亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        水稻抗稻瘟病分子機(jī)制研究進(jìn)展

        2019-11-18 07:06:52曹妮陳淵季芝娟曾宇翔楊長(zhǎng)登梁燕
        中國(guó)水稻科學(xué) 2019年6期
        關(guān)鍵詞:水稻植物

        曹妮 陳淵 季芝娟 曾宇翔 楊長(zhǎng)登 梁燕

        水稻抗稻瘟病分子機(jī)制研究進(jìn)展

        曹妮 陳淵 季芝娟 曾宇翔 楊長(zhǎng)登*梁燕*

        中國(guó)水稻研究所 水稻生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室, 杭州 310006;*通訊聯(lián)系人, E-mail: ycd311400@163.com; ly318318@126.com)

        稻瘟病是危害世界水稻生產(chǎn)最嚴(yán)重的真菌病害之一。稻瘟病菌生理小種變異快,水稻品種的抗性一般僅能維持3~5年。培育和種植抗性品種是目前最經(jīng)濟(jì)有效的措施。近年來(lái),對(duì)稻瘟病菌致病機(jī)制和抗性基因分子機(jī)理的系統(tǒng)研究,加深了對(duì)該病原菌-宿主系統(tǒng)中病原相關(guān)分子模式誘導(dǎo)的免疫反應(yīng)機(jī)制和病原菌效應(yīng)蛋白誘導(dǎo)的免疫反應(yīng)機(jī)制的了解。本文綜述了水稻抗稻瘟病的兩種天然免疫機(jī)制研究的最新進(jìn)展,并對(duì)目前水稻抗稻瘟病分子機(jī)制研究中急需解決的問(wèn)題和挑戰(zhàn)進(jìn)行探討和展望。

        水稻;稻瘟?。豢共』?;無(wú)毒基因;分子機(jī)制

        水稻是最重要的糧食作物之一,全球有近一半的人口以水稻為主食,水稻生產(chǎn)在解決糧食安全問(wèn)題中有著舉足輕重的地位[1]。到2035年,世界水稻產(chǎn)量需增加26%(2010同比)才能滿足因人口快速增長(zhǎng)而增加的糧食需求[2],但水稻的高產(chǎn)、穩(wěn)產(chǎn)、優(yōu)質(zhì)一直受到病蟲(chóng)害的制約。稻瘟病是一種由子囊真菌引起的世界性的水稻病害,為植物十大真菌病害之一[3]。每年在全球各水稻種植區(qū)都會(huì)有不同程度的發(fā)生,且因此造成的產(chǎn)量損失達(dá)11%~30%[4],經(jīng)濟(jì)損失高達(dá)660億美元,足夠養(yǎng)活6千萬(wàn)人口[5]。2013?2017年我國(guó)水稻稻瘟病年平均危害面積在7500萬(wàn)hm2左右(數(shù)據(jù)來(lái)源于全國(guó)農(nóng)業(yè)技術(shù)推廣服務(wù)中心網(wǎng)站,https://www.natesc.org.cn/sites/ MainSite/)。在水稻品種審定中,稻瘟病抗性是不可或缺的關(guān)鍵條件。發(fā)掘抗性基因以培育抗性品種是目前控制稻瘟病最經(jīng)濟(jì)有效、安全健康與環(huán)境友好的策略。水稻與稻瘟病菌互作系統(tǒng)是植物-微生物互作研究的模式系統(tǒng)之一。本文總結(jié)了水稻抗稻瘟病分子機(jī)制的研究進(jìn)展,以期通過(guò)對(duì)基礎(chǔ)理論的認(rèn)知,一方面對(duì)該領(lǐng)域未來(lái)的研究難點(diǎn)和熱點(diǎn)進(jìn)行討論;另一方面為新的病害防控措施的提出提供新思路,為育種新技術(shù)加持的抗病育種奠定理論基礎(chǔ)。

        1 水稻免疫反應(yīng)分子機(jī)制

        植物在與病原菌長(zhǎng)期協(xié)同進(jìn)化過(guò)程中形成了多種免疫機(jī)制抵抗病原物的入侵。目前研究較透徹的有兩種[6]:病原相關(guān)分子模式(pathogen-associated molecular patterns, PAMPs)誘導(dǎo)的免疫反應(yīng)機(jī)制(PAMP-triggered immunity, PTI)和病原菌效應(yīng)蛋白(effector)誘導(dǎo)的免疫反應(yīng)機(jī)制(effector-triggered immunity, ETI)。PTI是由植物細(xì)胞表面的模式識(shí)別受體(pattern-recognition receptors, PRRs)識(shí)別病原菌分泌的PAMPs分子而激發(fā)的非特異性免疫反應(yīng)。病原菌為了克服植物PTI反應(yīng),進(jìn)化出能抑制植物PTI反應(yīng)的效應(yīng)蛋白,該蛋白能誘導(dǎo)植物感病(ETS)。植物為了克服病原菌的ETS反應(yīng),進(jìn)化出了第二種防御機(jī)制ETI,即通過(guò)編碼抗性蛋白識(shí)別病原物效應(yīng)蛋白并誘發(fā)更激烈的免疫反應(yīng)。ETI只對(duì)與植物長(zhǎng)期協(xié)同進(jìn)化中形成“基因?qū)颉标P(guān)系的病原菌有效。但這兩種免疫機(jī)制并不能完全解釋寄主與病原物之間的免疫關(guān)系[7]。植物RNAi在識(shí)別病原菌雙鏈RNA后使之沉默,從而達(dá)到抑制病原菌入侵的目的。該機(jī)制與PTI相似,病原菌為了克服這一機(jī)制也進(jìn)化出抑制子來(lái)抑制植物RNA沉默反應(yīng),這一過(guò)程類似ETS。隨后抑制子被植物抗性蛋白識(shí)別,激發(fā)了類似ETI的抗性反應(yīng)[8]。

        1 水稻抗稻瘟病PTI防御機(jī)制

        植物PTI防御機(jī)制中,植物模式識(shí)別受體PRRs分為兩類,一是胞外富含亮氨酸重復(fù)序列與胞內(nèi)激酶的類受體蛋白激酶(receptor-like kinases, RLKs);二是胞內(nèi)無(wú)激酶的類受體蛋白(receptor-like proteins, RLPs),且該類受體蛋白(RLPs)因缺乏胞內(nèi)激酶的特性,需要與其他含有胞內(nèi)激酶的蛋白互作從而誘導(dǎo)下游免疫反應(yīng)[9]。水稻基因組具有超過(guò)1131個(gè)類受體蛋白激酶(RLKs)和90個(gè)無(wú)激酶的類受體蛋白(RLPs)基因[10],且編碼蛋白可通過(guò)識(shí)別植物細(xì)胞表面的各種信號(hào)參與調(diào)控植物生理生化過(guò)程[11]。植物PRRs可識(shí)別病原菌PAMPs,PAMPs在病原菌中是一種保守的結(jié)構(gòu)分子,如延伸因子(elongation factor Tu, EF-Tu)、幾丁質(zhì)、鞭毛蛋白(flagellin peptide, flg22)、脂多糖(lipopolys- accharides, LPS)、肽聚糖(peptidoglycan, PGN)等[12]。

        擬南芥中的PRR受體FLS2(Flagellinsensing 2)是一個(gè)絲氨酸/蘇氨酸類受體蛋白激酶,可特異性識(shí)別細(xì)菌鞭毛蛋白N端的一段含22個(gè)氨基酸殘基的保守性多肽flg22,并激活下游抗病反應(yīng)[13-14]。水稻中的FLS2同源蛋白OsFLS2可直接識(shí)別flg22,激發(fā)水稻的抗病反應(yīng)。過(guò)表達(dá)可增強(qiáng)水稻對(duì)flg22的應(yīng)答。將水稻轉(zhuǎn)入擬南芥突變體可使其缺陷表型恢復(fù)[15]。OsFLS2還可識(shí)別FLS2所不能識(shí)別的flg22衍生物,表明該蛋白特異性識(shí)別在不同物種間存在差異。Lu等[16]鑒定了一個(gè)富含亮氨酸的受體蛋白激酶BIK1(botrytis-introduced kinase 1),是絲裂原活化蛋白(mitogen-activated protein, MAP)信號(hào)轉(zhuǎn)導(dǎo)通路中的必需組分,BIK1將微生物相關(guān)分子模式(micro-associated molecular pattern, MAMP)受體復(fù)合物與下游胞內(nèi)信號(hào)傳導(dǎo)聯(lián)系起來(lái)。水稻中,的表達(dá)可被BTH、SA、ACC和HA等抗病信號(hào)分子激活,在水稻與稻瘟病菌的非親和反應(yīng)中上調(diào)表達(dá),而過(guò)表達(dá)的轉(zhuǎn)基因后代對(duì)稻瘟病的抗性顯著提高[17],表明在水稻免疫應(yīng)答方面有一定作用。Sun等[18]發(fā)現(xiàn)FLS2可與BAK1(BR11-associated receptor kinase 1)結(jié)合并異構(gòu)化,且FLS2與共受體BAK1以及BIK1一起形成動(dòng)態(tài)復(fù)合物來(lái)識(shí)別鞭毛蛋白并啟動(dòng)免疫信號(hào),由此說(shuō)明FLS是以異源二聚化形式來(lái)識(shí)別病原菌PAMPs的。

        幾丁質(zhì)是真菌細(xì)胞壁的重要組成成分,也是激活植物免疫反應(yīng)的一類PAMPs。研究表明,在擬南芥中,一類含有細(xì)胞外溶解素基序(lysin motif- containing proteins, LysM)結(jié)構(gòu)域的類受體蛋白激酶CERK1(chitin elicitor receptor kinase 1)能夠識(shí)別幾丁質(zhì)和肽聚糖等PAMPs,激發(fā)植物免疫反應(yīng)[19]。在水稻中,幾丁質(zhì)先與能夠編碼含有溶解素基序(LysM)結(jié)構(gòu)域受體蛋白的幾丁質(zhì)殼寡糖激發(fā)子結(jié)合蛋白OsCEBiP(Chitin elicitor binding protein)結(jié)合,OsCEBiP再與OsCERK1形成復(fù)合體激活下游抗病反應(yīng)[20]。水稻敲除突變體抑制了幾丁質(zhì)激發(fā)的免疫反應(yīng),對(duì)稻瘟病的抗性減弱。RNAi水稻植株也表現(xiàn)為對(duì)稻瘟病抗性減弱[21],說(shuō)明和在對(duì)水稻抗稻瘟病反應(yīng)中是必需的,缺一不可。Liu等[22]報(bào)道含有細(xì)胞外溶解素基序(LysM)結(jié)構(gòu)域的類受體蛋白LYP4和LYP6也參與了識(shí)別幾丁質(zhì)的過(guò)程。OsCERK1作為L(zhǎng)YP4和LYP6結(jié)合的銜接子,在水稻先天免疫機(jī)制中的幾丁質(zhì)和肽聚糖信號(hào)傳導(dǎo)中發(fā)揮雙重作用。此外,受體細(xì)胞質(zhì)激酶OsRLCK185和OsRLCK176在幾丁質(zhì)和肽聚糖信號(hào)通路中的OsCERK1下游起作用,表明幾丁質(zhì)和肽聚糖共享細(xì)胞內(nèi)信號(hào)組分[23]。OsCERK1與OsRLCK185互作,識(shí)別幾丁質(zhì)后,OsCERK1磷酸化OsRLCK185,引發(fā)水稻細(xì)胞內(nèi)的免疫應(yīng)答。同源蛋白OsRLCK57、OsRLCK107和OsRLCK118 RNAi水稻抑制了水稻幾丁質(zhì)和肽聚糖介導(dǎo)的免疫反應(yīng),包括防御基因表達(dá)、活性氧積累等,表明在水稻中,OsRLCK57、OsRLCK107和OsRLCK118正向調(diào)節(jié)幾丁質(zhì)和肽聚糖介導(dǎo)的抗病反應(yīng)[24]。在擬南芥中,當(dāng)宿主細(xì)胞識(shí)別幾丁質(zhì)時(shí),細(xì)胞膜上的AtCERK1將通過(guò)其胞外LysM二聚化,進(jìn)而自身磷酸化來(lái)激活下游防衛(wèi)反應(yīng)[25]。由此可見(jiàn),無(wú)論是AtCERK1的同源二聚化還是FLS2與BAK1的異源二聚化,模式識(shí)別受體PRRs被激活都需要多個(gè)激酶相互作用,以復(fù)合體形式識(shí)別病原菌PAMPs。

        2 水稻抗稻瘟病ETI防御機(jī)制

        ETI是由植物中的特異性抗病蛋白專化性識(shí)別病原菌特定效應(yīng)子蛋白,從而激活植物免疫反應(yīng)。本文分兩方面介紹稻瘟病ETI防御機(jī)制,一是稻瘟病抗性基因與無(wú)毒基因的發(fā)掘與克?。欢撬究剐缘鞍着c稻瘟病菌無(wú)毒蛋白之間的互作相關(guān)機(jī)制。

        2.1 水稻稻瘟病抗性基因

        近年來(lái),科學(xué)家就水稻稻瘟病抗性基因進(jìn)行了較為深入的系統(tǒng)研究,利用分子標(biāo)記手段定位到100多個(gè)稻瘟病主效抗性基因,已克隆了36個(gè)[26](表1)。這些基因編碼蛋白分為四類:1)核苷酸結(jié)合位點(diǎn)(NBS)-富含亮氨酸重復(fù)序列(LRR)蛋白(NBS-LRR),如和。2)受體蛋白激酶(RLK),如克隆自水稻品種地谷,編碼細(xì)胞外富含B-凝集素結(jié)構(gòu)域和細(xì)胞內(nèi)絲氨酸/蘇氨酸激酶結(jié)構(gòu)域的跨膜受體蛋白激酶[27],為組成型表達(dá)的單拷貝顯性基因,對(duì)生理小種ZB15具有特異性抗性,其蛋白質(zhì)定位于細(xì)胞質(zhì)膜。的第441位單個(gè)氨基酸差異區(qū)分抗感等位基因。3)富含脯氨酸結(jié)構(gòu)域蛋白,如為隱性基因[28],其編碼蛋白結(jié)構(gòu)域共有5個(gè)富含脯氨酸的區(qū)域,抗性品種Owarihatamochi中的基因與感病品種Aichiasahi中的等位基因相比,第一個(gè)與第二個(gè)脯氨酸結(jié)構(gòu)域分別有21 和48 bp的缺失,使得抗性提高。4)富含ARM重復(fù)序列蛋白,如近期鑒定的編碼一個(gè)非典型的廣譜抗性蛋白,該蛋白包含4個(gè)Armadillo重復(fù)區(qū),的抗病性與兩個(gè)編碼NBS-LRR蛋白的抗病基因和2有關(guān),并且可以編碼定位于細(xì)胞質(zhì)的兩種異構(gòu)體。同源分析結(jié)果表明,基因是單子葉所獨(dú)有的,這也說(shuō)明單子葉植物存在特有的抗病系統(tǒng)[29]。5)富含四肽重復(fù)序列(Tetratricopeptide repeats, TPRs)蛋白,如Chen等[30]鑒定并克隆的是對(duì)水稻稻瘟病和白葉枯病均具有廣譜抗性的隱性基因。Bsr-k1蛋白可以結(jié)合與免疫應(yīng)答相關(guān)的基因家族中的大多數(shù)mRNA,使得水稻體內(nèi)木質(zhì)素合成減少,削弱免疫應(yīng)答;第2447位點(diǎn)單堿基G突變?yōu)锳后導(dǎo)致編碼蛋白Bsr-k1功能喪失,基因家族中的mRNA積累,木質(zhì)素合成增多,功能喪失賦予了水稻對(duì)稻瘟病菌和黃單胞桿菌的廣譜抗性。的免疫反應(yīng)相對(duì)溫和,對(duì)水稻的主要農(nóng)藝性狀沒(méi)有明顯影響,該研究證明了通過(guò)點(diǎn)突變提升水稻廣譜持久抗病性路徑的可行性,為水稻廣譜抗性育種提供了新基因和新策略。

        目前已定位的稻瘟病抗性基因多集中位于第6、11染色體上,少量抗性基因定位于第1、9、12染色體上,在第2、4、8染色體上各有一個(gè)抗性基因。大多數(shù)廣譜抗性基因以多基因或基因簇的形式存在,如第6和12染色體的著絲粒處以及第11染色體的長(zhǎng)臂處,多為復(fù)等位基因或緊密連鎖基因。第6染色體短臂靠近著絲粒處的抗性基因有等[31]。來(lái)自野生稻,抗來(lái)自13個(gè)國(guó)家或地區(qū)的43個(gè)菌株[32];抗來(lái)自我國(guó)13個(gè)水稻栽培區(qū)的792個(gè)菌株[33];來(lái)源于我國(guó)水稻品種谷梅4號(hào),抗來(lái)自世界各地的50個(gè)菌株[34];克隆自日本品種TKM1,對(duì)7個(gè)菌株表現(xiàn)出抗性[35];第11染色體短臂上的抗性基因簇,如39不僅抗中國(guó)廣東、江蘇、貴州、吉林、云南5個(gè)省的475個(gè)菌株,且對(duì)華南稻區(qū)的菌株表現(xiàn)高抗[36];對(duì)ZA、ZB、ZC等生理小種都表現(xiàn)出高抗[37];來(lái)源于野生稻,對(duì)來(lái)自云南省的16個(gè)菌株表現(xiàn)高抗[38];第11染色體的長(zhǎng)臂上存在抗性基因簇位點(diǎn),/54是從越南品種Tetep中鑒定出來(lái)的,對(duì)來(lái)自印度的稻瘟病菌株表現(xiàn)出高抗[39];來(lái)自西非水稻品種LAC23,對(duì)來(lái)自中國(guó)8個(gè)稻區(qū)的稻瘟病菌株表現(xiàn)出抗性,對(duì)華南稻區(qū)的菌株表現(xiàn)顯著抗性[40];第12染色體的抗稻瘟病主效基因與其對(duì)應(yīng)的無(wú)毒基因Avr-互作[41],并且與2和形成基因簇,對(duì)稻瘟病表現(xiàn)出顯著的廣譜抗性[29]。

        2.2 稻瘟病無(wú)毒基因

        植物抗性基因與病原菌無(wú)毒基因之間的互作關(guān)系符合經(jīng)典基因?qū)驅(qū)W說(shuō):植物抗性蛋白能夠識(shí)別病原菌分泌的無(wú)毒蛋白,從而激發(fā)下游植物抗性反應(yīng)。在病原菌中鑒定了與抗性基因相對(duì)應(yīng)的無(wú)毒基因24個(gè),其中有12個(gè)已被克隆,如、、、、、等(表1)。已被克隆的無(wú)毒基因中除和之外都編碼少于200個(gè)氨基酸的分泌蛋白,而編碼分泌中性鋅指蛋白酶[41],不分泌但編碼次級(jí)代謝物并產(chǎn)生雜合蛋白[45]。

        2.3 水稻抗性蛋白與稻瘟病菌無(wú)毒蛋白之間的互作機(jī)制

        目前已成對(duì)的克隆抗性基因和無(wú)毒基因有/,/,/,/,/,/,/,/和/。其中,除/和/之外,其余7對(duì)抗性蛋白-無(wú)毒蛋白的分子互作關(guān)系已被詳細(xì)解析。該7對(duì)水稻抗性蛋白與稻瘟病菌無(wú)毒蛋白之間的互作關(guān)系可分為兩類,一類是兩者直接互作:分別是Pita/AVR-Pita、Pik/AVR-Pik、Pia/AVR-Pia、Pi-CO39/ AVR-PiCO39;另一類是兩者間接互作,分別是Piz-t/AvrPiz-t和Pii/AVR-Pii。

        抗性蛋白-無(wú)毒蛋白直接互作有三種方式:一是一種抗病蛋白對(duì)應(yīng)一種無(wú)毒蛋白,符合經(jīng)典基因?qū)驅(qū)W說(shuō),Pi-ta與AVR-Pita是最早被報(bào)道的植物抗性蛋白,兩者可直接互作,從而激活抗病反應(yīng),且植物抗性蛋白Pi-ta中LRR結(jié)構(gòu)域突變后會(huì)導(dǎo)致Pi-ta與AVR-Pita之間互作關(guān)系喪失[41],說(shuō)明LRR結(jié)構(gòu)域?qū)εc之間互作是必需的;與Pi-ta/AVR-Pita類似,Pi54/AVR-Pi54可能直接互作。AVR-Pi54編碼一個(gè)在N端有信號(hào)肽的分泌蛋白。模擬實(shí)驗(yàn)表明,無(wú)毒蛋白AVR-Pi54與抗性蛋白Pi54直接互作[72]。與不同的是,只在病原菌侵染時(shí)誘導(dǎo)應(yīng)答,表明賦予的防御反應(yīng)具有誘導(dǎo)性。二是兩種抗病蛋白以成對(duì)形式出現(xiàn),且只有一個(gè)與無(wú)毒蛋白互作,如Pik由兩個(gè)NBS-LRR蛋白Pik-1、Pik-2組成,實(shí)驗(yàn)證明只有Pik-1作為AVR-Pik的受體,與其直接互作,但Pik-2也可與Pik-1結(jié)合,以復(fù)合體的形式參與調(diào)控宿主防御反應(yīng)[73]。值得注意的是,位點(diǎn)有7個(gè)等位基因(、、、、、和),有5個(gè)等位基因(、、、和),作為祖先型等位基因,可特異性識(shí)別、、、和;相應(yīng)地可特異性識(shí)別、和;可特異性識(shí)別和,說(shuō)明抗性等位基因的出現(xiàn)伴隨著無(wú)毒等位基因的出現(xiàn),揭示了抗病基因與無(wú)毒基因之間的協(xié)同進(jìn)化機(jī)制;三是兩種抗病蛋白以成對(duì)形式出現(xiàn),但只有一個(gè)與多個(gè)無(wú)毒蛋白互作,如是由和組成,RGA4和RGA5在參與調(diào)控AVR-Pia或AVR1-CO39的抗稻瘟病反應(yīng)時(shí),只有作為AVR蛋白受體的RGA5-A直接與AVR-Pia或AVR1-CO39互作,且解除了RGA5對(duì)RGA4的抑制作用,激發(fā)細(xì)胞凋亡,促進(jìn)超敏反應(yīng)的發(fā)生。進(jìn)一步的研究發(fā)現(xiàn),RGA5中的RATX1域在AVR與其識(shí)別過(guò)程中扮演著極其重要的作用[74]。

        表1 已克隆的稻瘟病抗性基因和無(wú)毒基因信息

        3 病原菌效應(yīng)子與寄主靶標(biāo)蛋白

        更多的水稻抗性蛋白與稻瘟病菌無(wú)毒蛋白之間不存在直接互作關(guān)系,而是通過(guò)植物蛋白或激素等信號(hào)分子來(lái)間接互作,從而調(diào)控免疫應(yīng)答。研究發(fā)現(xiàn),抗性蛋白Piz-t與其相對(duì)應(yīng)的無(wú)毒蛋白AvrPiz-t之間間接互作。編碼一個(gè)N端包含信號(hào)肽,長(zhǎng)度為108個(gè)氨基酸的分泌蛋白,當(dāng)把異源表達(dá)于含有的水稻中,會(huì)誘發(fā)激烈的感病反應(yīng),并顯著抑制幾丁質(zhì)介導(dǎo)的PTI免疫反應(yīng),說(shuō)明Piz-t與AvrPiz-t之間存在某種特殊的識(shí)別機(jī)制[52]。Park等[75]鑒定到12個(gè)與AvrPiz-t存在互作的水稻蛋白APIPs(AvrPiz-t interacting protein),對(duì)調(diào)控寄主抗性具有重要作用。其中蛋白APIP6編碼環(huán)指型E3泛素連接酶,而AvrPiz-t能破壞APIP6的E3泛素連接酶活性并使APIP6降解,從而抑制了APIP6介導(dǎo)的PTI反應(yīng),表明稻瘟病菌通過(guò)干擾寄主泛素蛋白降解系統(tǒng)來(lái)抑制植物抗病性,并且APIP6對(duì)水稻PTI防御機(jī)制起正調(diào)控作用。此外,APIP10作為一種E3泛素連接酶,可靶向性連接稻瘟病菌中的AvrPiz-t和水稻中的。APIP10是的負(fù)調(diào)節(jié)因子,可通過(guò)26S蛋白酶體系統(tǒng)促進(jìn)Piz-t的降解[76]。水稻中抑制蛋白APIP5的表達(dá)可導(dǎo)致水稻細(xì)胞死亡,當(dāng)Piz-t不存在時(shí),AvrPiz-t與靶標(biāo)蛋白APIP5在細(xì)胞質(zhì)中互作,特異性抑制APIP5蛋白轉(zhuǎn)錄活性和蛋白積累,水稻細(xì)胞死亡,ETN(effector-triggered necrosis)反應(yīng)發(fā)生;而當(dāng)Piz-t存在時(shí),Piz-t與APIP5互作,能夠穩(wěn)定APIP5蛋白積累,水稻細(xì)胞死亡被抑制,阻止了ETN (Effector-Triggered Necrosis)反應(yīng)發(fā)生。同時(shí),APIP5正調(diào)控Piz-t蛋白積累,穩(wěn)定Piz-t的正常積累水平,表明APIP5對(duì)水稻免疫反應(yīng)起正調(diào)控作用[77]。

        4 基因天然變異調(diào)控水稻抗性

        Chen等[78]采用全基因組關(guān)聯(lián)分析的方法,鑒定到一個(gè)與廣譜抗病表型高度相關(guān)的SNP位點(diǎn),位于編碼C2H2類轉(zhuǎn)錄因子基因的啟動(dòng)子區(qū),啟動(dòng)子在該區(qū)域天然變異,可以提高水稻廣譜持久稻瘟病抗性,并且對(duì)水稻產(chǎn)量性狀和品質(zhì)性狀沒(méi)有顯著影響。該轉(zhuǎn)錄因子上游受MYB轉(zhuǎn)錄因子負(fù)調(diào)控,下游正調(diào)控過(guò)氧化物酶基因的表達(dá),進(jìn)而影響水稻體內(nèi)過(guò)氧化氫積累,這一新機(jī)制極大豐富了水稻廣譜抗病性的分子機(jī)理。具有一般抗性基因所不具備的優(yōu)勢(shì),即無(wú)稻瘟病菌生理小種特異性,應(yīng)用前景十分廣泛。全球收集的3000種質(zhì)資源中,僅313份水稻材料含有抗性變異位點(diǎn),說(shuō)明該位點(diǎn)在水稻育種中已有一定程度的定向選擇。

        5 表觀遺傳修飾調(diào)控水稻稻瘟病抗性

        蛋白磷酸化和甲基化修飾等表觀遺傳修飾在植物抵抗病原菌入侵過(guò)程中發(fā)揮重要作用。研究發(fā)現(xiàn)稻瘟病抗性蛋白PID2與E3泛素連接酶OsPUB15間接互作,具有激酶活性的PID2K使OsPUB15磷酸化,磷酸化形式的OsPUB15具有E3泛素連接酶活性。過(guò)表達(dá)OsPUB15的轉(zhuǎn)基因水稻受侵染時(shí)可誘發(fā)細(xì)胞死亡,過(guò)氧化氫過(guò)量積累,病程相關(guān)基因表達(dá)量上調(diào),稻瘟病抗性增強(qiáng),證明OsPUB15正向調(diào)控植物抗病反應(yīng)[79]。水稻理想株型建成的核心基因,不僅能增加水稻產(chǎn)量,還可以提高水稻對(duì)稻瘟病的抗性,其編碼蛋白IPA1(Ideal Plant Architecture 1)的磷酸化修飾是平衡產(chǎn)量和抗性的關(guān)鍵樞紐,IPA1在稻瘟病菌侵染誘導(dǎo)下被磷酸化,進(jìn)而改變IPA1與DNA的結(jié)合特性,不是結(jié)合()等穗發(fā)育相關(guān)基因的啟動(dòng)子來(lái)建成水稻理想株型,而是結(jié)合抗性相關(guān)基因的啟動(dòng)子來(lái)提高免疫應(yīng)答,表明單個(gè)基因可以同時(shí)實(shí)現(xiàn)增產(chǎn)與抗病,為高產(chǎn)高抗育種提供了重要理論基礎(chǔ)和新策略[80]??沟疚敛』蚣日{(diào)控稻瘟病廣譜持久抗性又不影響產(chǎn)量。在位點(diǎn)存在多個(gè)NBS-LRR類抗病基因的基因簇,但只有具有生物學(xué)功能。PigmR蛋白自身形成同源二聚體,調(diào)控水稻稻瘟病抗性,同時(shí)會(huì)導(dǎo)致千粒重降低,產(chǎn)量下降。受表觀遺傳(甲基化水平)調(diào)控,僅在水稻的花粉中特異高表達(dá),可提高水稻的結(jié)實(shí)率,抵消對(duì)產(chǎn)量的影響;而在葉片、莖稈等病原菌侵染的組織表達(dá)量很低,且PigmS可與PigmR競(jìng)爭(zhēng)形成異源二聚體抑制介導(dǎo)的廣譜抗病性,可為病原菌提供“避難所”,病原菌的進(jìn)化選擇壓力變小,減緩了病原菌對(duì)PigmR的致病性進(jìn)化,因此具有持久抗病性。這一機(jī)制也表明表觀遺傳參與調(diào)控位點(diǎn)兩個(gè)抗性基因的表達(dá)水平,從而實(shí)現(xiàn)產(chǎn)量與抗性的平衡,為利用該基因進(jìn)行抗性改良和品種選育提供參考[81]。

        6 營(yíng)養(yǎng)元素調(diào)控水稻稻瘟病抗性

        鉀元素在植物生長(zhǎng)發(fā)育和抗病方面都發(fā)揮著重要的作用[82],稻瘟病菌無(wú)毒蛋白AvrPiz-t與鉀離子通道蛋白OsAKT1作用,能抑制定位于質(zhì)膜的蛋白OsAKT1介導(dǎo)的鉀離子電流。敲除OsAKT1后,鉀離子含量和稻瘟病抗性均降低,稻瘟病抗性與外界環(huán)境中鉀離子含量正相關(guān)。該研究為我們提供了一種新機(jī)制,即病原菌可通過(guò)調(diào)節(jié)寄主的鉀離子通道來(lái)破壞植物免疫系統(tǒng)[83]。

        7 結(jié)論與展望

        自1992年第一個(gè)抗玉米圓斑?。ǎ┗虮豢寺?,截至2017年相繼有314個(gè)抗病基因被鑒定,其中128個(gè)基因給出了可能的抗病機(jī)制。有研究將R蛋白誘導(dǎo)疾病抗性的分子機(jī)制把這些R基因分為九大類[84],水稻-稻瘟病互作系統(tǒng)只是龐大植物-病原物互作系統(tǒng)的冰山一角。迄今為止,克隆和鑒定了超過(guò)50個(gè)PRR、R基因和一系列稻瘟病菌無(wú)毒基因,無(wú)毒基因與R基因的分子互作等方面也取得顯著進(jìn)展,這些基因?yàn)榈疚敛】剐杂N提供了新思路、理論基礎(chǔ)和育種中間材料。如Deng等利用基因培育出既有稻瘟病廣譜抗性又高產(chǎn)的水稻品種隆兩優(yōu)3189[81];向聰?shù)萚85]也利用基因改良兩系不育系C815S的稻瘟病抗性,獲得了3個(gè)攜帶純合抗性基因的改良不育株系;劉文強(qiáng)等[86]將導(dǎo)入優(yōu)質(zhì)但易感稻瘟病品種湘晚秈13號(hào),獲得3個(gè)與親本相比稻瘟病明顯增強(qiáng)的導(dǎo)入系,為培育優(yōu)質(zhì)高產(chǎn)抗稻瘟病品種提供中間材料;以下幾方面還需要深入研究:

        1)抗性蛋白與無(wú)毒蛋白互作激活的下游信號(hào)途徑及其信號(hào)途徑之間的交叉互作(crosstalk):盡管已鑒定到一系列稻瘟病抗性基因和無(wú)毒基因,闡明了相互之間的作用機(jī)制,但關(guān)于抗性基因與無(wú)毒基因互作后激活的下游信號(hào)通路的研究甚少。AvrPiz-t與APIP6、APIP5、APIP10和OsAKT1之間的作用機(jī)制預(yù)示著抗性基因與無(wú)毒基因互作后激活的下游信號(hào)通路是一個(gè)極其復(fù)雜的網(wǎng)絡(luò)系統(tǒng),各信號(hào)通路之間的交叉互作是未來(lái)研究的難點(diǎn)和熱點(diǎn)。

        2)水稻廣譜抗稻瘟病的分子機(jī)理及其與產(chǎn)量和品質(zhì)等的平衡機(jī)制:具有廣譜抗稻瘟病的抗源材料是目前抗稻瘟病育種急需資源,而對(duì)廣譜抗病的分子機(jī)制仍將是后續(xù)研究的熱點(diǎn),以介導(dǎo)的廣譜抗病性為例,除稻瘟病菌侵染前后和相互作用機(jī)制不清楚外,在水稻和稻瘟病菌的親合和非親和反應(yīng)中,二者如何互作以及如何調(diào)控下游的抗病反應(yīng)仍未知。除此之外,如何打破抗病基因位點(diǎn)與較差的產(chǎn)量和品質(zhì)之間的連鎖效應(yīng)也是抗病育種中急需解決的問(wèn)題。

        3)表觀遺傳修飾參與調(diào)控水稻免疫機(jī)制:表觀遺傳修飾實(shí)現(xiàn)了抗性和產(chǎn)量的平衡,其在病原菌入侵前后的調(diào)控機(jī)制還有待闡明;其他已克隆抗性基因的表達(dá)是否受到病原菌入侵引起的全基因組/特異位點(diǎn)表觀遺傳修飾的誘導(dǎo)仍需進(jìn)一步研究。

        4)利用不斷增加的水稻-稻瘟病系統(tǒng)先天免疫的基礎(chǔ)理論,發(fā)掘新的抗稻瘟病基因,利用雙單倍體技術(shù)、轉(zhuǎn)基因技術(shù)、分子標(biāo)記輔助育種技術(shù)、基因組編輯技術(shù)、智能不育技術(shù)、雜種優(yōu)勢(shì)固定技術(shù)等作物育種技術(shù),提高育種效率,培育具有廣譜抗稻瘟病的新品種,早日實(shí)現(xiàn)綠色防控稻瘟病。

        [1] 杜軼威. 水稻開(kāi)花相關(guān)RING蛋白1(FRRP1)基因的克隆和開(kāi)花功能分析. 北京: 中國(guó)農(nóng)業(yè)大學(xué), 2016.

        Du Y W. Molecular cloning and functional analysis of() in rice. Beijing: China Agriculture University, 2016. (in Chinese with English abstract)

        [2] Seck PA, Diagne A, Mohanty S, Wopereis M C S. Crops that feed the world 7: Rice., 2012, 4(1): 7-24

        [3] Dean R, van Kan J A, Pretorius Z A, Hammond-Kosack K E, Di Pietro A, Spanu P D, Rudd J J, Dickman M, Kahmann R, Ellis J, Foster G D. The top 10 fungal pathogens in molecular plant pathology., 2012, 13(4): 414-430.

        [4] Skamnioti P, Gurr S J. Against the grain: Safeguarding rice from rice blast disease., 2009, 27(3):141-150.

        [5] Pennisi E. Armed and dangerous., 2010, 327(5967): 804-805

        [6] Nakahara K, Masuta C. Interaction between viral RNA silencing suppressors and host factors in plant immunity., 2014, 20: 88-95.

        [7] Akerley B J, Cotter P A, Miller J F. Ectopic expression of the flagellar regulon alters development of the Bordetella-host interaction., 1995, 80(4): 611-620.

        [8] Dow M, Newman M A, von Roepenack E. The induction and modulation of plant defense responses by bacterial lipopolysaccharides., 2000, 38: 241-261.

        [9] Zipfel C. Pattern-recognition receptors in plant innate immunity., 2008, 20(1): 10-16.

        [10] Shiu S, Karlowski W, Pan R, Tzeng Y H, Mayer K F, Li W H. Comparative analysis of the receptor-like kinase family inand rice., 2004, 16(5): 1220-1234.

        [11] Chen X, Ronald P. Innate immunity in rice., 2011, 16(8): 451-459.

        [12] Liu B, Li J, Ao Y, Qu J, Li Z, Su J, Zhang Y, Liu J, Feng D, Qi K, He Y, Wang J, Wang H B. Lysin motif- containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity., 2012, 24(8): 3406-3419.

        [13] Felix G, Duran JD, Volko S, Boller T. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin., 1999, 18(3): 265-276.

        [14] Delphine C, Martin R, Boller T. Thereceptor kinase fls2 binds flg22 and determines the specificity of flagellin perception., 2006, 18(2): 465-476.

        [15] Shinya T, Osada T, Desaki Y, Hatamoto M, Yamanaka Y, Hirano H, Takai R, Che F S, Kaku H, Shibuya N. Characterization of receptor proteins using affinity cross-linking with biotinylated ligands., 2010, 51(2): 262-270.

        [16] Lu D, Wu S, Gao X, Zhang Y, Shan L, He P. A receptor- like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity., 2010, 107(1): 496-501.

        [17] 張慧娟. 磷酸-1-鞘氨醇在植物抗病反應(yīng)中的作用及水稻和擬南芥BIK1在逆境反應(yīng)中的功能分析. 杭州: 浙江大學(xué), 2009.

        Zhang H J. Role of sphingosine-1-phosphate in plant defense response and functional analysis ofand ricein stress responses. Hangzhou: Zhejiang University, 2009. (in Chinese with English abstract)

        [18] Sun Y, Li L, Macho AP, Han Z, Hu Z, Zipfel C, Zhou J M, Chai J. Structural basis for flg22-induced activation of theFLS2-BAK1 immune complex., 2013, 342(6158): 624-628.

        [19] Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N. CERK1, a LysM receptor kinase, is essential for chitin elicitor signal in in., 2007, 104(49): 19613-19618.

        [20] Shimizu T, Nakano T, Takamizawa D, Desaki Y, Ishii-Minami N, Nishizawa Y, Minami E, Okada K, Yamane H, Kaku H, Shibuya N. Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice., 2010, 64(2): 204-214.

        [21] Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto- Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor., 2006, 103(29): 11 086-11 091.

        [22] Liu B, Li J F, Ao Y, Qu J, Li Z, Su J, Zhang Y, Liu J, Feng D, Qi KB, He Y M, Wang J F, Wang H B. Lysin motif-containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity., 2012, 24(8): 3406-3419.

        [23] Ao Y, Li Z Q, Feng D R, Xiong F, Liu J, Li J F, Wang J, Liu B, Wang H B. OsCERK1 and OsRLCK176 play important roles in peptidoglycan and chitin signaling in rice innate immunity.2014, 80: 1072-1084.

        [24] Li Z, Ao Y, Feng D, Liu J, Wang J, Wang H B, Liu B. OsRLCK 57, OsRLCK107 and OsRLCK118 positively regulate chitin- and PGN-induced immunity in rice., 2017, 10(1): 6.

        [25] Kawasaki T, Yamada K, Yoshimura S, Yamaquchi K. Chitin receptor-mediated activation of MAP kinases and ROS production in rice and., 2017: e1361076

        [26] WangBH, Ebbole DJ, WangZH. The arms race betweenand rice: Diversity and interaction ofandgenes.,2017, 16: 2746-2760.

        [27] Chen X, Shang J, Chen D, Lei C, Zou Y, Zhai W, Liu G, Xu J, Ling Z, Cao G. A B-lectin receptor kinase gene conferring rice blast resistance., 2006, 46(5): 794-804.

        [28] Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M. Loss of function of a proline-containing protein confers durable disease resistance in rice., 2009, 325: 998-1001.

        [29] Zhao H, Wang X, Jia Y, Minkenberg B, Wheatley M, Fan J, Jia M H, Famoso A, Edward J D, Wamishe Y, Valent B, Wang G L, Yang Y. The rice blast resistance geneencodes an atypical protein required for broad-spectrum disease resistance., 2018, 9(1): 2039.

        [30] Zhou X, Liao H, Chern M, Yin J, Chen Y, Wang J, Zhu X, Chen Z, Chen Z, Yuan C, Zhao W, Wang J, Li W , He M, Ma B, Wang J, Qin P, Chen W, Wang Y, Liu J, Qian Y, Wang W, Wu X, Li P, Zhu L, Li S, Ronald P C, Chen X. Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance., 2018, 115(12): 3174-3179.

        [31] Wu Y, Yu L, Pan C, Dai Z, Li Y, Xiao N, Zhang X, Ji H, Huang N, Zhao B. Development of near-isogenic lines with different alleles oflocus and analysis of their breeding effect under Yangdao 6 background., 2016, 36(2): 12.

        [32] Qu S, Liu G, Zhou B, Bellizzi M, Zeng L, Dai L, Han B, Wang GL. The broad-spectrum blast resistance geneencodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice., 2006, 172 (3): 1901-1914.

        [33] Chen D H, Zeigler R S, Ahn S W, Nelson R J. Phenotypic characterization of the rice blast resistance gene(t)., 1996: 80.

        [34] Deng Y, Zhu X, Shen Y, He Z. Genetic characterization and fine mapping of the blast resistance locus(t) tightly linked toandin a broad-spectrum resistant Chinese variety., 2006, 113(4): 705-713.

        [35] Zhou B, Qu S H, Liu G F, Dolan M, Sakai H, Lu GD, Bellizzi M, Wang G L. The eight amino-acid differences within three leucine-rich repeats betweenandresistance proteins determine the resistance specificity to., 2006, 19 (11): 1216-1228.

        [36] Hua L X, Liang L Q, He X Y, Wang L, Zhang W S, Liu W, Liu X Q, Lin F. Development of a marker specific for the rice blast resistance genein the Chinese cultivar Q15 and its use in genetic improvement., 2015, 29 (3): 448-456.

        [37] Hayashi K, Yoshida H. Refunctionalization of the ancient rice blast disease resistance geneby the recruitment of a retrotransposon as a promoter.2009, 57: 413-425.

        [38] Xu X, Hayashi N, Wang CT, Fukuoka S, Kawasaki S, Takatsuji H, Jiang C J. Rice blast resistance gene(t), a member of a resistance gene cluster on chromosome 4, encodes a nucleotide-binding site and leucine-rich repeat protein., 2014, 34 (2): 691-700.

        [39] Sharma T R, Rai A K, Gupta S K, Singh N K. Broad-spectrum blast resistance genecloned from rice line Tetep designated as., 2010, 19(1): 87-89.

        [40] Hua L, Wu J Z, Chen C X, Wu W H, He X Y, Lin F, Wang L, Ashikawa I, Matsumoto T, Wang L, Pan Q H. The isolation of Pi1, an allele at thelocus which confers broad spectrum resistance to rice blast., 2012, 125(5): 1047-1055.

        [41] Orbach M J, Farrall L, Sweigard J A, Chumley F G, Valent B. A telomeric avirulence gene determines efficacy for the rice blast resistance gene.2000, 12: 2019-2032.

        [42] Lee S K, Song M Y, Seo Y S, Kim H K, Ko S, Cao P J, Suh J P, Yi G, Roh J H, Lee S, An G, Hahn T R, Wang G L, Ronald P, Jeon J S. Rice-mediated resistance torequires the presence of two coiled-coil-nucleotide-binding-leucine-rich repeat genes.,2009, 181(4): 1627-1638.

        [43] Wu J, Kou Y, Bao J, Li Y, Tang M, Zhu X, Ponaya A, Xiao G, Li C, Song M Y, Cumagun C J, Deng Q, Lu G, Jeon J S, Naqvi N I. Comparative genomics identifies theavirulence effectorthat triggers-mediated blast resistance in rice., 2015, 206: 1463-1475.

        [44] Chen J, Shi Y F, Liu W Z, Chai R Y, Fu Y, Zhuang J Y, Wu J L.Aallele from rice cultivar Gumei 2 confers resistance to., 2011, 38: 209-216.

        [45] Bohnert HU, Fudal I, Dioh W. A putative polyketide synthase/peptide synthetase fromsignals pathogen attack to resistant rice.2004, 16: 2499-2513.

        [46] Fukuoka S, Yamamoto S I, Mizobuchi R, Yamanouchi U, Ono K, Kitazawa N, Yasuda N, Fujita Y, Nguyen TTT, Koizumi S, Sugimoto K, Matsumoto T, Yano M. Multiple functional polymorphisms in a single disease resistance gene in rice enhance durable resistance to blast., 2014: 4.

        [47] Liu X, Lin F, Wang L, Pan Q. The in silico map-based cloning of, a rice coiled-coil nucleotide-binding site leucine-rich repeat gene that confers race specific resistance to the blast fungus., 2007, 176: 2541-2549.

        [48] Lin F, Chen S, Que Z, Wang L, Liu X, Pan QThe blast resistance geneencodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1.,2007, 177: 1871-1880.

        [49] Su J, Wang W, Han J, Chen S, Wang C, Zeng L, Feng A, Yang J, Zhou B, Zhu X. Functional divergence of duplicated genes results in a novel blast resistance geneat thelocus.,2015, 128: 2213-2225.

        [50] Liu Y, Liu B, Zhu X, Yang J, Bordeos A, Wang G, Leach J E, Leung H. Fine-mapping and molecular marker development for(t), a NBS-LRR gene conferring broad-spectrum resistance toin rice., 2013, 126(4): 985-998.

        [51] Ma J, Lei C, Xu X, Hao K, Wang J, Cheng Z, Ma X, Ma J, Zhang X, Guo X, Wu F, Lin Q, Wang C, Zhai H, Wang H, Wan J., encoding a Novel CC-NBS-LRR protein, confers resistance to leaf and neck blast in rice., 2015, 28: 558-568.

        [52] Li W, Wang B, Wu J, Lu G, Hu Y, Zhang X, Zhang Z, Feng Q, Zhang H, Wang Z, Wang G, Han B, Wang Z, Zhou B. Theavirulence geneencodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene.2009, 22: 411-420.

        [53] Bryan G T, Wu K S, Farrall L, Jia Y, Hershey H P, McAdams S A, Faulk K N, Donaldson G K, Tarchini R, Valent B. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene., 2000, 12: 2033-2046.

        [54] Okuyama Y, Kanzaki H, Abe A ,Yoshida K, Tamiru M, Saitoh H, Fujibe T, Matsumura H, Shenton M, Galam D C, Undan J, Ito A, Sone T, Terauchi R. A multifaceted genomics approach allows the isolation of the rice-blast resistance gene consisting of two adjacent NBS-LRR protein genes.2011, 66: 467-479.

        [55] Yoshida K, Saitoh H, Fujisawa S, Kanzaki H, Matsumura H, Tosa Y, Chuma I, Takano Y, Win J, Kamoun S, Terauchi R. Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen., 2009, 21: 1573-1591.

        [56] Zhang S, Wang L, Wu W, He L, Yang X, Pan Q. Function and evolution ofavirulence gene AvrPib responding to the rice blast resistance gene., 2015, 5: 11642.

        [57] Wang Z X, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T. Thegene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes., 1999, 19: 55-64.

        [58] Takahashi A, Hayashi N, Miyao A, Hirochika H. Unique features of the rice blast resistancelocus revealed by large scale retrotransposon-tagging., 2010, 10(1): 175.

        [59] Hayashi N, Inoue H, Kato T, Funao T, Shirota M, Shimizu T, Kanamori H, Yamane H, Hayano S Y, Matsumoto T, Yano M, Takatsuji H. Durable panicle blast-resistance geneencodes an atypical CC-NBS- LRR protein and was generated by acquiring a promoter through local genome duplication., 2010, 64: 498-510.

        [60] Zhai C, Lin F, Dong Z, He X, Yuan B, Zeng X, Wang L, Pan Q. The isolation and characterization of, a rice blast resistance gene which emerged after rice domestication., 2011, 189: 321-334.

        [61] Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J, Matsumoto T, Ono K, Yano M. Two adjacent nucleotide- binding site-leucine-rich repeat class genes are required to confer-specific rice blast resistance.2008, 180: 2267-2276.

        [62] Yuan B, Zhai C, Wang W, Zeng X, Xu X, He X, Lin F, Wang L, Pan Q. Theresistance toin rice is mediated by a pair of closely linked CC-NBS-LRR genes.2011, 122: 1017-1028.

        [63] Shang J, Tao Y, Chen X, Liu W, Chai R, Fu Y, Zhuang J, Wu J. Identification of a new rice blast resistance gene,, by genome wide comparison of paired nucleotide- binding site leucine-rich repeat genes and their pseudogene alleles between the two sequenced rice genomes.2009, 182: 1303-1311.

        [64] Ribot C, Cesari S, Abidi I. Theeffector AVR1-CO39 is translocated into rice cells independently of a fungal-derived machinery.2013, 74: 1-12.

        [65] Xu X, Hayashi N, Wang C T, Fukuoka S, Kawasaki S, Takatsuji H, Jiang C. Rice blast resistance gene(t), a member of a resistance gene cluster on chromosome 4, encodes a nucleotide-binding site and leucine-rich repeat protein., 2014, 34: 691-700.

        [66] Lü Q, Xu X, Shang J, Jiang G, Pang Z, Zhou Z, Wang J, Liu Y, Li T, Li X, Xu J, Cheng Z, Zhao X, Li S, Zhu L. Functional analysis of, an ortholog of rice blast resistance generevealed by allele mining in common wild rice., 2013, 103: 594-599.

        [67] Das A, Soubam D, Singh P K, Thakur S, Singh NK, Sharma R. A novel blast resistance gene,cloned from wild species of rice,confers broad spectrum resistance to., 2012, 12: 215-228.

        [68] Devanna NB, Vijayan J, Sharma TR. The blast resistance geneof cloned frominteracts withthrough its novel non-LRR domains., 2014, 9: e104840.

        [69] Chen J, Peng P, Tian J, He Y, Zhang L, Liu Z, Yin D, Zhang Z., a rice blast resistance allele consisting of two adjacent NBS-LRR genes, was identified as a novel allele at thelocus., 2015, 35: 117.

        [70] Kang S, Sweigard J A, Valent B. The PWL host specificity gene family in the blast fungus., 1995, 8(6): 939-948.

        [71] Sweigard J A, Carroll A M, Kang S, Farrall L, Chumley F G, Valent B. Identification, cloning, and characterization of, a gene for host species specificity in the rice blast fungus., 1995, 7: 1221-1233.

        [72] Ray S, Singh P K, Gupta D K, Mahato A K, Sarkar C, Rathour R, Singh N K, Sharma T R. Analysis ofgenome reveals a fungal effector, which is able to induce resistance response in transgenic rice line containing resistance gene,., 2016(7): 1140.

        [73] Kanzaki H, Yoshida K, Saitoh H, Fujisaki K, Hirabuchi A, Alaux L, Fournier E, Tharreau D, Terauchi R. Arms race co-evolution ofand ricegenes driven by their physical interactions., 2012, 72(6): 894-907.

        [74] Ortiz D, de Guillen K, Cesari S, Chalvon V, Gracy J, Padilla A, Kroi T. Recognition of theeffector AVR-Pia by the Decoy domain of the rice NLR immune receptor RGA5., 2017, 29(1): 156-168.

        [75] Park C H, Chen S, Shirsekar G, Zhou B, Khang C H, Songkumarn P, Afzal A J, Ning Y, Wang R, Bellizzi M. Theeffector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen- associated molecular pattern-triggered immunity in rice., 2012, 24 (11): 4748-4762.

        [76] Park C H, Shirsekar G, Bellizzi M, Chen S, Songkumarn P, Xie X, Shi X, Ning Y, Zhou B, Suttiviriya P, Wang M, Umemura K, Wang G L. The E3 ligase APIP10 connects the effector AvrPiz-t to the NLR receptorin rice., 2016, 12(3): e1005529.

        [77] Wang R, Ning Y, Shi X, He F, Zhang C, Fan J, Jiang N, Zhang Y, Zhang T, Hu Y, Bellizzi M, Wang G L. Immunity to rice blast disease by suppression of effector- triggered necrosis., 2016, 26(18): 2399-2411.

        [78] Li W, Zhu Z, Chern M, Yin J, Yang C, Ran L, Cheng M, He M, Wang K, Wang J, Zhou X, Zhu X, Chen Z, Wang J, Zhao W, Ma B, Qin P, Chen W, Wang Y, Liu J, Wang W, Wu X, Li P, Wang J, Zhu L, Li S, Chen X. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance., 2017, 170 (1): 114-126.

        [79] Wang J, Qu B, Dou S, Li L, Yin D, Pang Z, Zhou Z, Tian M, Liu G, Xie Q, Tang D, Chen X, Zhu L. The E3 ligase OsPUB15 interacts with the receptor-like kinase PID2 and regulates plant cell death and innate immunity., 2015, 15(1): 49.

        [80] WangJ, Zhou L, Shi H, Chern M, Yu H, Yi H, He M, Yin J, Zhu X, Li Y, Li W, Liu J, Wang J, Chen X, Qing H, Wang Y, Liu J, Wang W, Li P, Wu X, Zhu L, Zhou J M, Ronald P C, Li S, Li J, Chen X. A single transcription factor promotes both yield and immunity in rice., 2018, 361(6406): 1026.

        [81] Deng Y, Zhai K, Xie Z, Yang D, Zhu X, Liu J, Wang X, Qin P, Yang Y, Zhang G. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance., 2017, 355(6328): 962-965.

        [82] Wang Y, Wu W H. Genetic approaches for improvement of the crop potassium acquisition and utilization efficiency., 2015, 25: 46-52.

        [83] Shi X, Long Y, He F, Zhang C, Wang R. The fungal pathogensuppresses innate immunity by modulating a host potassium channel., 2018, 14(1): e1006878.

        [84] Kourelis J, van der Hoorn R A L. Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function., 2018, 30(2): 285-299.

        [85] 向聰, 任西明, 雷東陽(yáng), 陳英. 分子標(biāo)記輔助選擇改良C815S的稻瘟病抗性. 湖南農(nóng)業(yè)大學(xué)學(xué)報(bào): 自然科學(xué)版, 2018, 44(1): 62-65.

        Xiang C, Ren X M, Lei D Y, Chen Y. Improvement of rice blast resistance of C815S through molecular marker-assisted selection., 2018, 44(1): 62-65. (in Chinese with English abstract)

        [86] 劉文強(qiáng), 李小湘, 黎用朝, 潘孝武, 盛新年, 段永紅. 分子標(biāo)記輔助選擇改良優(yōu)質(zhì)稻湘晚秈13號(hào)的稻瘟病抗性. 分子植物育種, 2017, 15(8): 3063-3069.

        Liu W Q, Li X X, Li Y C, Pan X W, Sheng X N, Duan Y H. Improvement of rice blast resistance of Xiangzaoxian No. 13 with high quality by molecular marker-assisted selection., 2017, 15(8): 3063-3069. (in Chinese with English abstract)

        Recent Progress in Molecular Mechanism of Rice Blast Resistance

        CAO Ni, CHEN Yuan, JI Zhijuan, ZENG Yuxiang, YANG Changdeng*, LIANG Yan*

        (,,,;Corresponding author, E-mail: ycd311400@ 163.com;)

        Rice blast disease, caused by, threatens global food security. Owning to the rapid evolution ofisolates, resistant cultivars always become susceptible in 3-5 years. Breeding and planting durable resistant cultivars is the most effective method. Recent advances in understanding the pathogenesis ofand rice resistance mechanisms led to a deeper understanding of PAMPs- and effector- triggered immunity in this pathosystem. This review summarizes the recent progresses for PTI, the cloned rice blast R genes, cloned Avr genes ofand the interaction between them. We also discussed some of the major unanswered questions for this pathosystem and the opportunities for future investigations.

        rice; rice blast; disease resistance gene; avirulence gene; molecular mechanism

        S435.111.4+1; S511.034

        A

        1001-7216(2019)06-0489-10

        10.16819/j.1001-7216.2019.8126

        2018-11-22;

        2019-03-23。

        農(nóng)業(yè)部西南作物有害生物綜合治理重點(diǎn)實(shí)驗(yàn)室開(kāi)放基金資助項(xiàng)目(XNYH2016-1);國(guó)家自然科學(xué)基金資助項(xiàng)目(31801681);浙江省自然科學(xué)基金青年基金資助項(xiàng)目(LQ17C130005)。

        猜你喜歡
        水稻植物
        什么是海水稻
        有了這種合成酶 水稻可以耐鹽了
        水稻種植60天就能收獲啦
        軍事文摘(2021年22期)2021-11-26 00:43:51
        油菜可以像水稻一樣實(shí)現(xiàn)機(jī)插
        一季水稻
        文苑(2020年6期)2020-06-22 08:41:52
        水稻花
        文苑(2019年22期)2019-12-07 05:29:00
        植物的防身術(shù)
        把植物做成藥
        哦,不怕,不怕
        將植物穿身上
        午夜在线观看有码无码| 国产熟妇另类久久久久| 亚洲av永久无码精品一区二区| 最新亚洲人成网站在线| 日本一区二区三区资源视频| 国产一区二区三区啊啊| 国产精品无码一区二区三区| 亚洲成色在线综合网站| 欧美日一本| 中文日本强暴人妻另类视频| 久久久久国产精品| 色一情一区二| 综合图区亚洲另类偷窥| 日本黄色影院一区二区免费看 | 天堂AV无码AV毛片毛| 国产成人精品一区二区不卡| 无码国产精品久久一区免费| 久久久久亚洲av无码观看| 亚洲日韩AV无码美腿丝袜| 一本之道日本熟妇人妻| 真实国产老熟女无套中出| 亚洲香蕉视频| 国内自拍视频在线观看| 中文乱码字幕精品高清国产| 国产精品久久久久久久久岛| 亚洲国产另类久久久精品小说| 少妇被躁到高潮和人狍大战| 中文精品久久久久人妻不卡| 国产女合集小岁9三部| 一本一道久久a久久精品综合蜜桃| 亚洲综合偷自成人网第页色 | 国产在线观看视频一区二区三区 | 级毛片无码av| 亚洲国产精品情侣视频| 天天综合网在线观看视频| 99久久综合精品五月天| 在线亚洲国产一区二区三区| 亚洲av无码无线在线观看| 欧美大香线蕉线伊人久久| 经典女同一区二区三区| 日韩精品免费一区二区三区观看 |