何靜
摘要:卵巢癌是中青年女性中第二大高發(fā)惡性腫瘤,超過2/3的患者被診斷時即為卵巢癌晚期,90%以上的卵巢惡性腫瘤來源于上皮性卵巢癌(EOC)。晚期EOC的初始標準化治療是最大限度的腫瘤細胞減滅術(shù)及術(shù)后順鉑和紫杉醇為主的聯(lián)合化療方案。如何正確認識及防治EOC,以提高患者治療效果和降低化學(xué)治療藥物的耐藥性是當前臨床上亟待解決的問題。本文從EOC的流行病學(xué)及發(fā)病因素、分子機制及化學(xué)治療三個方面進行論述,為臨床上治療EOC提供理論依據(jù)。
關(guān)鍵詞:上皮性卵巢癌;惡性腫瘤;分子機制;化學(xué)治療;耐藥性
中圖分類號:R737.31 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻標識碼:A ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? DOI:10.3969/j.issn.1006-1959.2019.18.009
文章編號:1006-1959(2019)18-0024-05
Abstract:Ovarian cancer is the second most common malignant tumor among young and middle-aged women. More than two-thirds of patients are diagnosed with advanced ovarian cancer, and more than 90% of ovarian malignancies are derived from epithelial ovarian cancer (EOC). The initial standardized treatment of advanced EOC is maximal cytoreductive surgery and postoperative cisplatin and paclitaxel-based combination chemotherapy. How to correctly understand and prevent EOC to improve the treatment effect of patients and reduce the drug resistance of chemotherapeutic drugs is a problem that needs to be solved urgently in clinical practice. This article discusses the epidemiology and pathogenesis factors, molecular mechanism and chemotherapy of EOC, and provides theoretical basis for clinical treatment of EOC.
Key words:Epithelial ovarian cancer;Malignant neoplasms;Molecular mechanism;Chemotherapy;Drug resistance
卵巢癌(ovarian cancer)是女性生殖器官常見的惡性腫瘤之一,每年新發(fā)病例約13.15萬,占全球卵巢癌病例的28%以上,發(fā)病率僅次于子宮頸癌和子宮體癌[1]。卵巢惡性腫瘤中以上皮癌最多見,其次是惡性生殖細胞腫瘤,其中上皮性卵巢癌(epithelial ovarian cancer,EOC)死亡率占各類婦科腫瘤的首位,嚴重威脅女性生命健康[2]。因此,如何正確認識及防治EOC,以提高患者早期診斷和治療效果是當前臨床上亟待解決的問題。本文從EOC的流行病學(xué)及發(fā)病因素、分子機制及化學(xué)治療三方面作一綜述,為臨床上早期診斷和防治EOC提供理論依據(jù)。
1 EOC的流行病學(xué)及發(fā)病因素
卵巢癌是尤其是EOC是女性生殖道中最致命的癌癥。據(jù)統(tǒng)計,2018年美國新增病例約22000例,死亡人數(shù)約14000人;歐洲新增卵巢癌病例中65538例,其中42704人死亡[3]。EOC分為高級漿膜癌、子宮內(nèi)膜樣癌、透明細胞癌、粘液癌和低度惡性漿膜癌,這些組織類型顯示不同的形態(tài)、病因和生物學(xué)行為。大多數(shù)EOC患者確診時就出現(xiàn)晚期表現(xiàn),轉(zhuǎn)移至上腹部或淋巴結(jié)(Ⅲ期),或轉(zhuǎn)移到腹部以外的區(qū)域,或血源性擴散到肝臟或脾臟(Ⅳ期),其臨床癥狀主要表現(xiàn)為非特異性,如腹痛、腹脹和早期飽腹感。Lu TP等[4]通過多變量Cox風險回歸結(jié)果顯示,預(yù)測模型(HR:0.644,95%CI:0.436~0.952,P=0.027)和殘余腫瘤大小<1 cm(HR:0.312,95% CI:0.170~0.573,P<0.001)是EOC復(fù)發(fā)和死亡的重要因素。初桂偉等[5]研究表明,漿液性腫瘤、臨床分期Ⅲ~Ⅳ期、低分化、腹水腫瘤細胞陽性、術(shù)后殘留>1 cm及未清掃淋巴結(jié)均為EOC復(fù)發(fā)的危險因素。鑒于EOC的高發(fā)病率和死亡率,明確其發(fā)病機制及相關(guān)腫瘤標記物,為臨床上化學(xué)治療提供靶點是研究的熱點。
2 EOC的分子機制
2.1 SMYD3 ?SMYD3(含set和mynd結(jié)構(gòu)域蛋白3)是一種新的組蛋白賴氨酸甲基轉(zhuǎn)移酶,在大腸癌、肝癌、乳腺癌等不同類型的腫瘤中表達增加[6,7]。研究表明,SMYD3有助于腫瘤的發(fā)生、增殖和轉(zhuǎn)移,并參與染色質(zhì)功能、表觀遺傳學(xué)和細胞信號傳導(dǎo)過程[8]。SMYD3基因啟動子區(qū)串聯(lián)重復(fù)序列(VNTR)的多態(tài)性類型與卵巢癌的發(fā)生風險相關(guān),是卵巢癌細胞生長所必需的致癌基因[9,10]。Zhang L等[11]研究發(fā)現(xiàn),SMYD3可提高EOC細胞的遷移能力,體內(nèi)EOC轉(zhuǎn)移模型的結(jié)果進一步證實SMYD3過度表達促進了EOC進展,可能與SMYD3降低了p53蛋白的穩(wěn)定性、誘導(dǎo)上皮間充質(zhì)轉(zhuǎn)化(emt)有關(guān),并證實了p53的lysines381、382、386是SMYD3泛素化改性p53的關(guān)鍵位點。因此,SMYD3可能是抑制EOC細胞增殖和轉(zhuǎn)移的潛在靶點。
2.2 NF-κB/Mortalin ?Mortalin(grp75/hspa9)是HSP70家族的線粒體分子伴侶蛋白,參與許多細胞蛋白質(zhì)折疊和運輸、維護線粒體穩(wěn)定狀態(tài)、物質(zhì)合成、細胞凋亡老化等信號通路[12]。研究發(fā)現(xiàn),Mortalin在大多數(shù)惡性腫瘤,如乳腺癌、肝癌、肺癌和胃癌中存在過度表達,可促進腫瘤細胞遷移[13-15]。Oncomine腫瘤數(shù)據(jù)庫、癌細胞系百科全書(CCLE)分析和免疫組化染色的數(shù)據(jù)表明漿膜性卵巢癌高表達Mortalin,通過Wnt/β-Catenin信號通路促進癌細胞增殖和上皮間質(zhì)細胞轉(zhuǎn)化,與高等級組織學(xué)分級、總體生存率惡化相關(guān)[16]。另有研究表明[17],Mortalin通過p38/MAPK、PI3K/AKT及MAPK/ERK等多種信號途徑影響卵巢癌細胞的增殖、遷移和藥物敏感性。NF-κB是與基因啟動子區(qū)域結(jié)合調(diào)節(jié)轉(zhuǎn)錄的蛋白質(zhì),與Mortalin啟動子結(jié)合,通過調(diào)節(jié)Mortalin促進卵巢癌細胞增殖和遷移[18]。高水平表達的Mortalin可能是血清卵巢癌預(yù)后指標和生物標志物的候選之一。
2.3 MED12 ?RNA聚合酶Ⅱ轉(zhuǎn)錄介質(zhì)亞基12(RNA polymerase Ⅱ transcriptional mediator subunit 12,MED12)是腫瘤休眠的重要調(diào)節(jié)分子,MED12突變常發(fā)生在子宮平滑肌瘤、乳腺纖維上皮瘤和前列腺腺癌中[19-21]。在EOC患者樣本中,MED12的表達與表皮生長因子受體的表達呈正相關(guān);化療耐藥患者的MED12水平低于反應(yīng)性患者,表明MED12通過調(diào)節(jié)表皮生長因子受體的表達而調(diào)控EOC細胞的休眠[22]。MED12對EOC患者組織學(xué)分級、總體生存率等的影響需進一步的研究證實,以作為血清卵巢癌預(yù)后指標和生物標志物。
2.4 NR2F6 ?核孤兒受體NR2F6是一種新型的抗腫瘤反應(yīng)的調(diào)節(jié)蛋白,可抑制與人類癌癥相關(guān)的小鼠移植和自發(fā)腫瘤,同時直接抑制與腫瘤細胞排斥相關(guān)的T效應(yīng)細胞(如IL-2、IFN和TNFα)關(guān)鍵細胞因子的基因轉(zhuǎn)錄[23]。與正常卵巢表面上皮細胞相比,卵巢癌上皮細胞NR2F6表達明顯上調(diào),與總體生存率惡化顯著相關(guān)[24]。同時,過度表達的NR2F6通過與DDA1啟動子結(jié)合激活DDA1轉(zhuǎn)錄,導(dǎo)致SKOV3和A2780細胞株DDA1 mRNA和蛋白質(zhì)水平表達顯著上調(diào),DDA1高表達與較短的無復(fù)發(fā)生存率相關(guān),這表明NR2F6和DDA1在卵巢癌中共同上調(diào)。Li H等[25]研究表明,耐化療EOC組織中NR2F6的表達顯著上調(diào),其表達與總生存率相關(guān),NR2F6維持激活Notch3信號傳導(dǎo),導(dǎo)致EOC細胞的化療耐藥性。
2.5 HAUS6、KANSL1和PRC1 ?Gusev A等[26]對高等級漿液性EOC的基因表達和剪接結(jié)合進行全轉(zhuǎn)錄組關(guān)聯(lián)研究及全基因組關(guān)聯(lián)研究,明確了5個轉(zhuǎn)錄組相關(guān)研究的重要基因,其中7個僅在連接水平,如Lrrc46在19q21.32、chmp4c在8q21、以及prc1在15q26。高等級漿液性EOC細胞系的功能篩選發(fā)現(xiàn)了HAUS6、KANSL1和PRC1三個易感基因。有研究表明[26],有絲分裂紡錘體中的HAUS6水平隨Samp1的耗盡而降低,并參與了γ-微管蛋白向有絲分裂紡錘體的募集,提示HAUS6可能是腫瘤細胞分裂增殖調(diào)控的靶點?;蛉诤显谀承┌┌Y中起著關(guān)鍵作用,RNA測序篩選數(shù)據(jù)分析表明CRHR1-KANSL1是EOC最常見的融合,在宮頸癌、膠質(zhì)母細胞瘤、前列腺癌、肺癌、乳腺癌和淋巴瘤中均被發(fā)現(xiàn)(占所有腫瘤的2.7%)[27]。與正常細胞相比,肺癌細胞系的微管相關(guān)蛋白PRC1(細胞因子作用1所需的蛋白)過度表達,在細胞因子作用的中心及紡錘體中的反平行微管組織中起著關(guān)鍵作用,與肺腺癌患者預(yù)后不良相關(guān)[28]。
3 EOC的化學(xué)治療
晚期EOC的初始標準化治療是最大限度的腫瘤細胞減滅術(shù)及術(shù)后順鉑和紫杉醇為主的聯(lián)合化療方案。腫瘤細胞減滅術(shù)的目的是盡可能去除腫塊,而腫瘤細胞減滅術(shù)后殘余腫瘤是否存在是卵巢癌患者最重要的臨床預(yù)后因素之一。與存在殘留腫瘤組織的患者相比,無殘余腫瘤的患者預(yù)后較好[29]。原發(fā)性癌細胞減少后,Ⅲ期EOC患者通常接受輔助化療,包括DNA間鏈交聯(lián)誘導(dǎo)劑(如鉑類藥物)或DNA雙鏈斷裂誘導(dǎo)劑,在大多數(shù)患者中可誘導(dǎo)臨床完全緩解(生理正常檢查、計算機斷層掃描和CA125水平)。但大多數(shù)患者對治療未能保持持久反應(yīng),其原因與耐藥性有關(guān),導(dǎo)致總體生存率降低。
3.1抗EpCAM抗體結(jié)合腺病毒載體 ?腺相關(guān)病毒(AAV)具有長期表達能力、無免疫原性和致病性,是一種有前途的siRNA系統(tǒng)傳遞載體。然而,其廣泛的宿主傾向和缺乏組織特異性限制了癌癥治療等臨床應(yīng)用。因此,將AAV載體的天然向性定向到獨特的細胞表面抗原是體內(nèi)RNAi癌癥靶向治療的要求[30]。利用上皮細胞粘附分子(EpCAM)在特定癌癥類型中的過度表達特性,通過鏈霉親和生物素橋構(gòu)建抗EpCAM抗體結(jié)合的AAV血清2型(AAV2)載體降低EpCAM在大多數(shù)胃腸道腫瘤和生殖泌尿道癌中的高度表達[31]。有研究發(fā)現(xiàn)[32],靜脈注射抗EpCAM抗體結(jié)合腺病毒載體后,在EpCAM陽性荷瘤小鼠中顯示出顯著的腫瘤特異性積累;此外,攜帶表達shRNA的轉(zhuǎn)基因基因?qū)笶GFR時,注射抗EpCAM抗體結(jié)合腺病毒載體可誘導(dǎo)腫瘤中EGFR表達的下調(diào),從而抑制腫瘤生長。這種體內(nèi)抗腫瘤作用代表了定向性修飾的AAV2載體的感染效率提高和EGFR shRNA在腫瘤組織中的長時間表達,體內(nèi)對卵巢癌的發(fā)揮再定位及抗腫瘤作用。
3.2 HMGB3與順鉑的耐藥性 ?染色質(zhì)相關(guān)的高遷移率族盒3(HMGB3)蛋白與卵巢癌的發(fā)病機制和預(yù)后有關(guān),且在癌細胞中的表達經(jīng)常上調(diào),使其成為干預(yù)治療的潛在選擇性靶點[33]。Mukherjee A等[34]通過靶向去除HMGB3蛋白,導(dǎo)致ATR和CHK1激酶的轉(zhuǎn)錄下調(diào),從而減弱了ATR/CHK1/P-CHK1 DNA損傷信號通路,增加了順鉑治療后耐順鉑A2780/CP70細胞的凋亡,在順鉑耐藥卵巢癌細胞中恢復(fù)順鉑敏感性。此外,HMGB3基因沉默增強了對順鉑和紫杉醇的敏感性,降低了對奧沙利鉑的敏感性[35]。因此,HMGB3蛋白的靶向抑制劑可能是降低EOC癌細胞的蛋白表達并增強順鉑和紫杉醇敏感性的潛在研究方向,改善患者總體生存率和無復(fù)發(fā)生存率。
3.3 MicroRNA與順鉑的耐藥性 ?越來越多的證據(jù)表明,MicroRNA與化療敏感性有關(guān)。Wang Y等[36]研究發(fā)現(xiàn),與順鉑敏感細胞相比,順鉑耐藥的EOC細胞高表達let-7家族成員的mir-98-5p,直接靶向DICER1的3'-UTR可抑制其表達。此外,mir-152的異位表達通過靶向同源重組中的核心成員RAD51,在體內(nèi)外逆轉(zhuǎn)了順鉑抵抗,提示mir-98-5p/dicer1/mir-152通路在調(diào)節(jié)EOC細胞順鉑抵抗中具有重要作用。Jin Y等[37]研究表明,miR-210-3p通過靶向結(jié)合E2F轉(zhuǎn)錄因子3而增強順鉑的敏感性,導(dǎo)致卵巢癌細胞的增殖抑制。在順鉑存在下,上調(diào)mir-200b和mir-200c可促進EOC細胞死亡;mir-200b和mir-200c通過靶向DNA甲基轉(zhuǎn)移酶(DNMTs)逆轉(zhuǎn)了順鉑耐藥性(直接靶向DNMT3a/DNMT3b,通過特異性蛋白1間接靶向DNMT1),表明mir-200b-和mir-200c-介導(dǎo)的DNMTs下調(diào)可通過增加癌細胞的敏感性提高化療效果,可能對卵巢癌治療產(chǎn)生影響[38]。
3.4 RBMS3與順鉑的耐藥性 ?EOC中紅細胞介素3(RBMS3)的低表達與患者總體生存率和無復(fù)發(fā)生存率相關(guān)。RBMS3的基因敲除后,EOC細胞對順鉑等化療藥物的抵抗性增強,而RBMS3表達恢復(fù)則降低了EOC細胞的體內(nèi)外抗化療能力。RBMS3通過直接與多個負性調(diào)節(jié)因子如dk3、axin1、bach1和nfat5穩(wěn)定結(jié)合,降低mir-126-5p介導(dǎo)的競爭性抑制,從而抑制β-連環(huán)蛋白/cbp信號傳導(dǎo),表明RBMS3基因沉默有助于抗化療,PRI-724可能是EOC RBMS3缺失患者的一種潛在的治療靶點[39]。
3.5雄激素受體與紫杉醇耐藥性 ?雄激素受體(AR)參與了EOC細胞的增殖。Chung WM等[40]采用AR降解增強劑(ASC-J9)檢測紫杉醇相關(guān)和紫杉醇抵抗的細胞毒性,結(jié)果發(fā)現(xiàn)AR/芳基烴受體(AHR)介導(dǎo)ABCG2的表達,并導(dǎo)致EOC血清學(xué)亞型細胞系中紫杉醇細胞毒性/敏感性的改變。紫杉醇激活A(yù)R的活性并與替代物結(jié)合在abcg2近端啟動子區(qū)域,這種新的AR機制解釋了AR降解是治療AR陽性EOC血清學(xué)亞型最有效的治療策略。有研究發(fā)現(xiàn)[41],F(xiàn)KBP5與AR結(jié)合成蛋白復(fù)合物,調(diào)節(jié)TXR、FKBP5、AR蛋白的轉(zhuǎn)錄及Akt激酶途徑,F(xiàn)KBP5/AR復(fù)合物可能通過調(diào)節(jié)TXR基因的表達及Akt激酶途徑而影響癌細胞對紫杉醇的敏感性,這表明AKT/FKBP5/AR軸被激活的EOC患者應(yīng)避免使用以有絲分裂毒素為基礎(chǔ)的化療。
3.6 CD44聚PLGA納米顆粒與紫杉醇耐藥性 ?Yeongseon B等[42]開發(fā)了一種透明質(zhì)酸標記的聚(d,L-交酯-co-乙交酯)納米顆粒(HA-PLGA-NP),將紫杉醇(PTX)和局灶性粘附激酶(FAK)siRNA作為抗化療卵巢癌的選擇性輸送系統(tǒng);與CD44陰性細胞相比,HA-PLGA-NP對CD44陽性腫瘤細胞的結(jié)合效率更高。HA-PLGA (PTX+FAK siRNA)-NP導(dǎo)致耐藥腫瘤細胞的細胞毒性和凋亡增加,人EOC HeyA8-MDR和SKOV3-TR模型均可抑制腫瘤細胞的生長。HA-PLGA-NP作為化療藥物和siRNA的有效性和選擇性遞送系統(tǒng),可以克服EOC細胞的化療耐藥性。
3.7 BRCA2突變EOC化療耐藥 ?BRCA2是同源重組系統(tǒng)的核心組成部分,約50%的HGSOC存在DNA損傷同源重組修復(fù)缺陷。與同源重組缺失相關(guān)的BRCA2突變主要發(fā)生于HGSOC,包括遺傳性即胚系突變(germline)和體細胞突變或散發(fā)性(somatic、sporadic)。有研究表明[43],BRCA2截短突變是HGSOC鉑類或多聚腺苷二磷酸核糖聚合酶抑制劑(PARPi)高敏感性的驅(qū)動表型。BRCA2截短突變與HGSOC較好的鉑類治療反應(yīng)、PFS和OS相關(guān),而野生型BRCA2或BRCA1突變與HGSOC的治療預(yù)后無關(guān)。BRCA2缺失時,PARP高表達是PARPi靶向治療HGSOC的選擇指標[44]。Ashour M[45]前瞻性地納入104例EOC患者,分析包括所有翻譯的外顯子和BRCA1/2基因的緊鄰內(nèi)含子區(qū)的序列并評估了患者對多種化療方案的反應(yīng),結(jié)果發(fā)現(xiàn)21.15%的患者存在致病性BRCA1/2突變,高達72%的BRCA突變患者在晚期被診斷出來,高等級血清腫瘤的致病性BRCA突變發(fā)生率較高。攜帶致病性BRCA1/2突變的患者中位總體生存率和無復(fù)發(fā)生存率分別為64.32個月和42.43個月,而非攜帶者為56.63個月和22.24個月。因此,BRCA2突變與EOC化療耐藥密切相關(guān)。
3.8 MyD88表達與EOC紫杉醇耐藥 ?有研究表明[46,47],有77%的EOC異常表達和活化MyD88介導(dǎo)TLR4/NF-κB/IL-6信號通路。該通路是原發(fā)性紫杉醇耐藥的一個機制,有5種不同組織類型EOC表達MyD88水平,分別是HGSOC(75%)、LGSOC(86%)、透明細胞型(50%)、子宮內(nèi)膜樣型(100%)和黏液性(75%)。EOC在發(fā)生發(fā)展過程中劫持或篡奪MyD88表達。分子結(jié)構(gòu)表征表明[46],紫杉醇是一個TLR4親和力極高的活化性配體,一旦紫杉醇與TLR4結(jié)合,通過活化MyD88促進NF-κB介導(dǎo)的IL-6自分泌回路和VEGF表達。IL-6在大多數(shù)EOC中過度表達,自分泌IL-6刺激IL-6受體活化,激活Janus激酶2(JAK2),促進信號轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活子3(STAT3)的磷酸化和核轉(zhuǎn)位,從而上調(diào)刺激細胞增殖、抑制細胞凋亡和促進血管新生的基因,同時也降低了紫杉醇穩(wěn)定微管蛋白的細胞毒作用[48]。
4總結(jié)
EOC是發(fā)病率和死亡率均較高的卵巢惡性腫瘤,可能與NF-κB/Mortalin、NR2F6及HAUS6等基因上調(diào)、MED12突變和SYMD3下調(diào)有關(guān)。晚期EOC的初始標準化治療是最大限度的腫瘤細胞減滅術(shù)及術(shù)后順鉑和紫杉醇為主的聯(lián)合化療方案。應(yīng)用抗EpCAM抗體結(jié)合腺病毒載體、CD44聚PLGA納米顆粒、HMGB3和RBMS3沉默及調(diào)控MicroRNA表達是增加EOC癌細胞化學(xué)治療敏感性的有效靶點。在具有分子表征的EOC分型的靶向治療的新興時代,應(yīng)該對EOC分子型別進行分層研究和監(jiān)測、優(yōu)化治療方案和規(guī)避化療耐藥給予充分的重視。
參考文獻:
[1]李克敏,宋亮,尹如鐵.2017年第4版NCCN卵巢癌臨床實踐指南解讀[J].華西醫(yī)學(xué),2018(4):398-402.
[2]Colombo N,Sessa C,du Bois A,et al.ESMO-ESGO consensus conference recommendations on ovarian cancer:pathology and molecular biology, early and advanced stages, borderline tumors and recurrent disease[J].Ann Oncol,2019,30(5):672-705.
[3]Kurman RJ,Carcangiu ML,Herrington CS,et al.WHO classification of tumors of female reproductive organs[J]. Lyon:International Agency for Research on Cancer,2014.
[4]Lu TP,Kuo KT,Chen CH,et al.Developing a Prognostic Gene Panel of Epithelial Ovarian Cancer Patients by a Machine Learning Model[J].Cancers,2019,11(2):E270.
[5]初桂偉,趙月,田春燕,等.上皮性卵巢癌術(shù)后復(fù)發(fā)影響因素分析[J].解放軍醫(yī)藥雜志,2019(1):30-32.
[6]Huang L,Xu AM.SET and MYND domain containing protein 3 in cancer[J].American Journal of Translational Research,2017,9(1):1-14.
[7]Giakountis A,Moulos P,Sarris ME,et al.Smyd3-associated regulatory pathways in cancer[J].Seminars in Cancer Biology,2017(42):70-80.
[8]Tsai CH,Chen YJ,Yu CJ,et al.SMYD3-Mediated H2A.Z.1 Methylation Promotes Cell Cycle and Cancer Proliferation[J].Cancer Research,2016,76(20):6043-6053.
[9]Liu TT,Xu H,Gao WP,et al.SET and MYND Domain-Containing Protein 3 (SMYD3) Polymorphism as a Risk Factor for Susceptibility and Poor Prognosis in Ovarian Cancer[J].Med Sci Monit,2016(22):5131-5140.
[10]Peserico A,Germani A,Sanese P,et al.A SMYD3 Small-Molecule Inhibitor Impairing Cancer Cell Growth[J].Journal of Cellular Physiology,2015,230(10):2447-2460.
[11]Zhang L,Jin Y,Yang H,et al.SMYD3 promotes epithelial ovarian cancer metastasis by down-regulating p53 protein stability and promoting p53 ubiquitination[J].Carcinogenesis,2019:bgz078.
[12]Mylonis I,Kourti M,Samiotaki M,et al.Mortalin-mediated and ERK-controlled targeting of HIF-1α to mitochondria confers resistance to apoptosis under hypoxia[J].J Cell Sci,2017,130(2):466-479.
[13]Jin H,Ji M,Chen L,et al.The clinicopathological significance of Mortalin overexpression in invasive ductal carcinoma of breast[J].Journal of Experimental&Clinical Cancer Research,2016,35(1):42.
[14]Sun J,Che SL,Piao JJ,et al.Mortalin overexpression predicts poor prognosis in early stage of non-small cell lung cancer[J].Tumor Biology,2017,39(3):101042831769591.
[15]Ando K,Oki E,Zhao Y,et al.Mortalin is a prognostic factor of gastric cancer with normal p53 function[J].Gastric Cancer,2013,17(2):255-262.
[16]Xu M,Jin T,Chen L,et al.Mortalin is a distinct bio-marker and prognostic factor in serous ovarian carcinoma[J].Gene,2019,69(6):63-71.
[17]Hu Y,Yang L,Yang Y,et al.Oncogenic role of mortalin contributes to ovarian tumorigenesis by activating the MAPK-ERK pathway[J].Journal of Cellular and Molecular Medicine,2016,20(11):2111-2121.
[18]Li S,Lv M,Qiu S,et al.NF-κB p65 promotes ovarian cancer cell proliferation and migration via regulating mortalin[J].J Cell Mol Med,2019,23(6):4338-4348.
[19]M?kinen N,Mehine M,Tolvanen J,et al.MED12,the Mediator Complex Subunit 12 Gene,Is Mutated at High Frequency in Uterine Leiomyomas[J].Science,2011,334(6053):252-255.
[20]Lim WK,Ong CK,Tan J,et al.Exome sequencing identifies highly recurrent MED12 somatic mutations in breast fibroadenoma[J].Nature Genetics,2014,46(8):877-880.
[21]Barbieri CE,Baca SC,Lawrence MS,et al.Exome sequencing identifies recurrent SPOP,F(xiàn)OXA1 and MED12 mutations in prostate cancer[J].Nature Genetics,2012,44(6):685-689.
[22]Luo XL,Deng CC,Su XD,et al.Loss of MED12 Induces Tumor Dormancy in Human Epithelial Ovarian Cancer via Downregulation of EGFR[J].Cancer research,2018,78(13):3532-3543.
[23]Klepsch V,Hermann-Kleiter N.Beyond CTLA-4 and PD-1:Orphan nuclear receptor NR2F6 as T cell signaling switch and emerging target in cancer immunotherapy[J].Immunology letters,2016(178):31-36.
[24] Liu J,Li T.DDA1 is induced by NR2F6 in ovarian cancer and predicts poor survival outcome[J].European review for medical and pharmacological sciences,2017,21(6):1206-1213.
[25]Li H,Zhang W,Niu C,et al.Nuclear orphan receptor NR2F6 confers cisplatin resistance in epithelial ovarian cancer cells by activating the Notch3 signaling pathway[J].International Journal of Cancer,2019,145(7):1921-1934.
[26]Gusev A,Lawrenson K,Lin X,et al.A transcriptome-wide association study of high-grade serous epithelial ovarian cancer identifies new susceptibility genes and splice variants[J].Nature Genetics,2019,51(5):815-823.
[27]Larsson VJ,Jafferali MH,Vijayaraghavan B,et al.Mitotic spindle assembly and γ-tubulin localisation depend on the integral nuclear membrane protein Samp1[J].Journal of Cell Science,2018,131(8):jcs211664.
[28]Zhou JX,Yang X,Ning S,et al.Identification of as the first cancer predisposition fusion gene specific to the population of European ancestry origin[J].Oncotarget,2017,8(31):50594-50607.
[29]Hanselmann S,Wolter P,Malkmus J.The microtubule-associated protein PRC1 is a potential therapeutic target for lung cancer[J].Oncotarget,2018,9(4):4985-4997.
[30]Landrum LM,Java J,Mathews CA,et al.Prognostic factors for stage Ⅲ epithelial ovarian cancer treated with intraperitoneal chemotherapy:a Gynecologic Oncology Group study[J].Gynecologic Oncology,2013,130(1):12-18.
[31]Spizzo G,F(xiàn)ong D,Wurm M,et al.EpCAM expression in primary tumour tissues and metastases:an immunohistochemical analysis[J].Journal of Clinical Pathology,2011,64(5):415-420.
[32]Lee S,Ahn HJ.Anti-EpCAM-conjugated adeno-associated virus serotype 2 for systemic delivery of EGFR shRNA:Its retargeting and antitumor effects on OVCAR3 ovarian cancer in vivo[J].Acta Biomater,2019(91):258-269.
[33]Song N,Liu B,Wu JL,et al.Prognostic value of HMGB3 expression in patients with non-small cell lung cancer[J].Tumor Biology,2013,34(5):2599-2603.
[34]Mukherjee A,Huynh V,Gaines K,et al.Targeting the High Mobility Group Box 3 protein sensitizes chemoresistant ovarian cancer cells to cisplatin[J].Cancer Res,2019,79(13):3185-3191.
[35]Guo S,Wang Y,Gao Y,et al.Knockdown of High Mobility Group-Box 3 (HMGB3) Expression Inhibits Proliferation,Reduces Migration,and Affects Chemosensitivity in Gastric Cancer Cells[J].Medical Science Monitor,2016(22):3951-3960.
[36]Wang Y,Bao W,Liu Y,et al.miR-98-5p contributes to cisplatin resistance in epithelial ovarian cancer by suppressing miR-152 biogenesis via targeting Dicer1[J].Cell Death Dis,2018,9(5):447.
[37]Jin Y,Wei J,Xu S,et al.miR 210 3p regulates cell growth and affects cisplatin sensitivity in human ovarian cancer cells via targeting E2F3[J].Molecular Medicine Reports,2019.
[38]Liu J,Zhang X,Huang Y,et al.miR-200b and miR-200c co-contribute to the cisplatin sensitivity of ovarian cancer cells by targeting DNA methyltransferases[J].Oncology Letters,2019,17(2):1453-1460.
[39]Wu G,Cao L,Zhu J,et al.Loss of RBMS3 Confers Platinum Resistance in Epithelial Ovarian Cancer via Activation of miR-126-5p/β-catenin/CBP signaling[J].Clin Cancer Research,2019,25(3):1022-1035.
[40]Chung WM,Ho YP,Chang WC,et al.Increase Paclitaxel Sensitivity to Better Suppress Serous Epithelial Ovarian Cancer via Ablating Androgen Receptor/Aryl Hydrocar Hydrocarbon Receptor-ABCG2 Axis[J].Cancer (Basel),2019,11(4):E463.
[41] Sun NK,Huang SL,Chang PY,et al.Transcriptomic profiling of taxol-resistant ovarian cancer cells identifies FKBP5 and the androgen receptor as critical markers of chemotherapeutic response[J].Oncotarget,2014,5(23):11939-11956.
[42]Yeongseon B,Jeong-Won L, Soo CW, et al.CD44-targeted PLGA nanoparticles incorporating paclitaxel and FAK siRNA overcome chemoresistance in epithelial ovarian cancer[J].Cancer Research,2018,78(21):6247-6256.
[43]Rebbeck TR,Mitra N,Wan F,et al.Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer[J].JAMA,2015,313(13):1347-1361.
[44]The Cancer Genome Atlas Research Network.Integrated genomic analysis of ovarian cancer[J].Nature,2011,474(7353):609-615.
[45]Ashour M.Frequency of germline mutations in BRCA1 and BRCA2 in ovarian cancer patients and their effect on treatment outcome[J].Cancer Management and Research,2019(11):6275-6284.
[46] 張國楠,黃建鳴.卵巢上皮癌分子分型和化療耐藥的再認識[J].中國婦產(chǎn)科臨床雜志,2017,18(6):481-483.
[47]Huang JM,Zhang GN,Yu S,et al.Atractylenolide-I sensitizeshuman ovarian cancer cells to paclitaxel by blocking activationof TLR4/MyD88-dependent Pathway[J].Scientific Reports,2014(4):3840.
[48] Szajnik M,Szczepanski MJ,Czystowska M,et al.TLR4 signaling induced by lipopolysaccharide or paclitaxel regulates tumorsurvival and chemoresistance in ovarian cancer[J].Oncogene,2009,28(49):4353-4363.
收稿日期:2019-5-27;修回日期:2019-6-9
編輯/杜帆