張赟昀
(深圳地鐵建設(shè)集團(tuán)有限公司, 518035, 深圳//工程師)
據(jù)統(tǒng)計(jì),城市軌道交通列車的牽引能耗在列車總能耗中的占比達(dá)到60%[1]。因此牽引能耗是城市軌道交通列車運(yùn)行節(jié)能的主要突破點(diǎn)。
目前,國(guó)內(nèi)外對(duì)列車運(yùn)行能耗的研究對(duì)象主要是單列車節(jié)能與多列車節(jié)能[2]。其中,多列車節(jié)能方式主要是多車追蹤節(jié)能以及考慮時(shí)刻表的再生制動(dòng)節(jié)能[3]。列車運(yùn)行節(jié)能的限制條件也由原先的強(qiáng)約束條件逐步轉(zhuǎn)向更接近現(xiàn)實(shí)運(yùn)行情況的弱約束條件;列車運(yùn)行節(jié)能優(yōu)化目標(biāo)也逐步由原先的僅考慮能耗指標(biāo)轉(zhuǎn)向綜合考慮列車運(yùn)行時(shí)間、運(yùn)行能耗、停車精準(zhǔn)度、乘客舒適度等多個(gè)指標(biāo)[4]。研究列車運(yùn)行節(jié)能的算法主要有數(shù)值法、解析法和智能算法[5-7],三種算法各有其優(yōu)缺點(diǎn)??紤]到解析法理論比較復(fù)雜,數(shù)值法存在求解緩慢問(wèn)題,而智能算法適應(yīng)性強(qiáng)、可移植性高,因此本文采用智能算法。
參照《列車牽引計(jì)算規(guī)程》建立式(1)所示的列車運(yùn)行單質(zhì)點(diǎn)模型。
(1)
式中:
Fp——單位質(zhì)量列車受到的牽引力;
fb——單位質(zhì)量列車受到的制動(dòng)力;
f0(v)——單位質(zhì)量列車受到的基本阻力;
fadd(x)——單位質(zhì)量列車受到的線路附加阻力;
x——列車在線路中的位置;
t——運(yùn)行時(shí)間;
p——列車采用的牽引系數(shù);
z——列車采用的制動(dòng)系數(shù);
v——列車運(yùn)行速度。
式(2)為運(yùn)行過(guò)程中的能耗、乘客舒適度以及運(yùn)行時(shí)間這3個(gè)指標(biāo)的舒適度隸屬度函數(shù)。
(2)
式中:
Ke——列車能耗;
Kt——列車運(yùn)行時(shí)間;
Kc——乘客舒適度;
F(x)——Ke、Kt、Kc的綜合衡量函數(shù);
Wi—w1∈[0.5,0.7];w2∈[0.2,0.3];w3∈[0.2,0.3]
Et——列車牽引能耗;
Er——列車巡航能耗;
Eb——列車制動(dòng)能耗;
E0——列車惰行能耗,取值為0;
T——列車運(yùn)行時(shí)間;
Ta——時(shí)刻表規(guī)定運(yùn)行時(shí)間;
ta——可接受的時(shí)間誤差;
a——目標(biāo)舒適度值;
σ——模型寬度。
基于多種群遺傳算法的列車節(jié)能策略:基于線路數(shù)據(jù)及相關(guān)的列車運(yùn)行數(shù)據(jù)進(jìn)行相應(yīng)的受力分析,然后利用ATO(列車自動(dòng)運(yùn)行)的高層結(jié)構(gòu)并采用多種群遺傳算法對(duì)列車推薦速度曲線進(jìn)行優(yōu)化;利用ATO的底層結(jié)構(gòu)并采用PID(比例積分微分)跟蹤策略跟蹤優(yōu)化后的速度曲線,得到列車實(shí)際運(yùn)行的能耗。圖1為ATO系統(tǒng)結(jié)構(gòu)圖。
圖1 ATO系統(tǒng)結(jié)構(gòu)圖
由圖1可知,當(dāng)通過(guò)ATO高層結(jié)構(gòu)并采用相關(guān)的多種群遺傳算法優(yōu)化得到對(duì)應(yīng)的列車推薦速度曲線以后,列車按照ATO底層結(jié)構(gòu)追蹤曲線運(yùn)行。如果追蹤不夠精準(zhǔn),那么列車實(shí)際的運(yùn)行能耗依然會(huì)很大,所以推薦速度曲線的優(yōu)化與追蹤這兩個(gè)環(huán)節(jié)緊密相連,必不可少。本文采用PID控制器對(duì)列車推薦速度曲線進(jìn)行追蹤,控制器的傳遞函數(shù)表達(dá)式如式(3)所示。
(3)
式中:
Gc——控制器傳遞函數(shù);
Kp——比例增益;
Ki——積分時(shí)間常數(shù);
Kd——微分時(shí)間常數(shù);
s——s域。
由式(1)經(jīng)過(guò)推導(dǎo)線性化后的列車模型狀態(tài)空間表達(dá)式如式(4)所示。
(4)
式中:
M——列車質(zhì)量;
b——戴維斯參數(shù);
本文將基于式(4)設(shè)計(jì)ATO的速度控制器,以達(dá)到按照算法優(yōu)化后的列車推薦速度曲線對(duì)列車進(jìn)行精確跟蹤。
列車推薦速度曲線優(yōu)化算法常采用遺傳算法、蟻群算法、粒子群算法、禁忌搜索等智能算法。應(yīng)用最廣泛、技術(shù)最成熟的智能算法是遺傳算法。遺傳算法因其具有隱含并行性,計(jì)算速率更快。此外,遺傳算法還具有較好的可移植性,在遺傳操作過(guò)程中不容易受到外部條件的制約。
遺傳算法雖然有很多優(yōu)點(diǎn),但仍然存在以下問(wèn)題:
1) 遺傳算法中的選擇操作直接由適應(yīng)度決定,因此當(dāng)種群中某些個(gè)體適應(yīng)度較大時(shí),很容易被多次選中,這會(huì)導(dǎo)致種群?jiǎn)适Ф鄻有?、種群進(jìn)化停滯。
2) 遺傳算法中的變異概率和交叉概算的選擇決定了算法的收斂能力,如果只是單獨(dú)地確定一個(gè)值,很難綜合算法的收斂速度和收斂能力。
針對(duì)上述問(wèn)題,本文采用多種群遺傳算法。多種群遺傳算法能夠彌補(bǔ)遺傳算法的上述缺陷,針對(duì)性解決遺傳算法存在的問(wèn)題。
1) 對(duì)于適應(yīng)度,考慮采用多個(gè)指標(biāo),且每個(gè)指標(biāo)的權(quán)重在某一區(qū)間內(nèi)變化,以保證種群的多樣性。
2) 對(duì)相關(guān)遺傳算子賦予不同的參數(shù),并采用多個(gè)種群并行搜索的方法,既能夠達(dá)到不同的搜索目的,又能夠加快算法的收斂速度和收斂能力。
多種群遺傳算法結(jié)構(gòu)示意圖如圖2所示。其操作方式是:首先建立多個(gè)種群,每個(gè)種群所采用的遺傳算子取值各不相同;然后通過(guò)移民算子將多個(gè)種群聯(lián)系起來(lái),達(dá)到信息互換、協(xié)同進(jìn)化的效果。這樣便使得交叉概率及變異概率等的取值是一個(gè)范圍,而不是固定值,從而很好地平衡了遺傳算法的局部搜索能力和全局搜索能力。
注:GA——遺傳算法
在其他遺傳算子取值相同的前提下,選擇算子取值分別為0.75、0.85、0.95時(shí),算法的適應(yīng)度函數(shù)同算法的進(jìn)化代次數(shù)間的關(guān)系如圖3所示。
由圖3可知,當(dāng)選擇算子取值為0.75時(shí),遺傳算法收斂大約需要28代;當(dāng)選擇算子取值為0.85時(shí),遺傳算法收斂大約需要26代;當(dāng)選擇算子取值為0.95時(shí),遺傳算法收斂大約只需要10代。由此可知,在其他參數(shù)不變的情況下,選擇算子取值的增大,對(duì)遺傳算法的收斂速率有加速作用?;诜抡娼Y(jié)果,本文交叉概率的取值為[0.85,0.90]。
a) 遺傳算子取值為0.75
b) 遺傳算子取值為0.85
c) 遺傳算子取值為0.95
在其他遺傳算子取值相同的前提下,交叉算子的取值分別為0.7、0.8、0.9時(shí),算法的適應(yīng)度函數(shù)同算法的進(jìn)化代次數(shù)間的關(guān)系如圖4所示。
由圖4可知,當(dāng)交叉算子取值為0.8時(shí),算法的適應(yīng)度值更加接近最優(yōu)適應(yīng)度取值;當(dāng)交叉算子取值為0.9時(shí),算法的適應(yīng)度值逐漸偏離最優(yōu)適應(yīng)度取值。由此可知,在其他參數(shù)不變的情況下,交叉算子的取值既不宜過(guò)大,也不宜太小?;诜抡娼Y(jié)果,本文交叉算子的取值為[0.75,0.90]。
在其他遺傳算子取值相同的前提下,變異算子的取值分別為0.003、0.004、0.005時(shí),算法的適應(yīng)度函數(shù)同算法的進(jìn)化代次數(shù)間的關(guān)系如圖5所示。
由圖5可知,當(dāng)變異算子取值為0.003時(shí),算法收斂大約需要7代;當(dāng)變異算子取值為0.004時(shí),算法收斂大約需要8代;當(dāng)選擇算子取值為0.005時(shí),算法收斂大約需要15代。由此可知,在其他參數(shù)不變的情況下,選擇算子的取值增大,對(duì)算法的收斂速率有減速作用?;诜抡娼Y(jié)果,本文變異算子的取值為[0.004 5,0.006 5]。
a) 交叉算子取值為0.7
b) 交叉算子取值為0.8
c) 交叉算子取值為0.9
3.1.1 線路參數(shù)設(shè)定
本文選取北京地鐵亦莊線的亦莊火車站站至次渠站進(jìn)行仿真驗(yàn)證,線路參數(shù)及其取值見(jiàn)表1。
表1 北京地鐵亦莊線的亦莊火車站站至次渠站的線路參數(shù)及其取值
a) 變異算子的取值為0.003
b) 變異算子的取值為0.004
c) 變異算子的取值為0.005
3.1.2 車輛參數(shù)設(shè)定
式(5)為列車的最大牽引力Fmax計(jì)算公式。
(9)
式(6)為列車的最大制動(dòng)力Bmax計(jì)算公式。
(10)
本文采用基于MATLAB軟件的仿真系統(tǒng),其總體架構(gòu)如圖6所示。該仿真系統(tǒng)主要包括參數(shù)輸入模塊、列車牽引模塊、ATO控制器模塊和結(jié)果輸出模塊。
為驗(yàn)證本文所提運(yùn)行節(jié)能策略的有效性,選取北京亦莊線亦莊火車站站至次渠南站進(jìn)行仿真驗(yàn)證。選擇算子的取值范圍為[0.85,0.90],交叉算子的取值范圍為[0.75,0.90],變異算子的取值范圍為[0.004 5,0.006 5]。采用本文提出的適應(yīng)度衡量指標(biāo)模型,仿真結(jié)果如圖7所示。
圖6 仿真系統(tǒng)總體架構(gòu)圖
圖7 采用多目標(biāo)遺傳算法的優(yōu)化結(jié)果
多種群遺傳算法顯示PID跟蹤得到的列車實(shí)際運(yùn)行能耗為13.98 kW·h,運(yùn)行時(shí)間為111.76 s。北京地鐵的實(shí)際運(yùn)行能耗為15.67 kW·h。與實(shí)際相比,本文所提列車運(yùn)行節(jié)能策略可以節(jié)約10.78%的能耗。
分析了不同遺傳算子對(duì)多種群遺傳算法的影響,確定了各遺傳算子選取的原則及最優(yōu)取值范圍。通過(guò)建立適應(yīng)度衡量指標(biāo)模型,在綜合考量運(yùn)行列車的能耗、運(yùn)行時(shí)間等多個(gè)指標(biāo)的基礎(chǔ)上給出了基于多種群遺傳算法的列車節(jié)能策略。建立了基于MATLAB軟件的列車運(yùn)行仿真系統(tǒng),驗(yàn)證了本文提出的列車節(jié)能策略的有效性。仿真結(jié)果表明,本文所提運(yùn)行節(jié)能策略相較于目前實(shí)際運(yùn)行能耗,可以節(jié)約10.78%的能耗。