陳茹茹 王雪 呂興梅 辛加余 李益 張鎖江
關(guān)鍵詞:
離子液體;生物質(zhì);木質(zhì)纖維素;葡萄糖;半纖維素;可再生資源
摘要:綜述了離子液體在纖維素及其衍生物、半纖維素及其衍生物和木質(zhì)素及其模型化合物降解轉(zhuǎn)化中的主要作用等方面的研究成果與最新進(jìn)展.認(rèn)為離子液體是生物質(zhì)轉(zhuǎn)化過(guò)程中常用的溶劑和催化劑.針對(duì)不同類(lèi)型的生物質(zhì),離子液體/無(wú)機(jī)酸或離子液體/金屬氯化物(Lewis酸)是目前研究生物質(zhì)轉(zhuǎn)化催化劑的主流體系.鑒于目前離子液體體系在生物質(zhì)催化轉(zhuǎn)化應(yīng)用中存在成本較高、回收困難等問(wèn)題,提出了未來(lái)的研究方向,主要包括:一是合成性能更好的新的離子液體來(lái)催化生物質(zhì)轉(zhuǎn)化;二是開(kāi)發(fā)新的復(fù)合催化體系,有針對(duì)性地在離子液體中添加一種甚至多種有助生物質(zhì)溶解或催化轉(zhuǎn)化的添加劑或催化劑;三是開(kāi)發(fā)成本低廉、性能優(yōu)越、易于回收的離子液體催化體系.Abstract:The research results and recent developments of ionic liquids in the main role of the degradation and transformation in cellulose and its derivatives, hemicellulose and its derivatives,lignin and its model compounds were reviewed. Ionic liquids were considered to be solvents and catalysts commonly used in biomass conversion processes. For different types of biomass, ionic liquid/inorganic acid or ionic liquid/metal chloride (Lewis acid) was the mainstream system for postgraduate material conversion catalysts.The problems of the current ionic liquid system in the catalytic conversion of biomass were analyzed. The current ionic liquid system had the problems of high cost and difficult recovery in the application of biomass catalytic conversion. It proposed research directions for further research in the future. The main ones were: one was a new ionic liquid with better synthesis performance to catalyze the conversion of biomass; the second was to develop a new composite catalytic system, specifically a converted additive or catalyst was added into one or more kinds of biomass to dissolve or catalyze the ionic liquid; the third was to develop an ionic liquid catalytic system with low cost, superior performance and easy recovery.
0 引言
目前,大量化學(xué)品和燃料主要來(lái)自不可再生的化石能源,如煤、石油、天然氣等,隨著化學(xué)品和燃料的不斷消耗,這些化石能源的儲(chǔ)量不斷減少,與此同時(shí),人類(lèi)對(duì)其需求卻與日俱增.生物質(zhì),作為自然界唯一可再生有機(jī)碳源[1-2],可以用來(lái)合成一系列高附加值的化學(xué)品和燃料[3-5].生物質(zhì)來(lái)源廣泛,成本低廉,且種類(lèi)多樣,其中最具代表性的是木質(zhì)纖維素生物質(zhì),主要包含纖維素、半纖維素、木質(zhì)素等,3種主要成分的應(yīng)用見(jiàn)圖1[6].
木質(zhì)纖維素生物質(zhì)向化學(xué)品和燃料的轉(zhuǎn)化
成分的應(yīng)用
過(guò)程主要包括生物質(zhì)的預(yù)處理及催化轉(zhuǎn)化兩個(gè)階段、兩大步驟.采用傳統(tǒng)生產(chǎn)工藝時(shí),在水或其他有機(jī)溶劑中,無(wú)論采用H2SO4等無(wú)機(jī)強(qiáng)酸還是NaOH強(qiáng)堿作為催化劑,都具有設(shè)備成本高、污染嚴(yán)重、反應(yīng)條件苛刻等缺點(diǎn).離子液體作為一種新型綠色溶劑,蒸汽壓低,不易揮發(fā),穩(wěn)定性強(qiáng),且具有溶解能力較強(qiáng)和酸性可調(diào)節(jié)等優(yōu)點(diǎn),廣泛應(yīng)用于生物質(zhì)催化轉(zhuǎn)化方面[7-13].基于此,本文擬對(duì)離子液體在纖維素及其衍生物、半纖維素及其衍生物和木質(zhì)素催化轉(zhuǎn)化中的作用等進(jìn)行綜述,以期為推動(dòng)生物質(zhì)催化轉(zhuǎn)化為化學(xué)品和燃料的工業(yè)化應(yīng)用提供理論基礎(chǔ).
1 離子液體在生物質(zhì)原料預(yù)處理中的應(yīng)用? 由于木質(zhì)纖維素生物質(zhì)中的纖維素、半纖維素、木質(zhì)素較難分離,生物質(zhì)的利用率低下,因此,預(yù)處理是木質(zhì)纖維素生物質(zhì)轉(zhuǎn)化的重要一步.鑒于木質(zhì)素在纖維素和半纖維素周?chē)仔纬杀Wo(hù)性的網(wǎng)狀結(jié)構(gòu),使得纖維素不能充分溶解,因此很多預(yù)處理研究集中在去除木質(zhì)素,讓更多的纖維素裸露出來(lái),降低結(jié)晶度,提高纖維素的利用率[14-19].傳統(tǒng)生物質(zhì)預(yù)處理的方式主要包括物理預(yù)處理法[20-22]、化學(xué)預(yù)處理法[23-25]、物理化學(xué)預(yù)處理法[26-28].其中物理預(yù)處理的主要方法是研磨法、擠出法、微波輻射法;化學(xué)預(yù)處理主要使用酸、堿、有機(jī)溶劑,經(jīng)過(guò)堿處理,大部分半纖維素和木質(zhì)素可被溶解;在酸處理中,纖維素和半纖維素常常被水解為糖和其他化學(xué)品[23].物理化學(xué)預(yù)處理法包括蒸汽爆破法、氨水爆破法、水熱法等.
針對(duì)傳統(tǒng)方法預(yù)處理生物質(zhì)存在溶劑易揮發(fā)、回收難、設(shè)備易腐蝕等問(wèn)題,新型綠色溶劑離子液體被引入生物質(zhì)的預(yù)處理及催化轉(zhuǎn)化中.離子液體具有可調(diào)節(jié)的酸性,其對(duì)生物質(zhì)的預(yù)處理屬于化學(xué)預(yù)處理.近年來(lái),離子液體用于催化生物質(zhì)材料水解的主要研究成果見(jiàn)表1.早在1934年,C.Graenacher等[29]就發(fā)現(xiàn)了在含氮堿條件下,纖維素可溶解于熔融N-乙基吡啶氯鹽.然而這個(gè)發(fā)現(xiàn)并沒(méi)有引起足夠的重視.直到2002年,R.P.Swatloski等[30]報(bào)道[Bmim]Cl對(duì)纖維素的高溶解性,引起了業(yè)界廣泛關(guān)注,許多研究者用不同的離子液體處理生物質(zhì).例如,W.Y.Li等[17]發(fā)現(xiàn),[Emim]OAc可以在高溫下快速溶解甘蔗渣中的木質(zhì)素,從而實(shí)現(xiàn)木質(zhì)素與纖維素分離;Q.P.Liu等[31]合成了一系列離子液體,可選擇性地從生物質(zhì)中高效提取木質(zhì)素;S.Q.Yang等[16]使用廉價(jià)的多羥基質(zhì)子型離子液體從玉米秸稈中提取纖維素.在生物質(zhì)預(yù)處理應(yīng)用中,[C2mim]型離子液體對(duì)生物質(zhì),尤其是木質(zhì)素的溶解能力更強(qiáng)[14,17-19,32-33].除單一離子液體體系外,離子液體復(fù)合體系也被用于生物質(zhì)的預(yù)處理,如離子液體的水溶液體系[34-35]、“離子液體+酸”體系[15,36]、“離子液體+固體酸”體系[37]等.開(kāi)發(fā)新的催化體系往往優(yōu)化了反應(yīng)條件,使反應(yīng)在較溫和的條件下進(jìn)行;2017年,J.M.Yang等[15]用[Bmim]Cl-AS溶劑體系從玉米秸稈中高效提取纖維素,纖維素收率高達(dá)74%,且再生纖維素純度顯著提升.
綜上所述,離子液體預(yù)處理生物質(zhì)主要通過(guò)選擇性地溶解其中的纖維素、半纖維素或木質(zhì)素,進(jìn)而實(shí)現(xiàn)纖維素或木質(zhì)素的分離再生.
2 離子液體在纖維素及其衍生物轉(zhuǎn)化中的作用? 纖維素是一種由D-葡萄糖為基本結(jié)構(gòu)單元、單元之間由β-1,4-糖苷鍵相連而成的多糖,在木質(zhì)纖維素中含量最高.以纖維素為原料可以生產(chǎn)多種高附加值的化學(xué)品和燃料,如醇[39]、酸[22,40]、5-羥甲基糠醛[41]等,而纖維素水解是其中必不可少的一步.由于離子液體具有極強(qiáng)的溶解能力和可調(diào)節(jié)的酸性,越來(lái)越多的業(yè)內(nèi)人士將離子液體應(yīng)用于纖維素水解.本節(jié)將闡述離子液體在纖維素及其衍生物轉(zhuǎn)化中的作用方面的研究進(jìn)展.
2.1 離子液體催化纖維素水解
基于前人的成果,在離子液體催化生物質(zhì)轉(zhuǎn)化領(lǐng)域,很多復(fù)合催化體系被開(kāi)發(fā)用于提高產(chǎn)物收率和優(yōu)化反應(yīng)條件,最常見(jiàn)的復(fù)合催化體系為“酸+離子液體”.常用的酸主要包括HCl,H2SO4,HNO3,H3PO4等無(wú)機(jī)酸,金屬氯化物等Lewis酸,固體酸三大類(lèi).C.Z.Li等[42]開(kāi)發(fā)了以[C4mim]Cl為溶劑、無(wú)機(jī)酸為催化劑的二元復(fù)合催化體系“H2SO4+[Bmim]Cl”,獲得高達(dá)73%的還原糖收率.S.Behera等[28,43]在該體系中加入水,形成“酸+水+離子液體”體系, HCl的催化效果高于H2SO4;水在該體系中提高葡萄糖產(chǎn)率的原因基于“勒夏特列原理”:抑制了葡萄糖水解生成5-羥甲基糠醛,同時(shí)也阻止了它的聚合.然而,這并不是首次嘗試應(yīng)用離子液體水溶液體系促進(jìn)纖維素生成還原糖.早在2010年,Y.L.Zhang等[27,44]采用“酸+水+離子液體”體系,獲得了89%的葡萄糖收率;且研究發(fā)現(xiàn), 只有離子液體的陰離子為Cl-時(shí),才能得到不錯(cuò)的葡萄糖收率,否則纖維素幾乎不轉(zhuǎn)化.與[Bmim]Cl相比,[Amim]Cl溶解纖維素的能力更強(qiáng)[22-23],而水解能力卻不如[Bmim]Cl.J.Zhu等[24]在“CaFe2O4+[Amim]Cl”體系中催化纖維素水解,在150 ℃的條件下,葡萄糖收率最高達(dá) 49.8%;顯然,與[Bmim]Cl 和[Emim]Cl相比,[Amim]Cl水解纖維素的反應(yīng)條件更苛刻且收率也低.
為了研究和提高離子液體水解轉(zhuǎn)化纖維素的能力,科研人員采用“Lewis酸+離子液體”來(lái)催化纖維素水解.例如:Y.Su等[45]構(gòu)建了“CuCl2+另一種氯化物+[Emim]Cl”雙金屬離子液體催化體系.在相同的反應(yīng)條件下,其催化活性?xún)?yōu)于H2SO4,且單一金屬的催化活性無(wú)法與雙金屬媲美.機(jī)理研究表明,雙金屬在催化纖維素水解的過(guò)程中具有協(xié)同作用.A. Kamimura等[46]構(gòu)建了“LiCl+HCl+ [TMPA]NTf2” 催化體系(見(jiàn)圖2),其中,[TMPA]NTf2是一種疏水性離子液體,如不同時(shí)添加LiCl和HCl,或?qū)iCl換成其他氯化鹽,纖維素則完全不水解.而在新型催化體系中,離子液體在其中的主要作
用是水解還是催化,或是兩者兼有,一直以來(lái)都是研究者關(guān)注的焦點(diǎn)[47-51],但認(rèn)識(shí)并未統(tǒng)一.A. S. Amarasekara等[52]在無(wú)外加酸的前提下,利用Brnsted酸型離子液體[PrTSmim]Cl,在溫和條件下催化纖維素,后發(fā)現(xiàn),無(wú)論有水或無(wú)水,均得到62%的最大還原糖收率.之后,團(tuán)隊(duì)以該離子液體為基礎(chǔ),建立了“氯化鋅+水+[PrTSmim]Cl”的催化體系[53],在37 ℃,1 ×105 Pa的溫和條件下,還原糖收率達(dá)78%.在該體系中,離子液體在發(fā)揮水解作用的同時(shí),也兼具催化功能,K.Zhuo等[54]也得出相似的結(jié)論.
除上述均相催化體系外,非均相體系也被廣泛應(yīng)用于纖維素水解[55-61].R. Rinaldi等[59]使用便宜又穩(wěn)定的磺化苯乙烯-二乙烯基苯樹(shù)脂為催化劑,在[Bmim]Cl中水解纖維素,得到纖維素低聚物,隨著反應(yīng)時(shí)間的延長(zhǎng),低聚物被進(jìn)一步水解為還原糖.H.Cai等[60]采用“分子篩+[Bmim]Cl”催化體系來(lái)催化纖維素水解,根據(jù)孔徑大小,催化活性依次為HY>Hβ>HZSM-5>SAPO-34.值得注意的是,由于纖維素不溶于水,“HY+H2O”體系對(duì)纖維素水解幾乎無(wú)催化作用.從元素分析和紅外表征發(fā)現(xiàn),HY分子篩與[Bmim]Cl發(fā)生離子交換釋放出的H+是催化水解纖維素的關(guān)鍵.X.H.Qian等[61]合成了一種新的聚苯乙烯磺酸型催化劑,它的特別之處在于毗鄰一條聚乙烯基咪唑鏈,這條離子液體鏈具有固定纖維素的功能,同時(shí)可以提高固體酸側(cè)鏈的催化活性.近期,S.Suzuki 等[58]以水為媒介,添加不同結(jié)構(gòu)的Brnsted酸型離子液體,在微波輔助條件下催化纖維素水解.葡萄糖收率最高為36%,咪唑陽(yáng)離子碳鏈越長(zhǎng),疏水性能增強(qiáng),有利于葡萄糖生成.以上各研究反應(yīng)條件及結(jié)果均列于表2.
2.2 離子液體溶解纖維素及紡絲過(guò)程
以離子液體為溶液,除纖維素的溶解外,再生纖維素的紡絲過(guò)程也被廣泛研究.在G.S.Jiang等[62]的研究中探究了紡絲速度對(duì)再生纖維素的韌性、結(jié)晶度等的影響.結(jié)果表明,隨著紡絲速度的提高,再生纖維素的韌性增加,延伸率降低,結(jié)晶度有所改善.L.J.K.Hauru等[63]研究了纖維素在[DBNH]OAc離子液體中的溶解及干噴濕紡過(guò)程,探究了擠出速度、拉伸比、噴絲頭長(zhǎng)徑比對(duì)紡絲的機(jī)械性能的影響,并得到最佳紡絲工藝參數(shù):纖維素質(zhì)量分?jǐn)?shù)為13%,紡絲流量為0.02~0.04 mL/min,拉伸比為7.5~12.5,在15 ℃下更有利于紡絲.
2.3 離子液體催化纖維素和葡萄糖轉(zhuǎn)化為5-羥甲基糠醛? 5-羥甲基糠醛(5-HMF/ HMF)是一種應(yīng)用非常廣泛的平臺(tái)分子,由生物質(zhì)及其衍生物水解制得.通過(guò)加氫、酯化、氧化脫氫等反應(yīng)可以將其轉(zhuǎn)化生成多種高附加值的化學(xué)品和燃料[64-67](如圖3所示).因此利用離子液體催化纖維素和葡萄糖轉(zhuǎn)化為5-HMF的過(guò)程受到業(yè)界廣泛關(guān)注.
葡萄糖生成HMF的關(guān)鍵是葡萄糖異構(gòu)化為果糖[68-69],用于催化生物質(zhì)轉(zhuǎn)化為HMF的酸多為L(zhǎng)ewis酸,而Lewis酸對(duì)葡萄糖異構(gòu)或中間體的形成具有重要作用,這步反應(yīng)的主流催化體系為“Lewis酸+離子液體”.例如:H.Zhao等[68]用不同的“金屬氯化物+離子液體”體系催化葡萄糖脫水生成HMF,由“CrCl2+[Emim]Cl”組成的體系催化活性最好.1H NMR分析顯示,[Emim]Cl 和CrCl2產(chǎn)生的CrCl3-與葡萄糖的羥基形成氫鍵導(dǎo)向了葡萄糖到果糖的異構(gòu),進(jìn)而容易生成HMF,其反應(yīng)機(jī)理和機(jī)制如圖4所示.
G.Yong等[69]以氮雜環(huán)卡賓NHC作為配體來(lái)修飾CrCl2 或 CrCl3在[Bmim]Cl中催化葡萄糖轉(zhuǎn)化為HMF,由于配體NHC的保護(hù)作用,避免了Cr中心與[Bmim]Cl在空間上形成擁擠的金屬中心;與H.Zhao等[68]研究結(jié)果不同的是,該體系中 CrCl3顯示出了與CrCl2相似的催化活性:在“6NHC+CrCl2”與“6NHC/CrCl3”的體系中,HMF的最大收率均為96%.X.Yuan等[48]在微波輔助的條件下,以“CrCl3+[C4mim]Cl”
為催化劑催化水解纖維素和葡萄糖,若催化體系中的任一組分被替換均會(huì)導(dǎo)致HMF收率顯著降低.2009年,S.Q.Hu等[70]使用便宜且低毒的Lewis酸SnCl4催化水解葡萄糖.1H NMR分析表明,Sn原子所形成的五元環(huán)螯合物與葡萄糖上相鄰的兩個(gè)氫鍵上氧原子的相互作用,促進(jìn)了烯醇中間體的形成.
T.Stahlberg等[71]用鑭系元素在離子液體中催化葡萄糖生成HMF,其中YbCl3和Yb(OTf)3的催化活性最好,且在[Bmim]Cl中的催化活性?xún)?yōu)于[Emim]Cl.次年,該團(tuán)隊(duì)又開(kāi)發(fā)了無(wú)金屬催化體系[72],在離子液體中以硼酸作為催化助劑,使葡萄糖轉(zhuǎn)化為HMF.L.Hu等[73]將鉻鹽和硼酸相結(jié)合,置于不同的離子液體體系中催化葡萄糖生成HMF,在[Bmim]Cl 中HMF收率最高.同時(shí),D.Liu等[74]在[Emim]Cl體系中添加不同的路易斯酸烷基鋁和醇鹽,研究其對(duì)葡萄糖脫水生成HMF的影響,發(fā)現(xiàn),在“AlEt3+[Emim]Cl”體系中HMF收率高達(dá)51%.隨后,J.He等[75]又以零價(jià)態(tài)的鉻納米粒子(Cr0-NPs)為基礎(chǔ),研究了其在離子液體體系中催化葡萄糖生成HMF的性能.作為強(qiáng)Lewis酸,Cr0-NPs的催化機(jī)理與CrClx相似,相同條件下,Cr0-NPs體系的催化活性?xún)?yōu)于CrCl2體系.X.Zhou等[76]在微波輔助條件下,考察了“ScCl3+[Bmim]Cl”體系對(duì)快速(<10 min)催化轉(zhuǎn)化不同種類(lèi)的糖合成HMF的性能,HMF最大收率達(dá)到94.7%.除離子液體復(fù)合催化體系外,單一離子液體也可催化生物質(zhì)轉(zhuǎn)化.例如L.Zhou等[77]探索并開(kāi)發(fā)了雙功能離子液體Cr([PSmim]HSO4)3催化微晶纖維素轉(zhuǎn)化為HMF,最大收率達(dá)53%,并且該催化體系的循環(huán)使用結(jié)果表明,HMF平均收率穩(wěn)定.2015年, S.Suzuki等[58]首次實(shí)現(xiàn)室溫下將果糖轉(zhuǎn)化為HMF,機(jī)理研究表明,[HNMP][CH3SO3]促進(jìn)中間體的生成,Cl-與氫鍵的形成密切相關(guān).近年來(lái),由于均相催化劑分離困難,非均相催化劑催化纖維素合成HMF的研究成為重點(diǎn).Y.Xuan等[78]開(kāi)發(fā)了[PSmim]HSO4-H2O/THF兩相體系,并以ZnSO4·7H2O作為共催化劑,催化微晶纖維素轉(zhuǎn)化為HMF.L.Hu等[79]采用“分子篩+[Bmim]Cl”非均相催化體系,不同分子篩催化活性排序?yàn)镠β>HZSM-5> H-mordenite>HY.
2.4 離子液體催化纖維素和葡萄糖轉(zhuǎn)化為乙酰丙酸? 乙酰丙酸LV(levulinic acid),又名左旋糖酸或果糖酸,其獨(dú)特的結(jié)構(gòu)(一個(gè)羰基,一個(gè)羧基和α 氫)決定其可進(jìn)行鹵化、酯化、加氫、氧化脫氫、縮合、成鹽等化學(xué)反應(yīng).乙酰丙酸作為一種平臺(tái)分子,可以進(jìn)一步轉(zhuǎn)化為γ-戊內(nèi)酯(GVL)、丁烯、5-壬酮、2-甲基-四氫呋喃(MTHF)等[80-81](如圖5所示).將纖維素轉(zhuǎn)化為乙酰丙酸需要酸催化,通常包含3個(gè)步驟(如圖6所示):1)纖維素水解生成葡萄糖;2)葡萄糖轉(zhuǎn)化為HMF;3)HMF脫水變成乙酰丙酸.
由生物質(zhì)及其衍生物生成乙酰丙酸需要酸催化,傳統(tǒng)催化方法為稀酸催化.有研究表明,離子液體體系中陰離子的種類(lèi)對(duì)催化轉(zhuǎn)化纖維素合成乙酰丙酸有著至關(guān)重要的作用.例如:離子液體的陽(yáng)離子為[C3SO3Hmim]或磺酸基取代的咪唑陽(yáng)離子時(shí),它的催化活性取決于陰離子的種類(lèi),而當(dāng)陰離子為HSO4-時(shí),離子液體的催化活性最好[84-85].同年,Y.Shen等[82]以[BSmim]陽(yáng)離子基離子液體為基礎(chǔ),考察陰離子對(duì)催化纖維素生成乙酰丙酸性能的影響,發(fā)現(xiàn):催化活性最高的配位陰離子為CF3SO3-.N.A.S.Ramli等[83]考察了[Bmim]FeCl4,[Smim]Cl,[Smim]FeCl4對(duì)催化葡萄糖轉(zhuǎn)化為乙酰丙酸性能的影響,其中[Smim]FeCl4的催化活性最高.機(jī)理研究表明,[Smim]FeCl4的加入有效地降低了反應(yīng)的活化能,從而促進(jìn)了葡萄糖的轉(zhuǎn)化.Z.Sun等[84]以雜多酸離子液體[C4H6N2(CH2)3SO3H]3-nH3PW12O40催化纖
綜上所述,纖維素及其衍生物轉(zhuǎn)化為高附加值的化學(xué)品需要酸催化,在離子液體體系中,“酸+離子液體”二元復(fù)合體系為應(yīng)用最廣泛的催化體系.Brnsted酸、Lewis酸或固體酸均能有效催化纖維素水解,但均相體系的催化效果均好于非均相體系.此外,“水/金屬氯化物+酸+離子液體”等三元復(fù)合體系也被開(kāi)發(fā),以?xún)?yōu)化反應(yīng)條件或提高產(chǎn)物的選擇性和收率.而在纖維素水解中,離子液體可同時(shí)作為溶劑和催化劑.目前研究存在的主要問(wèn)題是,離子液體作為催化劑和溶劑其選擇性仍然相對(duì)較差,故開(kāi)發(fā)多功能的離子液體,對(duì)同時(shí)實(shí)現(xiàn)纖維素及其衍生物轉(zhuǎn)化具有重大意義.
3 離子液體在半纖維素及其衍生物轉(zhuǎn)化中的作用? 不同于纖維素,半纖維素由不同種類(lèi)的雜多糖(木糖、阿拉伯糖、半乳糖、葡萄糖等)聚合而成,通常木糖是其中含量最豐富的單體.半纖維素的聚合度遠(yuǎn)低于纖維素,因此其分子量更低;此外,由于半纖維素的單體是隨機(jī)聚合的,且存在側(cè)鏈,所以半纖維素主要是非晶態(tài)的.與纖維素相似的是,半纖維素也能通過(guò)一系列催化轉(zhuǎn)化生成高附加值的化學(xué)品和燃料[85-86],然而,目前對(duì)半纖維素轉(zhuǎn)化成化學(xué)品和燃料的研究較少.本節(jié)將對(duì)離子液體催化半纖維素及其衍生物轉(zhuǎn)化為高附加值產(chǎn)品的研究進(jìn)展進(jìn)行闡述.
3.1 離子液體催化半纖維素水解為單糖
與纖維素相似,半纖維素水解是半纖維素轉(zhuǎn)化不可或缺的一步.K.R.Enslow等[87]研究了在H2SO4+[Emim]Cl體系中木聚糖的水解,當(dāng)溫度為80 ℃時(shí),木糖收率高達(dá)90%.機(jī)理研究表明,在離子液體中半纖維素水解的初始速率大于纖維素;木聚糖和木糖降解的活化能低于纖維素和葡萄糖.2015年,B.M.Matsagar等[88]考察了Brnsted酸性離子液體種類(lèi)對(duì)催化硬木半纖維素水解的影響,結(jié)果表明:[C3SO3Hmim][HSO4]的催化活性最佳, 且離子液體的催化活性?xún)?yōu)于H2SO4和分子篩.機(jī)理研究表明,烷基咪唑基團(tuán)與硫酸氫根離子同時(shí)與半纖維素上氫氧根離子產(chǎn)生離子偶極作用,從而促進(jìn)半纖維素的催化轉(zhuǎn)化.
3.2 離子液體催化半纖維素和木糖轉(zhuǎn)化為糠醛? 糠醛作為平臺(tái)分子,是一種重要的工業(yè)化學(xué)品,可以轉(zhuǎn)化成不同的化學(xué)品(見(jiàn)圖7),例如2-甲基呋喃、2-甲基四氫呋喃等,還可以通過(guò)加氫和酸堿催化反應(yīng)精煉成燃料[89],它主要來(lái)自于木質(zhì)纖維素中木聚糖的水解和脫水反應(yīng).
由半纖維素或木糖轉(zhuǎn)化為糠醛離不開(kāi)酸的催化,“酸+離子液體”復(fù)合催化體系仍為主流催化體系.2009年,C.Sievers等[90]嘗試在[Bmim]Cl體系中用H2SO4催化木糖轉(zhuǎn)化為糠醛,當(dāng)溫度為120 ℃時(shí),由于固體降解物的生成,糠醛最高收率僅為13%.Z.Zhang等[91]考察了[Bmim]PF6體系中助劑MnCl2對(duì)PEG-OSO3H(聚乙二醇-磺酸)催化木糖轉(zhuǎn)化為糠醛的影響,發(fā)現(xiàn):MnCl2的加入促進(jìn)了木糖異構(gòu)為木酮糖,同時(shí)在PEG-OSO3H的催化作用下,對(duì)木糖降解為糠醛有促進(jìn)作用,糠醛的收率可達(dá)73%.L.Zhang等[92]在微波輔助條件下,研究了在離子液體[Bmim]Cl體系中,不同種類(lèi)的無(wú)機(jī)酸及金屬氯化物對(duì)催化木聚糖轉(zhuǎn)化為糠醛性能的影響,發(fā)現(xiàn):加入AlCl3后催化活性最高,糠醛收率最高達(dá)84.8%.機(jī)理研究表明,AlCl3與[Bmim]Cl形成[AlCln](n-3)-復(fù)合物,與糖苷鍵的氧原子結(jié)合進(jìn)而削弱糖苷鍵,促進(jìn)木聚糖水解為木糖,木糖異構(gòu)為烯醇式結(jié)構(gòu),最終降解為糠醛.類(lèi)似的研究中,在三價(jià)金屬氯鹽存在的條件下,木聚糖和木糖在可再生的氯化膽堿和草酸所組成的低共熔溶劑中轉(zhuǎn)化成糠醛[93] (見(jiàn)圖8);所考察的三價(jià)金屬氯化物中,AlCl3·6H2O催化活性最佳.機(jī)理研究表明,不同金屬氯化物的催化活性差異與金屬離子的電離勢(shì)有關(guān);在該催化體系中,氯化膽堿/草酸同時(shí)作為催化媒介及Brnsted酸為催化劑,金屬氯化物促進(jìn)了木糖的烯醇化反應(yīng).
此外,在離子液體體系中,固體酸的引入既能促進(jìn)木糖轉(zhuǎn)化為呋喃類(lèi)衍生物等精細(xì)化學(xué)品,如糠醛;又便于產(chǎn)物分離.L.Zhang 等[94]在[Bmim]Cl體系中,考察了固體酸H3PW12O40, Amberlyst-15 和 NKC-9 在木糖、木聚糖生成糠醛過(guò)程中的催化性能,發(fā)現(xiàn)H3PW12O40的催化活性最高.可喜的是,綠色無(wú)污染的生物質(zhì)衍生物同樣也能在離子液體體系中起催化劑的作用.C.Wu 等[95]在[Bmim]Cl體系中,考察了生物質(zhì)衍生物-木質(zhì)素磺酸LS對(duì)木糖轉(zhuǎn)化為糠醛的影響,發(fā)現(xiàn)在100 ℃條件下,反應(yīng)1.5 h,糠醛的收率為21%.相對(duì)于無(wú)機(jī)酸催化劑,生物質(zhì)衍生物催化木糖的性能較低,但從原料、溶劑到催化劑的無(wú)害化使用預(yù)示著由木糖到糠醛實(shí)現(xiàn)全程綠色轉(zhuǎn)化的可能性.
相比于上述體系,單一離子液體體系更具優(yōu)勢(shì).S.Peleteiro 等[96]以酸性離子液體[Bmim]HSO4作為催化劑和溶劑來(lái)催化木糖轉(zhuǎn)化為糠醛,木糖轉(zhuǎn)化率達(dá)到95%,糠醛收率達(dá)到 36.7%,在體系中添加萃取劑甲苯、二氧環(huán)己烷或甲基異丁酮,糠醛收率大幅度增加.此外,Brnsted酸性離子液體[C3SO3Hmim]HSO4也可以被用來(lái)催化生物質(zhì)原料“一鍋法”轉(zhuǎn)化為糠醛.在水/甲苯雙溶劑體系中,催化甘蔗轉(zhuǎn)化為五碳糖,收率為88%;轉(zhuǎn)化為糠醛,收率高達(dá)73%[97].
綜上所述,半纖維素及其衍生物轉(zhuǎn)化為高會(huì)加值產(chǎn)品離不開(kāi)酸的催化作用,而Lewis酸能促進(jìn)木糖的異構(gòu),進(jìn)而促進(jìn)其脫水生成糠醛.因此,運(yùn)用Lewis酸來(lái)催化半纖維素及其衍生物轉(zhuǎn)化更為有利.
4 離子液體在木質(zhì)素及其模型化合物轉(zhuǎn)化中的作用? 木質(zhì)素,作為自然界唯一可再生且儲(chǔ)量豐富的芳香族資源,是化學(xué)品和燃料產(chǎn)品的重要來(lái)源之一[3,98].然而,由于木質(zhì)素化學(xué)結(jié)構(gòu)的復(fù)雜性(高度復(fù)雜交聯(lián)的無(wú)定型三維樹(shù)脂),許多研究者采用降解木質(zhì)素模型化合物的方法來(lái)探究其反應(yīng)機(jī)理和最佳反應(yīng)條件.木質(zhì)素基本結(jié)構(gòu)的單元主要包括芥子醇、松柏醇、對(duì)香豆醇,這3種單體的結(jié)構(gòu)見(jiàn)圖9.這3種單體都有苯丙單元,區(qū)別在于甲氧基的數(shù)量不同.單體之間以醚鍵或碳碳鍵連接,在木質(zhì)素中,β-O-4鍵是主要的連接形式,占比45%到60%.因此,對(duì)木質(zhì)素降解的研究主要集中在β-O-4鍵的斷裂方面.本節(jié)將針對(duì)木質(zhì)素及其模型化合物不同的轉(zhuǎn)化降解過(guò)程,闡述離子液體在其轉(zhuǎn)化中的作用方面的研究進(jìn)展.
4.1 離子液體催化木質(zhì)素及其模型化合物降解? ?木質(zhì)素及其模型化合物的降解離不開(kāi)離子液體和酸的催化.J.B.Binder等[99]在“有機(jī)酸/無(wú)機(jī)酸+[Emim]OTf”體系中催化模型化合物丁香油酚轉(zhuǎn)化為愈創(chuàng)木酚,但收率僅為11.6%.S.Jia等[100]使用不同的“金屬氯化物+離子液體”共同催化木質(zhì)素模型化合物GG(愈創(chuàng)木基甘油基-β-愈創(chuàng)木基醚)和VG(藜蘆基甘油基-β-愈創(chuàng)木基醚),其中FeCl3,AlCl3和 CuCl2對(duì)催化β-O-4鍵斷裂的活性較高.相較于GG,非酚類(lèi)模型化合物VG更難降解,針對(duì)此差異,作者提出假設(shè):酚類(lèi)木質(zhì)素與金屬氯化物在反應(yīng)中可能形成HCl,進(jìn)而提高了體系的酸性.在早期文獻(xiàn)[101]中,所使用的B酸性離子液體[Hmim]Cl同時(shí)作為催化劑和溶劑催化GG和VG降解,兩種底物反應(yīng)的主產(chǎn)物均為愈創(chuàng)木酚.隨著研究深入,發(fā)現(xiàn),離子液體催化β-O-4鍵斷裂的活性并未隨著離子液體的Hammett酸度呈現(xiàn)規(guī)律性變化[102],即陰離子與醇官能團(tuán)通過(guò)產(chǎn)生氫鍵作用影響反應(yīng)效率和路徑.酸性離子液體[Hmim]Cl還可作為溶劑和催化劑,通過(guò)水解烷基與芳香基之間的醚鍵來(lái)實(shí)現(xiàn)橡木木質(zhì)素的降解[103].B.Zhang等[104]利用微波輔助快速催化轉(zhuǎn)化木質(zhì)素模型化合物和水溶性木質(zhì)素,在離子液體[Bmim]NTf2中,用甲基三氧化錸做催化劑,酚的產(chǎn)率高達(dá)69%;微波輔助條件下解聚樺樹(shù)水溶性木質(zhì)素,2 min內(nèi)主產(chǎn)物產(chǎn)率為34.2%.近期,M.Thierry等[98]將酸性離子液體[Hmim]Br作為有效的溶劑催化木質(zhì)素模型化合物分解及脫甲基,產(chǎn)物為多羥基的酚寡聚物.
4.2 離子液體催化木質(zhì)素及其模型化合物加氫? 由于木質(zhì)素化學(xué)結(jié)構(gòu)的復(fù)雜性,一步分解反應(yīng)后的產(chǎn)物往往是復(fù)雜的混合物,難以將其中的組分分離開(kāi)來(lái),但若將加氫過(guò)程并入轉(zhuǎn)化過(guò)程中(降解后接加氫反應(yīng)),則容易得到簡(jiǎn)單的產(chǎn)物組分[112].木質(zhì)素及其下游產(chǎn)物的還原方法包括加氫過(guò)程、氫解、加氫脫氧等.
加氫反應(yīng)需要金屬催化,用貴金屬或過(guò)渡金屬催化,加氫效果較好,因而催化體系為“金屬+酸催化”.例如:M.Scott等[106]將納米釕粒子分散在Brnsted酸型離子液體中,催化二聚模型化合物降解,通過(guò)原位加氫的方式穩(wěn)定中間產(chǎn)物,這種不穩(wěn)定的中間產(chǎn)物在釕的催化作用下原位轉(zhuǎn)化為更穩(wěn)定的單體產(chǎn)物.2016年,L.Chen等[107]開(kāi)發(fā)了貴金屬分散于離子液體中的偽均相體系,用來(lái)催化二聚模型化合物的解聚及單體木質(zhì)素模型化合物的加氫脫氧,其中,Pt/[Bmim]PF6催化活性最好(C—O鍵斷裂及單體模型化合物加氫脫氧),在相對(duì)溫和的反應(yīng)條件下,反應(yīng)物轉(zhuǎn)化率接近100%,選擇性高達(dá)97%.因?yàn)橘F金屬的催化活性隨金屬粒子的粒徑呈規(guī)律性變化,所以作者推測(cè),貴金屬的催化活性與粒徑大小相關(guān).然而,這個(gè)催化體系對(duì)真實(shí)木質(zhì)素的催化活性卻很低(轉(zhuǎn)化率低于5%),因?yàn)檎鎸?shí)木質(zhì)素結(jié)構(gòu)復(fù)雜,與模型化合物相比,C—O鍵更難以接近.同年,F(xiàn).Liu等[108]開(kāi)發(fā)出膽堿衍生離子液體和Pd/C雙功能催化體系,將硫酸鹽木質(zhì)素催化轉(zhuǎn)化為單體酚;為了研究反應(yīng)機(jī)理,將模型化合物GG作為底物應(yīng)用于該反應(yīng)體系中,結(jié)果表明:酸和Pd/C對(duì)于木質(zhì)素裂解均發(fā)揮了重要作用.N.Yan等[109]將金屬粒子和離子液體雙功能催化體系應(yīng)用于催化木質(zhì)素衍生物酚類(lèi)化合物一步加氫脫氧生成相對(duì)應(yīng)的烷烴,催化過(guò)程由兩步連續(xù)反應(yīng)組成:第一步在金屬催化劑作用下催化加氫,第二步在酸作用下催化脫水.值得注意的是,在[Bmim]NTf2離子液體中,Ru和Rh同時(shí)催化對(duì)乙基苯酚時(shí),乙基環(huán)己烷的產(chǎn)率高達(dá)98%.在離子液體中,雙金屬納米粒子協(xié)同催化體系被用于選擇性催化氫解模型化合物的β-O-4 和 α-O-4鍵,其中Pd-Ni納米粒子在[Bmim]OTf中催化活性最好,苯酚產(chǎn)率高達(dá)98%[110].
綜上所述,由于真實(shí)木質(zhì)素結(jié)構(gòu)復(fù)雜,難以降解,因而對(duì)于木質(zhì)素的研究主要集中在模型化合物上,離子液體在木質(zhì)素的降解研究中具有不可替代的作用.為簡(jiǎn)化產(chǎn)物,在木質(zhì)素的降解反應(yīng)中往往同時(shí)引入加氫反應(yīng),而加氫反應(yīng)使用貴金屬或過(guò)渡金屬作為催化劑效果更好.目前研究的主要難題是:以離子液體為溶劑、催化劑,如何有效地實(shí)現(xiàn)真實(shí)木質(zhì)素的降解轉(zhuǎn)化等.
5 離子液體在其他生物質(zhì)材料中的研究及應(yīng)用5.1 離子液體溶解甲殼素/殼聚糖及紡絲過(guò)程
甲殼素是由N-乙酰-2-氨基-2-脫氧-D-葡萄糖以β-1,4-糖苷鍵連接而成的天然多糖,是自然界中僅次于纖維素的第二大類(lèi)天然有機(jī)化合物,多存在于蝦蟹殼及真菌等動(dòng)植物體內(nèi).2010年,Y. Qin等[111]首次以離子液體[Emim]OAc為溶劑,在蝦殼中,通過(guò)溶解,以及干紡-濕紡法再生過(guò)程,得到了高純度、高分子量的甲殼素.P.S.Barber等[112]利用靜電紡絲方法,將[Emim]OAc/蝦殼溶液從針頭擠出,通過(guò)凝固浴,得到甲殼素纖維.產(chǎn)品的強(qiáng)度主要受IL和蝦殼溶液相對(duì)濃度的影響.L. Li等[113]以[Gly]Cl為溶劑制備殼聚糖纖維,表面光滑,力學(xué)性能好,且離子液體可回收.B. M. Ma等[114]通過(guò)將[Gly]Cl與[Bmim]Cl混合用干紡-濕紡法進(jìn)一步提高了殼聚糖的斷裂強(qiáng)度,高達(dá) 4.63 cN/dtex.
5.2 離子液體溶解角蛋白及紡絲過(guò)程
角蛋白是廣泛存在于生物體中的一類(lèi)具有結(jié)締組織及保護(hù)功能的纖維狀蛋白質(zhì),在毛發(fā)和羽毛中含量較高,具有生物相容性、可降解性及親水性等優(yōu)異的性能.H. B. Xie等[115]以[Bmim]Cl為溶劑在130 ℃,10 h條件下溶解羊毛角蛋白,溶解度為11%,并混合角蛋白和纖維素,制備了混合紡絲液用于制備共混絲(膜).S.S.Zheng等[116]研究了離子液體結(jié)構(gòu)對(duì)羊毛角蛋白溶解及對(duì)再生產(chǎn)品性質(zhì)的影響.其中,以[Emim]DMP為溶劑,角蛋白的溶解時(shí)間縮短,再生角蛋白熱穩(wěn)定性明顯提高.目前以上研究的主要問(wèn)題是溶解角蛋白時(shí)間長(zhǎng),溶解度低,且對(duì)于角蛋白溶解方面功能化離子液體的設(shè)計(jì)欠缺,純角蛋白成絲的強(qiáng)度不高,需要添加其他共混物.
6 結(jié)語(yǔ)與展望
生物質(zhì)是未來(lái)化石資源的重要替代品,其能否實(shí)現(xiàn)向化學(xué)品和燃料的低廉、高效、綠色的轉(zhuǎn)化是技術(shù)突破的關(guān)鍵.本文通過(guò)對(duì)國(guó)內(nèi)外業(yè)界關(guān)于離子液體在纖維素及其衍生物、半纖維素及其衍生物和木質(zhì)素及其模型化合物轉(zhuǎn)化中的作用等的研究成果與進(jìn)展進(jìn)行綜述,認(rèn)為離子液體具有較強(qiáng)的溶解能力和可調(diào)節(jié)的酸性,是生物質(zhì)轉(zhuǎn)化過(guò)程中常用的溶劑和催化劑.針對(duì)不同類(lèi)型的生物質(zhì),離子液體/無(wú)機(jī)酸或離子液體/金屬氯化物(Lewis酸)是目前研究生物質(zhì)轉(zhuǎn)化催化劑的主流體系,與非離子液體體系相比,離子液體體系更具優(yōu)勢(shì),更重要的是,無(wú)論是作為離子液體的陰離子還是與金屬成鹽作為L(zhǎng)ewis酸,Cl-都對(duì)催化生物質(zhì)水解轉(zhuǎn)化具有重要作用.盡管離子液體的優(yōu)越性能使其在包括生物質(zhì)轉(zhuǎn)化在內(nèi)的諸多領(lǐng)域得到廣泛應(yīng)用,但它的成本較高,回收困難,導(dǎo)致離子液體體系催化成本較高.
未來(lái)的研究方向主要包括:其一,合成性能更好的新的離子液體來(lái)催化生物質(zhì)轉(zhuǎn)化;其二,開(kāi)發(fā)新的復(fù)合催化體系,有針對(duì)性地在離子液體中添加一種甚至多種有助生物質(zhì)溶解或催化轉(zhuǎn)化的添加劑或催化劑;其三,開(kāi)發(fā)成本低廉、性能優(yōu)越、易于回收的離子液體催化體系.成本低廉、性能優(yōu)越、易于回收的離子液體催化體系的研究與開(kāi)發(fā),將有利于推動(dòng)生物質(zhì)催化轉(zhuǎn)化為化學(xué)品和燃料的工業(yè)化應(yīng)用.
參考文獻(xiàn):
[1] HUBER G W,IBORRA S,CORMA A.Synthesis of transportation fuels from biomass:chemistry,catalysts,and engineering[J].Chem Rev,2006,106(9):4044.
[2] GALLEZOT P.Conversion of biomass to selected chemical products[J].Chem Soc Rev,2012,41(4):1538.
[3] TUCK C O,PEREZ E,HORVATH I T,et al.Valorization of biomass:deriving more value from waste[J].Science,2012,337(6095):695.
[4] ALONSO D M,WETTSTEIN S G,DUMESIC J A.Bimetallic catalysts for upgrading of biomass to fuels and chemicals[J].Chem Soc Rev,2012,41(24):8075.
[5] CHATTERJEE C,PONG F,SEN A.Chemical conversion pathways for carbohydrates[J].Green Chemistry,2015,17(1):40.
[6] SUN N,RODRIGUEZ H,RAHMAN M,et al.Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass?[J].Chem Commun (Camb),2011,47(5):1405.
[7] ROGERS R D,SEDDON K R.Ionic liquids\|solvents of the future?[J].Science,2003,302(5646):792.
[8] MATON C,DE VOS N,STEVENS C V.Ionic liquid thermal stabilities:decomposition mechanisms and analysis tools[J].Chem Soc Rev,2013,42(13):5963.
[9] XIAO J,CHEN G,LI N.Ionic liquid solutions as a green tool for the extraction and isolation of natural products[J].Molecules,2018,23(7):1765.
[10] PODGORSEK A,JACQUEMIN J,PADUA A A,et al.Mixing enthalpy for binary mixtures containing ionic liquids[J].Chem Rev,2016,116(10):6075.
[11] HAPIOT P,LAGROST C.Electrochemical reactivity in room\|temperature ionic liquids[J].Chem Rev,2008,108(7):2238.
[12] HALLETT J P,WELTON T.Room\|temperature ionic liquids:solvents for synthesis and catalysis 2[J].Chem Rev,2011,111(5):3508.
[13] ZHANG S,SUN J,ZHANG X,et al.Ionic liquid\|based green processes for energy production[J].Chem Soc Rev,2014,43(22):7838.
[14] FU D,MAZZA G,TAMAKI Y.Lignin extraction from straw by ionic liquids and enzymatic hydrolysis of the cellulosic residues[J].J Agric Food Chem,2010,58(5):2915.
[15] YANG J M,LU X M,LIU X M,et al.Rapid and productive extraction of high purity cellulose material via selective depolymerization of the lignin\|carbohydrate complex at mild conditions[J].Green Chemistry,2017,19(9):2234.
[16] YANG S Q,LU X M,ZHANG Y Q,et al.Separation and characterization of cellulose I material from corn straw by low\|cost polyhydric protic ionic liquids[J].Cellulose,2018,25(6):3241.
[17] LI W Y,SUN N,STONER B,et al.Rapid dissolution of lignocellulosic biomass in ionic liquids using temperatures above the glass transition of lignin[J].Green Chemistry,2011,13(8):2038.
[18] TAN S S Y,MACFARLANE D R,UPFAL J,et al.Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid[J].Green Chemistry,2009,11(3):339.
[19] SUN N,RAHMAN M,QIN Y,et al.Complete dissolution and partial delignification of wood in the ionic liquid 1\|ethyl\|3\|methylimidazolium acetate[J].Green Chemistry,2009,11(5):646.
[20] ZHENG J,REHMANN L.Extrusion pretreatment of lignocellulosic biomass:a review[J].Int J Mol Sci,2014,15(10):18967.
[21] KRATKY L,JIROUT T.Biomass size reduction machines for enhancing biogas production[J].Chemical Engineering & Technology,2011,34(3):391.
[22] JIN F,ZHOU Z,MORIYA T,et al.Controlling hydrothermal reaction pathways to improve acetic acid production from carbohydrate biomass[J].Environ Sci Technol,2005,39(6):1893.
[23] LEE J W,JEFFRIES T W.Efficiencies of acid catalysts in the hydrolysis of lignocellulosic biomass over a range of combined severity factors[J].Bioresour Technol,2011,102(10):5884.
[24] ZHU J,WAN C,LI Y.Enhanced solid\|state anaerobic digestion of corn stover by alkaline pretreatment[J].Bioresour Technol,2010,101(19):7523.
[25] ZHENG Y,ZHAO J,XU F Q,et al.Pretreatment of lignocellulosic biomass for enhanced biogas production[J].Progress in Energy and Combustion Science,2014,42:35.
[26] BRUNI E,JENSEN A P,ANGELIDAKI I.Comparative study of mechanical,hydrothermal,chemical and enzymatic treatments of digested biofibers to improve biogas production[J].Bioresour Technol,2010,101(22):8713.
[27] ZHANG Y L,CHEN X H,GU Y,et al.A physicochemical method for increasing methane production from rice straw:extrusion combined with alkali pretreatment[J].Applied Energy,2015,160:39.
[28] BEHERA S,ARORA R,NANDHAGOPAL N,et al.Importance of chemical pretreatment for bioconversion of lignocellulosic biomass[J].Renewable & Sustainable Energy Reviews,2014,36:91.
[29] GRAENACHER C.Cellulose solution:1943176[P].1930-09-27[2018-11-02].
[30] SWATLOSKI R P,SPEAR S K,HOLBREY J D,et al.Dissolution of cellulose [correction of cellose] with ionic liquids[J].J Am Chem Soc,2002,124(18):4974.
[31] LIU Q P,HOU X D,LI N,et al.Ionic liquids from renewable biomaterials:synthesis,characterization and application in the pretreatment of biomass[J].Green Chemistry,2012,14(2):304.
[32] OUELLET M,DATTA S,DIBBLE D C,et al.Impact of ionic liquid pretreated plant biomass on Saccharomyces cerevisiae growth and biofuel production[J].Green Chemistry,2011,13(10):2743.
[33] WU H,MORA\|PALE M,MIAO J,et al.Facile pretreatment of lignocellulosic biomass at high loadings in room temperature ionic liquids[J].Biotechnol Bioeng,2011,108(12):2865.
[34] FU D,MAZZA G.Aqueous ionic liquid pretreatment of straw[J].Bioresour Technol,2011,102(13):7008.
[35] BRANDT A,RAY M J,TO T Q,et al.Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid\|water mixtures[J].Green Chemistry,2011,13(9):2489.
[36] LI C Z,WANG Q,ZHAO Z K.Acid in ionic liquid:an efficient system for hydrolysis of lignocellulose[J].Green Chemistry,2008,10(2):177.
[37] ZHANG Z,ZHAO Z K.Solid acid and microwave\|assisted hydrolysis of cellulose in ionic liquid[J].Carbohydr Res,2009,344(15):2069.
[38] ANUGWOM I,MAKI\|ARVELA P,VIRTANEN P,et al.Selective extraction of hemicelluloses from spruce using switchable ionic liquids[J].Carbohydrate Polymers,2012,87(3):2005.
[39] LIANG G,HE L,CHENG H,et al.ZSM\|5\|supported multiply\|twinned nickel particles:formation,surface properties,and high catalytic performance in hydrolytic hydrogenation of cellulose[J].Journal of Catalysis,2015,325:79.
[40] ALBERT J,WOLFEL R,BOSMANN A,et al.Selective oxidation of complex,water\|insoluble biomass to formic acid using additives as reaction accelerators[J].Energy & Environmental Science,2012,5(7):7956.
[41] NANDIWALE K Y,GALANDE N D,THAKUR P,et al.One\|pot synthesis of 5\|hydroxymethylfurfural by cellulose hydrolysis over highly active bimodal micro/mesoporous H\|ZSM\|5 catalyst[J].ACS Sustainable Chemistry & Engineering,2014,2(7):1928.
[42] LI C Z,ZHAO Z K B.Efficient acid\|catalyzed hydrolysis of cellulose in ionic liquid[J].Advanced Synthesis & Catalysis,2007,349(11/12):1847.
[43] MORALES\|DELAROSA S,CAMPOS\|MARTIN J M,F(xiàn)IERRO J L G.High glucose yields from the hydrolysis of cellulose dissolved in ionic liquids[J].Chemical Engineering Journal,2012,181:538.
[44] BINDER J B,RAINES R T.Fermentable sugars by chemical hydrolysis of biomass[J].Proc Natl Acad Sci U S A,2010,107(10):4516.
[45] SU Y,BROWN H M,LI G S,et al.Accelerated cellulose depolymerization catalyzed by paired metal chlorides in ionic liquid solvent[J].Applied Catalysis A:General,2011,391(1/2):436.
[46] KAMIMURA A,OKAGAWA T,OYAMA N,et al.Combination use of hydrophobic ionic liquids and LiCl as a good reaction system for the chemical conversion of cellulose to glucose[J].Green Chemistry,2012,14(10):2816.
[47] RINALDI R,MEINE N,VOM STEIN J,et al.Which controls the depolymerization of cellulose in ionic liquids:the solid acid catalyst or cellulose?[J].Chem Sus Chem,2010,3(2):266.
[48] YUAN X,CHENG G.From cellulose fibrils to single chains:understanding cellulose dissolution in ionic liquids[J].Phys Chem Chem Phys,2015,17(47):31592.
[49] DONG K,ZHANG S,WANG J.Understanding the hydrogen bonds in ionic liquids and their roles in properties and reactions[J].Chem Commun (Camb),2016,52(41):6744.
[50] LONG J X,ZHANG Y Y,WANG L F,et al.Which is the determinant for cellulose degradation in cooperative ionic liquid pairs:dissolution or catalysis?[J].Science China\|Chemistry,2016,59(5):557.
[51] DE OLIVEIRA H F N,F(xiàn)ARES C,RINALDI R.Beyond a solvent:the roles of 1\|butyl\|3\|methylimidazolium chloride in the acid\|catalysis for cellulose depolymerisation[J].Chem Sci,2015,6(9):5215.
[52] AMARASEKARA A S,OWEREH O S.Hydrolysis and decomposition of cellulose in bronsted acidic ionic liquids under mild conditions[J].Industrial & Engineering Chemistry Research,2009,48(22):10152.
[53] AMARASEKARA A S,WIREDU B.Chemocatalytic hydrolysis of cellulose at 37 ℃,1 atm[J].Catalysis Science & Technology,2016,6(2):426.
[54] ZHUO K,DU Q,BAI G,et al.Hydrolysis of cellulose catalyzed by novel acidic ionic liquids[J].Carbohydr Polym,2015,115:49.
[55] LI C,ZHAO Z K.Efficient acid\|catalyzed hydrolysis of cellulose in ionic liquid[J].Advanced Synthesis & Catalysis,2007,349(11/12):1847.
[56] ZHANG F,F(xiàn)ANG Z.Hydrolysis of cellulose to glucose at the low temperature of 423 K with CaFe2O4\|based solid catalyst[J].Bioresour Technol,2012,124:440.
[57] JIANG F,ZHU Q J,MA D,et al.Direct conversion and NMR observation of cellulose to glucose and 5\|hydroxymethylfurfural (HMF) catalyzed by the acidic ionic liquids[J].Journal of Molecular Catalysis A:Chemical,2011,334(1/2):8.
[58] SUZUKI S,TAKEOKA Y,RIKUKAWA M,et al.Brnsted acidic ionic liquids for cellulose hydrolysis in an aqueous medium:structural effects on acidity and glucose yield[J].RSC Advances,2018,8(26):14623.
[59] RINALDI R,PALKOVITS R,SCHUTH F.Depolymerization of cellulose using solid catalysts in ionic liquids[J].Angew Chem Int Ed Engl,2008,47(42):8047.
[60] CAI H,LI C,WANG A,et al.Zeolite\|promoted hydrolysis of cellulose in ionic liquid,insight into the mutual behavior of zeolite,cellulose and ionic liquid[J].Applied Catalysis B:Environmental,2012,123/124:333.
[61] QIAN X H,LEI J,WICKRAMASINGHE S R.Novel polymeric solid acid catalysts for cellulose hydrolysis[J].RSC Advances,2013,3(46):24280.
[62] JIANG G S,YUAN Y,WANG B C,et al.Analysis of regenerated cellulose fibers with ionic liquids as a solvent as spinning speed is increased[J].Cellulose,2012,19(4):1075.
[63] HAURU L K J,HUMMEL M,MICHUD A,et al.Dry jet\|wet spinning of strong cellulose filaments from ionic liquid solution[J].Cellulose,2014,21(6):4471.
[64] ROSATELLA A A,SIMEONOV S P,F(xiàn)RADE R F M,et al.5\|Hydroxymethylfurfural (HMF) as a building block platform:biological properties,synthesis and synthetic applications[J].Green Chemistry,2011,13(4):754.
[65] VAN PUTTEN R J,VAN DER WAAL J C,DE JONG E,et al.Hydroxymethylfurfural,a versatile platform chemical made from renewable resources[J].Chem Rev,2013,113(3):1499.
[66] CHEN J,LIU R,GUO Y,et al.Selective hydrogenation of biomass\|based 5\|hydroxymethylfurfural over catalyst of palladium immobilized on amine\|functionalized metal\|organic frameworks[J].Acs Catalysis,2014,5(2):722.
[67] LI S,SU K M,LI Z H,et al.Selective oxidation of 5\|hydroxymethylfurfural with H2O2 catalyzed by a molybdenum complex[J].Green Chemistry,2016,18(7):2122.
[68] ZHAO H,HOLLADAY J E,BROWN H,et al.Metal chlorides in ionic liquid solvents convert sugars to 5\|hydroxymethylfurfural[J].Science,2007,316(5831):1597.
[69] YONG G,ZHANG Y,YING J Y.Efficient catalytic system for the selective production of 5\|hydroxymethylfurfural from glucose and fructose[J].Angew Chem Int Ed Engl,2008,47(48):9345.
[70] HU S Q,ZHANG Z F,SONG J L,et al.Efficient conversion of glucose into 5\|hydroxymethylfurfural catalyzed by a common Lewis acid SnCl4 in an ionic liquid[J].Green Chemistry,2009,11(11):1746.
[71] STAHLBERG T,SORENSEN M G,RIISAGER A.Direct conversion of glucose to 5\|(hydroxymethyl)furfural in ionic liquids with lanthanide catalysts[J].Green Chemistry,2010,12(2):321.
[72] STAHLBERG T,RODRIGUEZ\|RODRIGUEZ S,F(xiàn)RISTRUP P,et al.Metal\|free dehydration of glucose to 5\|(hydroxymethyl)furfural in ionic liquids with boric acid as a promoter[J].Chemistry,2011,17(5):1456.
[73] HU L,SUN Y,LIN L,et al.Catalytic conversion of glucose into 5\|hydroxymethylfurfural using double catalysts in ionic liquid[J].Journal of the Taiwan Institute of Chemical Engineers,2012,43(5):718.
[74] LIU D,CHEN E Y X.Ubiquitous aluminum alkyls and alkoxides as effective catalysts for glucose to HMF conversion in ionic liquids[J].Applied Catalysis A:General,2012,435/436:78.
[75] HE J,ZHANG Y,CHEN E Y.Chromium(0) nanoparticles as effective catalyst for the conversion of glucose into 5\|hydroxymethylfurfural[J].ChemSusChem,2013,6(1):61.
[76] ZHOU X,ZHANG Z,LIU B,et al.Microwave\|assisted rapid conversion of carbohydrates into 5\|hydroxymethylfurfural by ScCl3 in ionic liquids[J].Carbohydr Res,2013,375:68.
[77] ZHOU L,LIANG R,MA Z,et al.Conversion of cellulose to HMF in ionic liquid catalyzed by bifunctional ionic liquids[J].Bioresour Technol,2013,129:450.
[78] XUAN Y,HE R,HAN B,et al.Catalytic conversion of cellulose into 5\|hydroxymethylfurfural using [PSMIM]HSO4 and ZnSO4·7H2O cocatalyst in biphasic system[J].Waste and Biomass Valorization,2016,9(3):401.
[79] HU L,WU Z,XU J X,et al.Zeolite\|promoted transformation of glucose into 5\|hydroxymethylfurfural in ionic liquid[J].Chemical Engineering Journal,2014,244:137.
[80] YAN K,JARVIS C,GU J,et al.Production and catalytic transformation of levulinic acid:a platform for speciality chemicals and fuels[J].Renewable & Sustainable Energy Reviews,2015,51:986.
[81] PILEIDIS F D,TITIRICI M M.Levulinic acid biorefineries:new challenges for efficient utilization of biomass[J].ChemSusChem,2016,9(6):562.
[82] SHEN Y,SUN J K,YI Y X,et al.One\|pot synthesis of levulinic acid from cellulose in ionic liquids[J].Bioresour Technol,2015,192:812.
[83] RAMLI N A S,AMIN N A S.A new functionalized ionic liquid for efficient glucose conversion to 5\|hydroxymethyl furfural and levulinic acid[J].Journal of Molecular Catalysis A:Chemical,2015,407:113.
[84] SUN Z,CHENG M X,LI H C,et al.One\|pot depolymerization of cellulose into glucose and levulinic acid by heteropolyacid ionic liquid catalysis[J].RSC Advances,2012,2(24):9058.
[85] DUTTA S,DE S,SAHA B,et al.Advances in conversion of hemicellulosic biomass to furfural and upgrading to biofuels[J].Catalysis Science & Technology,2012,2(10):2025.
[86] MAKI\|ARVELA P,SALMI T,HOLMBOM B,et al.Synthesis of sugars by hydrolysis of hemicelluloses:a review[J].Chem Rev,2011,111(9):5638.
[87] ENSLOW K R,BELL A T.The kinetics of Brnsted acid\|catalyzed hydrolysis of hemicellulose dissolved in 1\|ethyl\|3\|methylimidazolium chloride[J].RSC Advances,2012,2(26):10028.
[88] MATSAGAR B M,DHEPE P L.Bronsted acidic ionic liquid\|catalyzed conversion of hemicellulose into sugars[J].Catalysis Science & Technology,2015,5(1):531.
[89] LANGE J P,VAN DER HEIDE E,VAN BUIJTENEN J,et al.Furfural:a promising platform for lignocellulosic biofuels[J].ChemSusChem,2012,5(1):150.
[90] SIEVERS C,MUSIN I,MARZIALETTI T,et al.Acid\|catalyzed conversion of sugars and furfurals in an ionic\|liquid phase[J].ChemSusChem,2009,2(7):665.
[91] ZHANG Z,DU B,QUAN Z J,et al.Dehydration of biomass to furfural catalyzed by reusable polymer bound sulfonic acid (PEG\|OSO3H) in ionic liquid[J].Catalysis Science & Technology,2014,4(3):633.
[92] ZHANG L,YU H,WANG P,et al.Conversion of xylan,d\|xylose and lignocellulosic biomass into furfural using AlCl3 as catalyst in ionic liquid[J].Bioresour Technol,2013,130:110.
[93] ZHANG L X,YU H,YU H B,et al.Conversion of xylose and xylan into furfural in biorenewable choline chloride\|oxalic acid deep eutectic solvent with the addition of metal chloride[J].Chinese Chemical Letters,2014,25(8):1132.
[94] ZHANG L,YU H,WANG P.Solid acids as catalysts for the conversion of D\|xylose,xylan and lignocellulosics into furfural in ionic liquid[J].Bioresour Technol,2013,136:515.
[95] WU C,CHEN W,ZHONG L,et al.Conversion of xylose into furfural using lignosulfonic acid as catalyst in ionic liquid[J].J Agric Food Chem,2014,62(30):7430.
[96] PELETEIRO S,LOPES A M D,GARROTE G,et al.Simple and efficient furfural production from xylose in media containing 1\|butyl\|3\|methylimidazolium hydrogen sulfate[J].Industrial & Engineering Chemistry Research,2015,54(33):8368.
[97] MATSAGAR B M,HOSSAIN S A,ISLAM T,et al.Direct production of furfural in one\|pot fashion from raw biomass using Brnsted acidic ionic liquids[J].Scientific Reports,2017,7(1):13508.
[98] THIERRY M,MAJIRA A,PéGOT B,et al.Imidazolium\|based ionic liquids as efficient reagents for the C—O bond cleavage of lignin[J].ChemSusChem,2018,11(2):439.
[99] BINDER J B,GRAY M J,WHITE J F,et al.Reactions of lignin model compounds in ionic liquids[J].Biomass & Bioenergy,2009,33(9):1122.
[100]JIA S,COX B J,GUO X,et al.Hydrolytic cleavage of β\|O\|4 ether bonds of lignin model compounds in an ionic liquid with metal chlorides[J].Industrial & Engineering Chemistry Research,2011,50(2):849.
[101]JIA S,COX B J,GUO X,et al.Cleaving the β\|O\|4 bonds of lignin model compounds in an acidic ionic liquid,1\|h\|3\|methylimidazolium chloride:an optional strategy for the degradation of lignin[J].ChemSusChem,2010,3(9):1078.
[102] COX B J,JIA S Y,ZHANG Z C,et al.Catalytic degradation of lignin model compounds in acidic imidazolium based ionic liquids:hammett acidity and anion effects[J].Polymer Degradation and Stability,2011,96(4):426.
[103] COX B J,EKERDT J G.Depolymerization of oak wood lignin under mild conditions using the acidic ionic liquid 1\|H\|3\|methylimidazolium chloride as both solvent and catalyst[J].Bioresour Technol,2012,118:584.
[104] ZHANG B,LI C Z,DAI T,et al.Microwave\|assisted fast conversion of lignin model compounds and organosolv lignin over methyltrioxorhenium in ionic liquids[J].RSC Advances,2015,5(103):84967.
[105] JONGERIUS A L,BRUIJNINCX P C A,WECKHUYSEN B M.Liquid\|phase reforming and hydrodeoxygenation as a two\|step route to aromatics from lignin[J].Green Chemistry,2013,15(11):3049.
[106] SCOTT M,DEUSS P J,DE VRIES J G,et al.New insights into the catalytic cleavage of the lignin β\|O\|4 linkage in multifunctional ionic liquid media[J].Catalysis Science & Technology,2016,6(6):1882.
[107] CHEN L,XIN J Y,NI L L,et al.Conversion of lignin model compounds under mild conditions in pseudo\|homogeneous systems[J].Green Chemistry,2016,18(8):2341.
[108] LIU F,LIU Q Y,WANG A Q,et al.Direct catalytic hydrogenolysis of kraft lignin to phenols in choline\|derived ionic liquids[J].ACS Sustainable Chemistry & Engineering,2016,4(7):3850.
[109] YAN N,YUAN Y,DYKEMAN R,et al.Hydrodeoxygenation of lignin\|derived phenols into alkanes by using nanoparticle catalysts combined with Bronsted acidic ionic liquids[J].Angew Chem Int Ed Engl,2010,49(32):5549.
[110] SUN K K,LU G P,ZHANG J W,et al.The selective hydrogenolysis of C—O bonds in lignin model compounds by Pd\|Ni bimetallic nanoparticles in ionic liquids[J].Dalton Trans,2017,46(35):11884.
[111] QIN Y,LU X,SUN N,et al.Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers[J].Green Chemistry,2010,12(6):968.
[112] BARBER P S,GRIGGS C S,GURAU G,et al.Coagulation of chitin and cellulose from 1\|ethyl\|3\|methylimidazolium acetate ionic\|liquid solutions using carbon dioxide[J].Angew Chem Int Ed Engl,2013,52(47):12350.
[113] LI L,YUAN B,LIU S W,et al.Preparation of high strength chitosan fibers by using ionic liquid as spinning solution[J].Journal of Materials Chemistry,2012,22(17):8585.
[114] MA B M,ZHANG M,HE C J,et al.New binary ionic liquid system for the preparation of chitosan/cellulose composite fibers[J].Carbohydrate Polymers,2012,88(1):347.
[115] XIE H B,LI S H,ZHANG S B.Ionic liquids as novel solvents for the dissolution and blending of wool keratin fibers[J].Green Chemistry,2005,7(8):606.
[116] ZHENG S S,NIE Y,ZHANG S J,et al.Highly efficient dissolution of wool keratin by dimethylphosphate ionic liquids[J].ACS Sustainable Chemistry & Engineering,2015,3(11):2925.