014-1029.
[44] LI B,QIU J,JAYAKANNAN M,et al.AtNPF2.5 modulates chloride (Cl-) efflux from roots of Arabidopsis thaliana [J].Frontiers in Plant Science,2017,7:e2013.
[45] TAOCHY C,GAILLARD I,IPOTESI E,et al.The Arabidopsis root stele transporter NPF2.3 contributes to nitrate translocation to shoots under salt stress [J].The Plant Journal,2015,83(3):466-479.
[46] HU B,JIANG Z,WANG W,et al.Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants [J].Nature Plants,2019,5(4):401-413.
[47] SAGI M,DOVRAT A,KIPNIS T,et al.Ionic balance,biomass production,and organic nitrogen as affected by salinity and nitrogen source in annual ryegrass [J].Journal of Plant Nutrition,1997,20(10):1291-1316.
[48] RADDATZ N,MORALES DE LOS RIOS L,LINDAHL M,et al.Coordinated transport of nitrate,potassium,and sodium [J].Frontiers in Plant Science,2020,11:e247.
[49] YANG Y J,XIONG J,CHEN R J,et al.Excessive nitrate enhances cadmium (Cd) uptake by up-regulating the expression of OsIRT1 in rice (Oryza sativa) [J].Environmental and Experimental Botany,2016,122:141-149.
[50] HUO K,SHANGGUAN X,XIA Y,et al.Excess copper inhibits the growth of rice seedlings by decreasing uptake of nitrate [J].Ecotoxicology and Environmental Safety,2020,190:e110105.
[51] HUANG N C,CHIANG C S,CRAWFORD N M,et al.CHL1 encodes a component of the low-affinity nitrate uptake system in Arabidopsis and shows cell type-specific expression in roots [J].The Plant Cell,1996,8(12):2183-2191.
[52] LIN S H,KUO H F,CANIVENC G,et al.Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport [J].Plant Cell,2008,20:2514-2528.
[53] ZHANG G B,YI H Y,GONG J M.The Arabidopsis ethylene/Jasmonic acid-NRT signaling module coordinates nitrate reallocation and the trade-off between growth and environmental adaptation [J].Plant Cell,2014,26(10):3984-3998.
[54] LIU K H,NIU Y J,KONISHI M,et al.Discovery of nitrate-CPK-NLP signalling in central nutrient-growth networks [J].Nature,2017,545(7654):311-316.
[55] KROUK G,CRAWFORD N M,CORUZZI G M,et al.Nitrate signaling:adaptation to fluctuating environments [J].Current Opinion in Plant Biology,2010,13(3):265-272.
[56] MENG S,PENG J S,HEE Y N,et al.Arabidopsis NRT1.5 mediates the suppression of nitrate starvation-induced leaf senescence by modulating foliar potassium level [J].Molecular Plant,2016,9(3):461-470.
[57] DU X,WANG F,LI H,et al.The transcription factor MYB59 regulates K+/NO3- translocation in the Arabidopsis response to low K+ stress [J].The Plant Cell,2019,31(3):699-714.
[58] FENG H,LI B,ZHI Y,et al.Overexpression of the nitrate transporter,OsNRT2.3b,improves rice phosphorus uptake and translocation [J].Plant Cell Reports,2017,36(8):1287-1296.
[59] MEDICI A,SZPONARSKI W,DANGEVILLE P,et al.Identification of molecular integrators shows that nitrogen actively controls the phosphate starvation response in plants [J].The Plant Cell,2019,31(5):1171-1184.
(責(zé)任編輯:顧浩然,郁慧)