亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        天然微藻水熱炭理化特性及熱解動(dòng)力學(xué)研究

        2019-10-12 02:43:28劉慧慧陳應(yīng)泉張文楠楊海平王賢華陳漢平
        關(guān)鍵詞:柵藻微藻水熱

        劉慧慧,曲 磊,陳應(yīng)泉,張文楠,楊海平,王賢華,陳漢平

        天然微藻水熱炭理化特性及熱解動(dòng)力學(xué)研究

        劉慧慧1,曲 磊1,陳應(yīng)泉1,張文楠2,楊海平1,王賢華1※,陳漢平1

        (1. 華中科技大學(xué)煤燃燒國(guó)家重點(diǎn)實(shí)驗(yàn)室,武漢 430074;2. Department of Chemical Engineering, Mid Sweden University, Sundsvall SE-85170, Sweden)

        為探索天然微藻資源化的利用途徑,該文以天然柵藻為原料,采用傅立葉轉(zhuǎn)換紅外線光譜分析, X射線衍射分析,X射線熒光光譜分析, 環(huán)境掃描電子顯微鏡與熱重分析儀對(duì)水熱炭進(jìn)行測(cè)試分析。研究結(jié)果表明,隨著水熱溫度的升高,水熱炭產(chǎn)率從47.29%(180℃)降低至43.01%(240%);水熱炭的O/C摩爾比從1.45減小至0.28,碳化程度加強(qiáng),水熱炭具有應(yīng)用于固體燃料的潛力。鑒于水熱炭含有大量灰分,其熱值為8.43~9.67 MJ/kg,因此脫灰預(yù)處理是必要的過(guò)程。經(jīng)過(guò)水熱碳化處理,天然柵藻的比表面積從4.36 m2/g增加到35.26 m2/g。熱解動(dòng)力學(xué)結(jié)果表明隨著水熱溫度的提高,水熱炭的熱穩(wěn)定性增強(qiáng)。研究結(jié)果對(duì)天然微藻的資源化利用提供了一定的理論參考。

        碳化;熱解;動(dòng)力學(xué);天然柵藻;水熱炭;理化特性

        0 引 言

        微藻作為第三代生物質(zhì)燃料有很大的能源價(jià)值和環(huán)境效益[1-2]。相比于傳統(tǒng)生物質(zhì),微藻生長(zhǎng)在水環(huán)境中,不占用農(nóng)業(yè)耕地面積[3];光合固碳效率高[4-5],單位時(shí)間單位面積生物質(zhì)產(chǎn)量高[6];易獲得低成本。因此微藻應(yīng)用于熱化學(xué)轉(zhuǎn)化領(lǐng)域受到人們廣泛關(guān)注。其中,水熱工藝是微藻熱化學(xué)轉(zhuǎn)化利用的重要方式。水熱工藝可以生產(chǎn)高能量密度以及高附加值化學(xué)品[7]。與其他熱化學(xué)轉(zhuǎn)化工藝相比,水熱工藝不需要對(duì)原料進(jìn)行干燥,降低了過(guò)程能耗,適用于含水率較高的生物質(zhì)能源;對(duì)物質(zhì)質(zhì)量傳遞沒有限制,不受物料含水率制約;反應(yīng)過(guò)程簡(jiǎn)單,反應(yīng)條件溫和;水熱產(chǎn)物易分離[8]。因此水熱工藝被公認(rèn)為是高含水率生物質(zhì)能源化利用較為理想的方法。水熱碳化過(guò)程中以大分子解聚為小分子以及小分子片段重新聚合為大分子為主要過(guò)程,包含了水解、脫水、脫羧、縮聚和芳香化等反應(yīng)[9],可生產(chǎn)具有疏水性,易干燥和粉碎以及官能團(tuán)豐富的焦炭[10-12]。

        在微藻水熱領(lǐng)域,國(guó)內(nèi)外學(xué)者對(duì)水熱工藝應(yīng)用于微藻進(jìn)行了大量的研究。Cheng等[13]評(píng)估了高蛋白質(zhì)含量的紅藻的物質(zhì)產(chǎn)率,能量回收率以及化學(xué)組成。Heilmann等[14]對(duì)衣藻進(jìn)行碳化研究,其水熱炭的熱值達(dá)31.58 MJ/kg,且碳元素的收率為60%。Xu等[15]在低溫階段(180~210 ℃)分析銅藻水熱碳化特性,水熱炭的最大熱值達(dá)25.1 MJ/kg。Park等[16]通過(guò)對(duì)小球藻進(jìn)行水熱炭化處理,發(fā)現(xiàn)其水熱炭的熱值高達(dá)29.8 MJ/kg,能量回收率為90%,水熱炭化處理有效的將微藻轉(zhuǎn)化為高效節(jié)能的可再生燃料資源。Lee等[17]將脂質(zhì)提取后的微藻()進(jìn)行水熱炭化處理,發(fā)現(xiàn)水熱炭在高溫區(qū)具有穩(wěn)定的燃燒特性。Marin-Batista等[18]研究發(fā)現(xiàn)微藻經(jīng)過(guò)水熱炭化處理后,其水熱炭的碳含量和熱值均大于原料。在水熱工藝中,溫度是影響水熱過(guò)程的重要因素[19]。在高溫高壓環(huán)境下,水的離子特性改變,大量H+和OH-解離促進(jìn)了有機(jī)物的異構(gòu)化,解聚和再聚合作用。同時(shí),為了確保微藻轉(zhuǎn)化率達(dá)到最大值,充足的反應(yīng)時(shí)間也是必須的。

        目前,微藻的水熱工藝研究主要是利用實(shí)驗(yàn)室理想環(huán)境培養(yǎng)的微藻作為原料。然而,天然藻類水熱特性研究還較少。由于生長(zhǎng)環(huán)境復(fù)雜,天然藻類的組成與培養(yǎng)藻類有很大差異,本研究選用天然柵藻作為原料,其脂類和蛋白質(zhì)含量很少,分別為1.4%和15.1%,灰分質(zhì)量分?jǐn)?shù)高達(dá)44.66%,而培養(yǎng)柵藻的脂類,蛋白質(zhì)和碳水化合物的質(zhì)量分?jǐn)?shù)分別為20.2%、48.1%和9.86%,灰分質(zhì)量分?jǐn)?shù)僅為3.46%[20]。不同的組分組成導(dǎo)致其水熱特性也不盡相同。本文研究了天然柵藻()的水熱特性,分析了其水熱炭物化特性以及熱解動(dòng)力學(xué)變化過(guò)程,利用傅立葉轉(zhuǎn)換紅外線光譜分析(Fourier transform infrared spectrometer),X射線衍射分析(X-ray diffraction),X射線熒光光譜分析(X-ray fluorescence),環(huán)境掃描電子顯微鏡(environmental scanning electron microscope,ESEM)和熱重分析(thermogravimetric analysis)對(duì)水熱炭進(jìn)行測(cè)試分析,為天然柵藻水熱碳化利用提供一定的理論基礎(chǔ),促進(jìn)了天然柵藻的資源化利用過(guò)程。

        1 柵藻水熱碳化特性試驗(yàn)

        1.1 試驗(yàn)原料

        天然柵藻由瑞典農(nóng)業(yè)科技大學(xué)提供,生長(zhǎng)在瑞典的Ume?(63°87′N,20°80′E),將其自然晾干后運(yùn)送至實(shí)驗(yàn)室。柵藻經(jīng)粉碎,篩分至粒徑小于0.125 mm。將原料放置于干燥箱內(nèi),55℃干燥至質(zhì)量恒定。

        1.2 試驗(yàn)方法

        微藻水熱裝置為100 mL的自攪拌高溫高壓反應(yīng)釜(北京世紀(jì)森朗實(shí)驗(yàn)儀器有限公司,SLM-100)。將干燥的天然柵藻和去離子水以1:15(g/mL)添加入反應(yīng)釜中,其中原料的質(zhì)量為3 g,經(jīng)超聲震蕩10 min后,組裝密封反應(yīng)釜裝置,用氬氣排空后升壓至2 MPa,將反應(yīng)釜升溫至反應(yīng)溫度(180、200、220、240、260 ℃),在反應(yīng)溫度下保溫4 h。反應(yīng)完成后,將反應(yīng)釜迅速置于冰水混合物中進(jìn)行冷卻。待冷卻至室溫后,打開泄氣閥將釜體內(nèi)的氣體排出,拆卸反應(yīng)釜裝置,用真空抽濾裝置將反應(yīng)產(chǎn)物固液分離,將固體產(chǎn)物105 ℃烘干12 h,每組工況至少重復(fù)2次。NM表示天然柵藻,反應(yīng)產(chǎn)物用HC-進(jìn)行標(biāo)記,其中表示反應(yīng)溫度。水熱炭產(chǎn)量、固存率、高位發(fā)熱量(high heating value,HHV),能量回收率通過(guò)以下公式[21-22]進(jìn)行計(jì)算

        HHV=0.338 3C+1.443H+0.094 2S?0.1803O (3)

        1.3 分析方法

        采用SDTGA型工業(yè)分析儀(西班牙Las Navas公司)和EL-2元素分析儀(德國(guó)Vario公司)對(duì)樣品進(jìn)行工業(yè)分析和元素分析。通過(guò)X’Pert PRO型X射線衍射儀(荷蘭帕納科公司PANalytical生產(chǎn))對(duì)樣品晶相成分進(jìn)行分析,掃描步長(zhǎng)為0.0170°,陽(yáng)靶極為Cu,操作條件為:40 mA,40 kV,2角度范圍為10°~80°。物相結(jié)構(gòu)分析則采用X'Pert High Score Plus 軟件。利用EAGLE III X射線熒光探針(美國(guó)伊達(dá)克斯有限公司EDAX Inc.生產(chǎn))對(duì)樣品灰分金屬鹽含量進(jìn)行分析,其微聚焦X光管最大功率40 kV,1.0 mA。采用VERTEX 70傅立葉變換顯微紅外(德國(guó)Bruker 公司)分析樣品官能團(tuán)演變過(guò)程,其光譜范圍為50~12,500 cm-1。利用ASAP2020型比表面積及孔徑分析儀(美國(guó)Micromeritics公司生產(chǎn)),通過(guò)Brunauer-Emmett-Teller(BET)方程進(jìn)行線性回歸計(jì)算比表面積,Barrett-Joyner-Halenda模型計(jì)算總孔容。利用Quanta 200環(huán)境掃描電子顯微鏡(ESEM,荷蘭FEI公司)。

        1.4 動(dòng)力學(xué)方程

        為了研究水熱炭的失重特性,對(duì)失重劇烈的階段構(gòu)建熱解的表觀動(dòng)力學(xué)模型以及求解主要的反應(yīng)動(dòng)力學(xué)參數(shù)。對(duì)柵藻進(jìn)行反應(yīng)動(dòng)力學(xué)分析。將樣品從室溫以10 ℃/min升溫速率,在氮?dú)夥諊鷹l件下從室溫升至800 ℃。根據(jù)文獻(xiàn)[23]中動(dòng)力學(xué)分析方法,假設(shè)微藻熱重分析為一級(jí)反應(yīng)模型[24],則反應(yīng)轉(zhuǎn)化率的變化率可表述為

        式中為反應(yīng)速率常數(shù);為反應(yīng)轉(zhuǎn)化率;M為反應(yīng)時(shí)刻樣品質(zhì)量,mg;M為反應(yīng)結(jié)束后最終固體質(zhì)量,mg;M為初始樣品質(zhì)量,mg。

        根據(jù)Arrhenius方程

        可確定熱解過(guò)程的表觀反應(yīng)為

        式中為指前因子,為表觀活化能,kJ/mol;為氣體常數(shù),8.314 J/(mol·K)。由于升溫速率(=d/d)確定,ln[?ln(1?)]與1/呈線性關(guān)系,可計(jì)算出表觀活化能。

        2 結(jié)果與分析

        2.1 天然柵藻及其水熱炭基本特性分析

        天然柵藻及不同水熱溫度條件下的水熱炭物化特性如表1所示。隨著水熱溫度的增加,水熱炭的產(chǎn)率逐漸從47.29%(180 ℃)降低至43.01%(240 ℃),這是因?yàn)楦邷貫槲⒃灏l(fā)生水解、脫水和脫羧基反應(yīng)提供更多的能量,高聚物降解作用增強(qiáng);當(dāng)溫度升高至260 ℃時(shí),水熱炭產(chǎn)率有增加趨勢(shì),這可能是由于水熱的中間產(chǎn)物發(fā)生縮聚反應(yīng),導(dǎo)致水熱炭產(chǎn)率增加。

        當(dāng)溫度由180 ℃升高至240 ℃,揮發(fā)分質(zhì)量分?jǐn)?shù)由55.34%降至28.53%,而260 ℃時(shí),揮發(fā)分質(zhì)量分?jǐn)?shù)增加為31.10%;與此同時(shí),灰分質(zhì)量分?jǐn)?shù)由44.66%增至71.47%。當(dāng)溫度為260 ℃時(shí),灰分質(zhì)量分?jǐn)?shù)為68.90%。這說(shuō)明天然微藻中的灰分多為難溶于水的組分,利用X射線熒光光譜分析(X-ray fluorescence)對(duì)灰分化學(xué)元素組分含量進(jìn)行分析發(fā)現(xiàn)(圖1),經(jīng)過(guò)水熱處理后Na、K、Cl元素含量急劇降低,而其他元素含量?jī)H有微量變化。天然柵藻及其水熱炭的XRD圖譜如圖2所示。從圖2中可以看出,天然柵藻中含有方解石(Mg0.064Ca0.936CO3)、SiO2、NaCl、Al2O3、CaSO4、Mg3S2O8(OH)2。經(jīng)過(guò)水熱處理后,NaCl溶解于水溶液中,其衍射峰消失;隨著水熱溫度的增加,各種不溶鹽的衍射峰增強(qiáng),這是由于水熱碳化過(guò)程中,由于有機(jī)組分分解,方解石(Mg0.064Ca0.936CO3)等無(wú)機(jī)礦物組分被富積下來(lái),衍射峰增強(qiáng),這與XRF對(duì)于灰分組分的分析結(jié)果一致。因此,與其他原料不同[25-27],根據(jù)GB/T 28731-2012固體生物質(zhì)燃料工業(yè)分析方法測(cè)量,天然柵藻和水熱炭均不含固定碳。通常釋放的揮發(fā)分會(huì)在固體表面沉降聚合形成固定碳[28],但由于天然微藻中含有大量的灰分,且多為難溶性組分,導(dǎo)致固定碳在工業(yè)分析中未能檢測(cè)到。

        表1 不同溫度下天然柵藻及其水熱炭元素分析、工業(yè)分析、產(chǎn)率、熱值和能量回收率

        注:*:差減法;元素分析:干燥無(wú)灰基;工業(yè)分析:干燥基。

        Note: *: Calculated by minusing. Ultimate analysis: dry ash-free basis; Proximate analysis: dry basis.

        圖1 天然柵藻及水熱炭XRF含量分布圖

        圖2 天然柵藻及水熱炭XRD圖譜

        元素分析結(jié)果顯示,與天然柵藻相比,在180~240 ℃范圍內(nèi),水熱炭的C和H元素隨著溫度升高而增加,而O元素質(zhì)量分?jǐn)?shù)減少,在脫水和脫羧基作用下以H2O和CO2形式脫除。當(dāng)溫度從180 ℃升高至240 ℃時(shí),C元素和H元素質(zhì)量分?jǐn)?shù)分別由44.6%和6.09%,增加至68.31%和8.27%,O元素質(zhì)量分?jǐn)?shù)由40.82%降至11.22%;而當(dāng)溫度升至260 ℃時(shí),C、H、O元素質(zhì)量分?jǐn)?shù)有相反的變化趨勢(shì)。天然柵藻及其水熱炭的C、H、O元素固存率如圖3所示。在水熱過(guò)程中,C元素的固存率最大,H元素次之,O元素最小。隨著溫度的增加,水熱炭中的C和H元素固存率分別由43.69%和40.41%,降至33.04%和29.20%;O元素固存率從29.06%(180 ℃)降至6.09%(24 ℃),而在260 ℃時(shí)增加至13.61%。這表明當(dāng)240 ℃時(shí),天然柵藻中69.88%的H元素和93.88%的O元素被脫除,C的固存率為33.97%。

        圖3 天然柵藻水熱炭中C、H、O固存率

        天然柵藻的熱值為9.33 MJ/kg,隨著水熱溫度增加,水熱炭的熱值減小。Van Krevelen圖用來(lái)描述反應(yīng)過(guò)程中的脫水、脫羧基和脫甲基過(guò)程[29],如圖4所示。H/C摩爾比從1.64減小至0.69,O/C摩爾比從1.45減小至0.28。從圖4中可看出,脫水和脫羧基是天然柵藻水熱過(guò)程中的主要路徑,脫甲基路徑可忽略;O/C一般用于反映碳化程度[8],O/C的摩爾比從1.45減小至0.28。說(shuō)明隨著水熱溫度的升高,水熱碳化程度加強(qiáng),表明水熱炭有應(yīng)用于固體燃料的潛力,鑒于水熱炭含有大量灰分,脫灰預(yù)處理是必要的過(guò)程。

        注:NM為天然柵藻。下同。

        2.2 天然柵藻及其水熱炭化學(xué)結(jié)構(gòu)特性分析

        天然柵藻及其不同水熱溫度條件下的水熱炭的FTIR結(jié)果如圖5所示。

        圖5 天然柵藻及水熱炭FTIR吸收峰圖譜

        根據(jù)文獻(xiàn)[30-36],對(duì)樣品進(jìn)行官能團(tuán)種類及演變過(guò)程進(jìn)行分析。在3 000~3 800 cm-1處的強(qiáng)寬峰是羥基、羧基或氨基中的OH和NH伸縮振動(dòng)的吸收峰,2 800~3 000 cm-1處的吸收峰為脂肪族CH2、CH3的不對(duì)稱伸縮振動(dòng)峰,1 646 cm-1處的吸收峰主要是酮基和酰胺基中的C=O伸縮振動(dòng)峰,1 535 cm-1處的吸收峰羧基中C=O的不對(duì)稱伸縮振動(dòng),1 424 cm-1處的吸收峰是芳香環(huán)中C=C的伸縮振動(dòng)峰,1 094 cm-1處的吸收峰為醚鍵中C-O-R或醇類中C-O鍵的伸縮振動(dòng),同時(shí),該出峰也常表示Si-O的吸收峰,874 cm-1處的吸收峰是芳香環(huán)側(cè)鏈中C-H的伸縮振動(dòng)。與天然柵藻相比,水熱炭主要吸收峰位置變化不大,但強(qiáng)度變化較明顯,說(shuō)明水熱炭化處理后,官能團(tuán)種類沒有變化,但含量發(fā)生了變化。相比于天然柵藻,水熱炭在3 000~3 800 cm-1處的OH、NH吸收峰,2 800~3 000 cm-1處的CH吸收峰,1 424 cm-1處的C=C吸收峰,1 094 cm-1處的C-O吸收峰,874 cm-1處的C-H吸收峰均有明顯增加,說(shuō)明相比于天然柵藻,水熱炭的官能團(tuán)更豐富,芳構(gòu)化程度更強(qiáng),水熱炭的炭化程度增加;酮基和酰胺基中的C=O(1 646 cm-1)和羧基中C=O(1 535 cm-1)吸收峰有降低趨勢(shì),說(shuō)明水熱過(guò)程中有明顯的脫羧基和脫羰基作用,O元素質(zhì)量分?jǐn)?shù)降低,這與元素分析結(jié)果一致。

        表2和圖6分別為不同溫度條件下制備水熱炭的結(jié)構(gòu)特征和吸附-脫附等溫線圖。從表2中可看出,相比于天然柵藻,水熱炭比表面積有明顯的增大,水熱炭的比表面積范圍為28.7~35.26 m2/g,說(shuō)明水熱工藝有利于改善其孔結(jié)構(gòu)特性。對(duì)比不同水熱溫度條件下制備的水熱炭發(fā)現(xiàn),不同水熱溫度對(duì)孔結(jié)構(gòu)的影響較小。圖6中,水熱炭的等溫吸附-脫附曲線為V型等溫線中的H3型回滯環(huán)。當(dāng)相對(duì)壓力(0)大于0.2時(shí)出現(xiàn)回滯環(huán),這是由于水熱炭中的毛細(xì)凝聚?;販h(huán)的形狀反映了孔的存在結(jié)構(gòu)。原料柵藻的吸脫附能力很小,水熱炭的吸脫附能力明顯增強(qiáng)。

        表2 天然柵藻及水熱炭BET比表面積、總孔容及平均孔徑

        圖6 天然柵藻及水熱炭氮?dú)馕?脫附等溫曲線

        圖7為天然柵藻及其水熱炭的SEM圖。天然柵藻呈密實(shí)的塊狀無(wú)孔道結(jié)構(gòu)(圖7a),從圖7b和圖7c中可看出,經(jīng)過(guò)水熱碳化處理后,樣品表面形貌有較大變化,水熱炭的破碎度和孔隙度增大,這是由于水熱過(guò)程中揮發(fā)分析出以及天然微藻基質(zhì)的化學(xué)分解,這與前文相應(yīng)的孔隙結(jié)構(gòu)分析結(jié)果一致。

        圖7 天然微藻及其水熱炭電鏡圖片

        2.3 柵藻及水熱炭熱解動(dòng)力學(xué)特性

        圖8為天然柵藻及其在不同溫度條件下水熱炭的熱重及失重速率曲線。

        a. TG

        b. DTG

        圖8 天然柵藻和不同水熱溫度下水熱炭的TG和DTG曲線

        Fig.8 TG-DTG curves of raw and hydrochars at different temperatures

        從圖8的熱重曲線中可看出,與天然柵藻相比,水熱炭表現(xiàn)出不同的熱解特性;不同的水熱溫度下水熱炭的失質(zhì)量過(guò)程差異也較大,失質(zhì)量率范圍為33%~43%,原料的失質(zhì)量率為57%,這是由于水熱處理后,天然柵藻中有機(jī)組分發(fā)生水解、脫水、脫羧、芳香化、縮聚等反應(yīng)。從失質(zhì)量速率曲線中可以看出,可以將整個(gè)熱解過(guò)程分為4個(gè)失質(zhì)量區(qū)間。這些失質(zhì)量區(qū)間對(duì)應(yīng)不同的有機(jī)物的分解,第1個(gè)失質(zhì)量階段(30~200 ℃)是樣品的脫水階段;第2個(gè)失質(zhì)量階段(200~400 ℃)是原料和水熱炭中的無(wú)定形結(jié)構(gòu)的快速熱解階段。最大失質(zhì)量速率溫度為300 ℃。隨著水熱溫度的升高,天然柵藻碳化程度增強(qiáng),揮發(fā)分含量減少,導(dǎo)致該階段的失質(zhì)量峰逐漸減小,當(dāng)水熱溫度大于220 ℃時(shí),水熱炭在300 ℃處的失質(zhì)量峰消失,最大失質(zhì)量速率峰向高溫區(qū)移動(dòng)。第3個(gè)失質(zhì)量階段(400~550 ℃)是由于焦炭的失質(zhì)量引起的;第4個(gè)失質(zhì)量階段(550~800 ℃)是由于殘余焦炭以及灰分中鹽類的失質(zhì)量引起的。對(duì)比天然柵藻,水熱炭的失質(zhì)量峰明顯增強(qiáng)。由以上分析可知,高灰分含量的柵藻經(jīng)處理后,最大失質(zhì)量速率峰值向高溫區(qū)移動(dòng),柵藻中的有機(jī)易分解組分向難分解殘?zhí)哭D(zhuǎn)化,一定程度上提高了固體產(chǎn)物的熱穩(wěn)定性。

        DTG峰高表現(xiàn)的熱解速率與化學(xué)反應(yīng)活性成正比,反應(yīng)溫度與反應(yīng)活性成反比[37]。對(duì)不同水熱溫度條件下水熱炭進(jìn)行熱解動(dòng)力學(xué)分析,為詳細(xì)研究水熱炭的熱解動(dòng)力過(guò)程,將失重階段分為4個(gè)階段,即30~200、200~400、400~550和550~800 ℃,各階段表觀活化能分別用1、2、3、4表示,結(jié)果如表3所示。對(duì)比分析天然柵藻及其水熱炭的表觀活化能發(fā)現(xiàn),水熱炭1小于天然柵藻1,說(shuō)明水熱炭的疏水性優(yōu)于原料[38],易于運(yùn)輸和儲(chǔ)存。隨著水熱溫度的升高,2減小,3值增,說(shuō)明水熱炭熱穩(wěn)定性增強(qiáng)。

        表3 不同熱重階段天然柵藻及水熱炭的表觀活化能

        注:1~4表示不同階段的活化能。

        Note:1to4indicate the activation energy at different stages.

        3 結(jié) 論

        1)天然柵藻灰分質(zhì)量分?jǐn)?shù)為44.66%,脂類和蛋白質(zhì)質(zhì)量分?jǐn)?shù)為1.4%和15.1%。天然微藻灰分組分多為難溶于水的組分,天然微藻水熱碳化后,水熱炭灰分含量增加。240 ℃時(shí),天然微藻中69.88%的H元素和93.88%的O元素被脫除,C的固存率為33.97%。O/C摩爾比從1.45減小至0.28,水熱碳化程度加強(qiáng)。水熱炭有應(yīng)用于固然燃料的潛力,鑒于水熱炭含有大量的灰分,脫灰預(yù)處理是必要的過(guò)程。

        2)水熱碳化處理有效提高了水熱炭的孔隙結(jié)構(gòu),水熱炭的吸脫附能力明顯增強(qiáng),相比于天然柵藻(4.36 m2/g),水熱炭的比表面積范圍為28.7~35.26 m2/g。天然柵藻呈密實(shí)的塊狀無(wú)孔道結(jié)構(gòu),而水熱炭的破碎度和孔隙率增大。

        3)水熱炭熱重分析發(fā)現(xiàn),隨著水熱溫度升高,300 ℃處的失質(zhì)量峰逐漸消失,柵藻中的易分解組分向難分解殘?zhí)哭D(zhuǎn)化,提高了固體產(chǎn)物的熱解穩(wěn)定性。熱解動(dòng)力學(xué)結(jié)果顯示,水熱炭疏水性優(yōu)于天然柵藻。

        [1] Teymouri A, Stuart B J, Kumar S. Effect of reaction time on phosphate mineralization from microalgae hydrolysate[J]. Acs Sustainable Chemistry & Engineering, 2018, 6(1): 618-625.

        [2] Bhattacharya S, Maurya R, Mishra S K, et al. Solar driven mass cultivation and the extraction of lipids from chlorella variabilis: A case study[J]. Algal Research, 2016(14): 137-142.

        [3] 徐玉福,俞輝強(qiáng),朱利華,等. 小球藻粉水熱催化液化制備生物油[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(19):194-199.

        Xu Yufu, Yu Huiqiang, Zhu Lihua, et al. Preparation of bio-fuel from Chlorella pyrenoidosa by hydrothermal catalytic liquefaction[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012. 28(19): 194-199. (in Chinese with English abstract)

        [4] 曲磊,崔翔,楊海平,等. 微藻水熱液化制取生物油的研究進(jìn)展[J]. 化工進(jìn)展,2018,37(8):2962-2969.

        Qu Lei, Cui Xiang, Yang Haiping, et al. Review on the preparation of bio-oil by microalgae hydrothermal liquefaction[J]. Chemical Industry and Engineering Progress, 2018, 37(8): 2962-2969. (in Chinese with English abstract)

        [5] 徐春明,焦志亮,王曉丹,等. 微藻作原料生產(chǎn)生物柴油的研究現(xiàn)狀和前景[J]. 現(xiàn)代化工,2015,35(8):1-5.

        Xu Chunming, Jiao Zhiliang, Wang Xiaodan, et al. Biodiesel production from microalgae: Current status and potential[J]. Modern Chemical Industry, 2015, 35(8): 1-5. (in Chinese with English abstract)

        [6] 張冀翔,蔣寶輝,王東,等. 微藻水熱液化生物油化學(xué)性質(zhì)與表征方法綜述[J]. 化工學(xué)報(bào),2016(5):1644-1653.

        Zhang Yixiang, Jiang Baohui, Wang Dong, et al. Chemical properties and characterization methods for hydrothermalliquefaction bio-crude from microalgae: A review[J]. CIESC Journal, 2016(5): 1644-1653. (in Chinese with English abstract)

        [7] Peterson A A, Vogel F, Lachance R P, et al. Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies[J]. Energy & Environmental Science, 2008, 1(1): 32-65.

        [8] 王定美,王躍強(qiáng),袁浩然,等. 水熱炭化制備污泥生物炭的碳固定[J]. 化工學(xué)報(bào),2013(7):2625-2632.

        Wang Dingmei, Wang Yueqiang, Yuan Haoran, et al. Carbon fixation of sludge biochar by hydrothermal carbonization[J]. CIESC Journal, 2013(7): 2625-2632. (in Chinese with English abstract)

        [9] Funke A, Ziegler F. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering[J]. Biofuels Bioproducts & Biorefining-Biofpr, 2010, 4(2): 160-177.

        [10] 李音,單勝道,楊瑞芹,等. 低溫水熱法制備竹生物炭及其對(duì)有機(jī)物的吸附性能[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(24):240-247.

        Li Yin, Shan Shengdao, Yang Ruiqin, et al. Preparation of bamboo biochars by low-temperature hydrothermal method and its adsorption of organics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(24): 240-247. (in Chinese with English abstract)

        [11] Cao X, Ro K S, Chappell M, et al. Chemical structures of swine-manure chars produced under different carbonization conditions investigated by advanced solid-state C-13 nuclear magnetic resonance (NMR) spectroscopy[J]. Energy & Fuels, 2011, 25(1): 388-397.

        [12] Falco C, BaccileN, Titirici M M. Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons[J]. Green Chemistry, 2011, 13(11): 3273-3281.

        [13] Cheng F, Cui Z, Chen L, et al. Hydrothermal liquefaction of high- and low-lipid algae: Bio-crude oil chemistry[J]. Applied Energy, 2017, 206: 278-292.

        [14] Heilmann S M, Davis H T, Jader L R, et al. Hydrothermal carbonization of microalgae [J]. Biomass & Bioenergy, 2010, 34(6): 875-882.

        [15] Xu Q, Qian Q, Quek A, et al. Hydrothermal carbonization of macroalgae and the effects of experimental parameters on the properties of hydrochars[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(9): 1092-1101.

        [16] Park K Y, Lee K, Kim D. Characterized hydrochar of algal biomass for producing solid fuel through hydrothermal carbonization[J]. Bioresource Technology, 2018, 258: 119-124.

        [17] Lee J, Lee K, Sohn D, et al. Hydrothermal carbonization of lipid extracted algae for hydrochar production and feasibility of using hydrochar as a solid fuel[J]. Energy, 2018, 153: 913-920.

        [18] Marin-Batista J D, Villamil J A, Rodriguez J J, et al. Valorization of microalgal biomass by hydrothermal carbonization and anaerobic digestion[J]. Bioresource Technology, 2019, 274: 395-402.

        [19] 張進(jìn)紅,林啟美,趙小蓉,等. 水熱炭化溫度和時(shí)間對(duì)雞糞生物質(zhì)炭性質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(24):239-244.

        Zhang Jinhong, Lin Qimei, Zhao Xiaorong, et al. Effect of hydrothermal carbonization temperature and time on characteristics of bio-chars from chicken manure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(24): 239-244. (in Chinese with English abstract)

        [20] Kohansal K, Tavasoli A, Bozorg A. Using a hybrid-like supported catalyst to improve green fuel production through hydrothermal liquefaction ofmicroalgae[J]. Bioresource Technology, 2019, 277: 136-147.

        [21] Channiwala S A, Parikh P P. A unified correlation for estimating HHV of solid, liquid and gaseous fuels[J]. Fuel, 2002, 81(8): 1051-1063.

        [22] 王慶峰. 中高硫煤浮選脫硫脫灰試驗(yàn)研究[D]. 青島:青島理工大學(xué),2013.

        Wang Qingfeng. Research on Desulphurization and Deashing for Medium-High Sulphur Coal with Flotation[D]. Qingdao: Qingdao Technological University, 2013. (in Chinese with English abstract)

        [23] Jaber J O, Probert S D. Non-isothermal thermogravimetry and decomposition kinetics of two Jordanian oil shales under different processing conditions[J]. Fuel Processing Technology, 2000, 63(1): 57-70.

        [24] White J E, Catallo W J, Legendre B L. Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies[J]. Journal of Analytical and Applied Pyrolysis, 2011, 91(1): 1-33.

        [25] 張進(jìn)紅,林啟美,趙小蓉,等. 不同炭化溫度和時(shí)間下牛糞生物炭理化特性分析與評(píng)價(jià)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(11):298-305.

        Zhang Jinhong, Lin Qimei, Zhao Xiaorong, et al. Physico-chemical characteristics and evaluation of cow manure hydrocharat different carbonization temperatures and durations[J]. Journal of Agricultural Machinery, 2018, 49(11): 298-305. (in Chinese with English abstract)

        [26] 馬騰,郝彥輝,姚宗路,等. 秸稈水熱生物炭燃燒特性評(píng)價(jià)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(12):340-346.

        Ma Teng, Hao Yanhui, Yao Zonglu, et al. Evaluation on combustion characteristics of straw hydrothermal bio-char[J]. Journal of Agricultural Machinery, 2018, 49(12): 340-346. (in Chinese with English abstract)

        [27] 張?jiān)?,單勝道,吳勝春,? 炭化條件對(duì)豬糞水熱炭主要營(yíng)養(yǎng)成分的影響[J]. 浙江農(nóng)林大學(xué)學(xué)報(bào),2018,35(3):398-404.

        Zhang Zeng, Shan Shengdao, Wu Shengchun, et al. Carbonization with main nutrients in pig manure hydrochar[J]. Journal of Zhejiang A&F University, 2018, 35(3): 398-404. (in Chinese with English abstract)

        [28] He C, Zhao J, Yang Y, et al. Multiscale characteristics dynamics of hydrochar from hydrothermal conversion of sewage sludge under sub- and near-critical water[J]. Bioresource Technology, 2016, 211: 486-493.

        [29] Van Krevelen D W. Graphical-statistical method for the study of structure and reaction processes of coal[J]. Fuel, 1950, 29: 228-269.

        [30] Zhang B, Feng H, He Z, et al. Bio-oil production from hydrothermal liquefaction of ultrasonic pre-treated[J]. Energy Conversion and Management, 2018, 159: 204-212.

        [31] Sabio E, Alvarez-Murillo A, Roman S, et al. Conversion of tomato-peel waste into solid fuel by hydrothermal carbonization: Influence of the processing variables[J]. Waste Management, 2016, 47: 122-132.

        [32] Yuan J H, Xu R K, Zhang H. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Technology, 2011, 102(3): 3488-3497.

        [33] Vyazovkin S, Burnham A K, Criado J M, et al. Kinetics committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta, 2011, 520(1/2): 1-19.

        [34] Maliutina K, Tahmasebi A, Yu J. Pressurized entrained-flow pyrolysis of microalgae: Enhanced production of hydrogen and nitrogen-containing compounds[J]. Bioresour Technol, 2018, 256: 160-169.

        [35] Zhao H, Yan H, Dong S, et al. Thermogravimetry study of the pyrolytic characteristics and kinetics of macro-algae Macrocystis pyrifera residue[J]. Journal of Thermal Analysis and Calorimetry, 2013, 111(3): 1685-1690.

        [36] Liu H M, Li M F, Yang S, et al. Understanding the mechanism of cypress liquefaction in hot-compressed water through characterization of solid residues[J]. Energies, 2013, 6(3): 1590-1603.

        [37] 武宏香,李海濱,趙增立. 煤與生物質(zhì)熱重分析及動(dòng)力學(xué)研究[J]. 燃料化學(xué)學(xué)報(bào),2009(5):538-545.

        Wu Hongxiang, Li Haibin, Zhao Zengli. Thermogravimetricanalysisandpyrolytickineticstudyoncoal/biomassblends[J]. Journal of Fuel Chemistry and Technology, 2009(5): 538-545. (in Chinese with English abstract)

        [38] 范方宇,邢獻(xiàn)軍,施蘇薇,等.水熱生物炭燃燒特性與動(dòng)力學(xué)分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(15):219-224.

        Fan Fangyu, Xing Xianjun, Shi Suwei, et al. Combustion characteristic and kinetics analysis of hydrochars[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(15): 219-224. (in Chinese with English abstract)

        Physicochemical characteristics and pyrolysis kinetics of hydrothermal carbon from natural

        Liu Huihui1, Qu Lei1, Chen Yingquan1, Zhang Wennan2,Yang Haiping1, Wang Xianhua1※, Chen Hanping1

        (1.,,430074,; 2.,,SE-85170,)

        In order to explore the utilization of natural microalgae, the naturalwas selected to carry out hydrothermal carbonization experiments, and the characterization of its hydrochars was determined using Fourier transform infrared spectroscopy,-ray diffraction analysis,-ray fluorescence spectroscopy, environmental scanning electron microscopy and thermogravimetric analyzer. The results showed that the ash content of naturalwas 44.66%, and the lipid and protein content of naturalwere 1.4% and 15.1%, respectively. The natural microalgae ash components were mostly water-insoluble components. The main components included (Mg0.064Ca0.936CO3), SiO2, NaCl, Al2O3, CaSO4, Mg3S2O8(OH)2. After hydrothermal carbonization treatment, NaCl was dissolved in water, and the water-insoluble components were enriched in hydrochars. Compared with the natural, the ash content of hydrochars increased, in the range from 57.41% to 71.47%. It was worth noting that the naturaland its derived hydrochars had no fixed carbon. With the increase of hydrothermal temperature, the hydrothermal carbon yield decreased from 47.29% (180℃) to 43.01% (240℃). This phenomenon was on account of the organic components in the naturalunderwent hydrolysis, dehydration, decarboxylation, aromatization, condensation and polymerization. The carbon remaining ratio was the largest, the oxygen was the smallest, and the remaining ratios of carbon, hydrogen and oxygen decreased as the hydrothermal temperature increased. For HC-240, the removal rates of H and O were 69.88% and 93.88%, respectively, and the C remaining ration rate was 33.97%. The O/C molar ratio of hydrochars decreased from 1.45 to 0.28. Dehydration and decarboxylation were the main pathways in hydrothermal carbonization of the natural, and the demethylation pathway was negligible. Oxygen was removed in the form of H2O and CO2. The degree of carbonization was enhanced and hydrochars had the potential to be applied to solid fuels. Since hydrochars contained a large amount of ash, its calorific value was in the range of 8.43-9.67 MJ/kg. Hence, the pretreatment of deashing was a necessary process. The hydrothermal carbonization treatment effectively improved the pore structure of hydrochars, and the absorption-desorption capacity of hydrochars was obviously enhanced. Compared with natural(4.36 m2/g), the specific surface area of hydrochars was in the range of 28.7-35.26 m2/g. The naturalhad a dense block-like without pores or pathways. However, the morphologies of hydrochars changed significantly. The fragmentation and porosity of hydrochars increased, which attributed to the release of volatile matter during hydrothermal carbonization process and chemical bond decomposition of feedstock. The thermogravimetric analysis experiments were carried out to reveal the pyrolysis characteristics of hydrochars. It was found that the weight loss peak at 300 ℃ gradually disappeared with the increased of hydrothermal temperature. This was owing to the degree of naturalincreased and the volatile matter content decreased. When the hydrothermal temperature was higher than 220 ℃, the maximum weight loss rate peak moved to the high temperature zone. The pyrolysis kinetics results showed that the thermal stability of hydrochars increased with the increase of hydrothermal temperature. The hydrochars were more hydrophobic than that of the natural. The research results provide a theoretical reference for the resource utilization of natural microalgae.

        carbonization; pyrolysis; kinetics; natural; hydrochar; physicochemical characteristics

        2019-01-05

        2019-06-27

        國(guó)家自然科學(xué)基金:生物質(zhì)熱化學(xué)轉(zhuǎn)化基礎(chǔ)(51622604)

        劉慧慧,博士生,主要從事生物質(zhì)水熱綜合利用研究工作。Email:liuhh@hust.edu.cn

        王賢華,副教授,博士生導(dǎo)師,主要從事生物質(zhì)熱化學(xué)利用研究。Email:wangxianhua@hust.edu.cn.

        10.11975/j.issn.1002-6819.2019.14.030

        TK16

        A

        1002-6819(2019)-14-0235-08

        劉慧慧,曲 磊,陳應(yīng)泉,張文楠,楊海平,王賢華,陳漢平. 天然微藻水熱炭理化特性及熱解動(dòng)力學(xué)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(14):235-242. doi:10.11975/j.issn.1002-6819.2019.14.030 http://www.tcsae.org

        Liu Huihui, Qu Lei, Chen Yingquan, Zhang Wennan, Yang Haiping, Wang Xianhua, Chen Hanping. Physicochemical characteristics and pyrolysis kinetics of hydrothermal carbon from natural[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(14): 235-242. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.14.030 http://www.tcsae.org

        猜你喜歡
        柵藻微藻水熱
        代食品運(yùn)動(dòng)中微藻的科研與生產(chǎn)
        藻-菌混合培養(yǎng)及添加NaHCO3促進(jìn)柵藻生長(zhǎng)和脂類合成
        不同濃度的磷對(duì)柵藻生長(zhǎng)的影響
        柵藻作為生物指示劑的生物延遲發(fā)光研究*
        絮凝法采收生物燃料微藻的研究進(jìn)展
        中藥生地黃對(duì)柵藻生物光子輻射的影響*
        水熱還是空氣熱?
        微藻對(duì)低溫響應(yīng)的Ca2+信號(hào)傳導(dǎo)途徑研究進(jìn)展
        簡(jiǎn)述ZSM-5分子篩水熱合成工藝
        一維Bi2Fe4O9納米棒陣列的無(wú)模板水熱合成
        亚洲 欧美 国产 日韩 精品| 91九色最新国产在线观看| 人妻少妇-嫩草影院| 欧美性猛交xxxx乱大交3| 欧美在线观看一区二区| 中文字幕精品人妻av在线| 亚洲av一区二区三区色多多| 人人摸人人搞人人透| 精品推荐国产精品店| 18禁黄无遮挡免费网站| 免费一区二区在线观看视频在线| 麻豆免费观看高清完整视频| 五月天精品视频在线观看| 亚洲人成无码网站十八禁| 日本免费精品一区二区| 不卡一卡二卡三乱码免费网站| 女人被做到高潮免费视频| 国产精品狼人久久久影院| 亚洲中文字幕久久在线| 午夜毛片不卡免费观看视频| 91视频免费国产成人| 日本女优中文字幕四季视频网站 | 欧美日韩一区二区综合 | 亚洲区一区二区中文字幕| 国产性感丝袜在线观看| 日韩精品久久久肉伦网站| 成人激情四射网| 羞涩色进入亚洲一区二区av| 视频一区视频二区制服丝袜| 欧美mv日韩mv国产网站| 丰满人妻AV无码一区二区三区| 美腿丝袜在线观看视频| 免费无码a片一区二三区| 国产91福利在线精品剧情尤物| 国产精品日本中文在线| 久久久久久久亚洲av无码| 永久免费观看的毛片手机视频| 中国老太老肥熟女视频| 中文字幕女同系列在线看一| 特级av毛片免费观看| 99riav精品国产|