劉雨知,王 晨,鄒東雷,董招君*
具備微電解特性的改性泡沫銅去除強(qiáng)力霉素
劉雨知1,王 晨2,鄒東雷1,董招君1*
(1.吉林大學(xué)新能源與環(huán)境學(xué)院,吉林 長春 130000;2.南京大學(xué)環(huán)境學(xué)院,江蘇 南京 210023)
通過改進(jìn)的還原方法把納米零價鐵(nZVI)負(fù)載在多孔泡沫銅(CF)上,制備出具有微電解特性的泡沫銅材料(MCF),并利用SEM,SEMMAPPING和EDX對其表面的形態(tài)特征及其元素分布進(jìn)行了表征.考察了不同去除方式,不同MCF投加量和不同強(qiáng)力霉素(DC)初始濃度對降解效果的影響.結(jié)果表明:負(fù)載等量nZVI的MCF處理效果明顯優(yōu)于nZVI;當(dāng)DC初始濃度為50mg/L,MCF的投加量為4.0g,反應(yīng)20min時,DC去除率可達(dá)到99%;動力學(xué)分析表明,MCF降解DC符合準(zhǔn)一級反應(yīng)動力學(xué),且隨著MCF的投加量增加,反應(yīng)速率常數(shù)增大,投加量為5.0g時,值最大為0.0609min-1.
泡沫銅;微電解;納米零價鐵;強(qiáng)力霉素
環(huán)境中殘留的抗生素已公認(rèn)是新興的污染物[1-4].強(qiáng)力霉素(DC)作為四環(huán)素類抗生素(TCs)的一種常被用于畜禽養(yǎng)殖業(yè)[5],其在使用中并不會完全被畜禽吸收,大部分會通過畜禽糞便進(jìn)入環(huán)境中[6].雖然在地表水中濃度較低但危害持久,會引起病原體抗生素抗性基因的進(jìn)化,危害人類環(huán)境[7-8].近年來,各種環(huán)境修復(fù)方法已研究用來去除和降解水環(huán)境中的抗生素,如吸附作用[9-10],脫氯作用[11],高級氧化法[12],光催化法[13]和超聲催化法[14].常規(guī)的生物處理很難使其完全降解和礦化,這主要是因為抗生素對微生物的新陳代謝有抑制作用[15].由于DC的低濃度高危害以及難生物降解特性,開發(fā)有效的,快速的去除水環(huán)境中DC的方法勢在必行[16].
傳統(tǒng)微電解法(TME)是一種優(yōu)良的預(yù)處理技術(shù)[17].TME類似于零價鐵(Fe0)腐蝕[18],由鐵屑和活性炭(AC)在電解質(zhì)溶液形成無數(shù)的微小腐蝕原電池來去除和降解污染物[19-21].
近年來,基于TME的雙金屬體系同樣受到了研究者的廣泛關(guān)注.摻雜入TME的貴金屬不僅具有催化作用而且可以和鐵形成雙金屬體系,能加速鐵的腐蝕作用,從而提高TME降解污染物的能力[22-23].銅,相對其他貴重金屬更加經(jīng)濟(jì),同時又具有良好的催化性能,負(fù)載銅的微電解材料已被用來去除許多污染物[22,24].有研究表明[25],鐵/銅與鐵/鎳組合成雙金屬系統(tǒng)降解1,1,1-TCA效率遠(yuǎn)遠(yuǎn)高于零價鐵單獨(dú)降解作用. TME制備的填料容易板結(jié),鐵泥容易堵塞管道進(jìn)而會導(dǎo)致處理污染物效率的急劇下降.在此基礎(chǔ)上,開發(fā)處理效果好,不易板結(jié),鐵泥量少的微電解材料是本研究的重要內(nèi)容.泡沫銅(CF)是一種在銅基體上均勻分布著大量連通或不連通孔洞的新型多功能材料.CF具有良好導(dǎo)電性,同時延展性也很好.CF可用于制備電池負(fù)極(載體)材料,催化劑載體等[26].此外,由于納米材料具有較大的比表面積和較高的表面活性[27-28],nZVI應(yīng)用于微電解系統(tǒng)中將優(yōu)于鐵屑或鐵粉應(yīng)用于微電解體系中[27,29].
本文通過改進(jìn)的還原方法將nZVI負(fù)載在CF上,并以DC為目標(biāo)污染物,探究了MCF去除水中DC的影響因素、反應(yīng)動力學(xué)及降解機(jī)理,旨在揭示nZVI和CF形成的雙金屬體系的微電解特性,為MCF在微電解工業(yè)中的應(yīng)用提供參考.
本實驗采用的CF采購于江蘇蘇州昆山某泡沫金屬材料公司,體積密度1g/cm3.強(qiáng)力霉素(98%)采購于山東西亞化學(xué)工業(yè)有限公司,七水合硫酸亞鐵(FeSO4×7H2O),硼氫化鉀(NaBH4),氫氧化鈉,無水乙醇,皆為分析純,采購于國藥集團(tuán)化學(xué)試劑有限公司.
主要儀器包括UV2600紫外-可見分光光度計, pHS-25型pH計,SHA-B型恒溫水浴振蕩器,DHG- 9055A型鼓風(fēng)干燥箱,DZF-6050型真空干燥箱, KQ5200V型超聲清洗機(jī),配置能量色散X射線光譜儀的XL-30ESEM型掃描電子顯微鏡,TOC 5000A總有機(jī)碳分析儀,FA2004型分析天平等.
將CF裁剪為(1′1′0.5)cm3大小小塊,用體積比為1:4的稀硫酸溶液浸泡2h去除表面雜質(zhì)后用蒸餾水洗凈至中性,放烘箱中60℃烘干備用.
步驟一:稱取0.4902g硼氫化鈉(NaBH4)放入50mL燒杯中,用10mL超純水將其溶解,制得預(yù)制液A.步驟二:稱取1.0000g的FeSO4×7H2O在250mL燒杯中溶解于1/1(/)乙醇/水混合溶液中,然后超聲10min,再取5g CF加入上述混合溶液中,再超聲10min,使得CF與混合液充分混合,制得預(yù)制液B.步驟三:把預(yù)制液A溶液逐滴緩慢加入預(yù)制液B中.隨著預(yù)制液A的加入,預(yù)制液B中立即會有黑色固體顆粒出現(xiàn),攪拌反應(yīng)10min.把從液相中分離出來的CF用25mL乙醇洗滌3次,最后在真空干燥箱中烘干2h去除多余水分.
取一定量MCF添加到250mL錐形瓶中,加入體積為100mL初始濃度為50mg/L的DC溶液,將錐形瓶放入恒溫震蕩箱中持續(xù)反應(yīng),反應(yīng)溫度為25℃,轉(zhuǎn)速為160r/min.在不同的時刻取出上清液,過0.22μm的濾膜后用紫外-可見分光光度計法測量DC的濃度,檢測波長=277nm,以DC剩余濃度以及TOC作為衡量指標(biāo),分別考察不同反應(yīng)時間下MCF投加量以及DC初始濃度每個實驗平行3組,取均值.
具備微電解特性的MCF降解DC的動力學(xué)分析采用準(zhǔn)一級動力學(xué)模型:
d/d= -
積分得:
ln/0=-
式中:(min)為反應(yīng)時間;(mg/L)為時刻溶液中DC的濃度;0(mg/L)為初始時刻溶液中DC的濃度;(min-1)為速率常數(shù).
(a)未改性的CF的SEM圖;(b)反應(yīng)前MCF 的SEM圖;(c)反應(yīng)后的MCF的SEM圖
圖2 MCF元素分布mapping圖
從圖1可以看到,CF負(fù)載nZVI前后的變化情況.由圖1(a)可知,新購置的未負(fù)載nZVI的CF呈現(xiàn)金屬光澤,而圖1(b)表明,在MCF的表面看到明顯的黑色nZVI覆在上面,CF也失去了其金屬光澤.當(dāng)放大到500μm時,未負(fù)載的CF骨架明顯十分光滑,而負(fù)載了nZVI的CF骨架則顯得十分粗糙.隨著倍數(shù)的進(jìn)一步放大,如圖中放大到1μm的圓圈所示,圖1(a)中表面沒有任何物質(zhì),而圖1(b)中則出現(xiàn)了很多鏈狀物質(zhì),說明經(jīng)過負(fù)載后,已將nZVI負(fù)載到了CF骨架和空隙中.MCF表面形成了40nm左右的nZVI小球,并呈現(xiàn)鏈狀相連,最終形成網(wǎng)狀結(jié)構(gòu).從1(c)可以看出反應(yīng)后的MCF表面nZVI小球參與反應(yīng)被氧化后,形成棉絮狀結(jié)構(gòu)依附于CF表面.
為了解具備微電解特性的MCF負(fù)載情況,對MCF材料做了元素分布,如圖2所示. Fe元素均勻地分布在CF的骨架上,表明實驗中MCF制備負(fù)載地較為均勻.材料表面含有氧元素,這是因為原本的CF在工業(yè)制備過程無法保證完全隔絕氧,導(dǎo)致材料本身含有5%的氧;其次,負(fù)載過程中為了簡化制備過程,并不是全過程完全隔絕氧氣,會導(dǎo)致MCF表面有部分nZVI被氧化.
本實驗設(shè)置了3組對照實驗來考察不同材料對DC去除效果的影響.對照組分別為Control組:不添加任何材料; nZVI組:僅加入0.015g nZVI; MCF組:約4.0g的MCF.實驗結(jié)果如圖3所示.
由圖3可知,Control組在90min內(nèi)DC的濃度幾乎不變;僅加入nZVI的組,DC的濃度緩慢下降,在90min時,去除率只有39%,由于nZVI的還原作用, nZVI對DC的去除具有一定效果,但效果并不顯著;而加入了具有微電解特性的MCF組,在20min時,DC的去除率迅速達(dá)到97%,90min時,DC僅剩不足0.4%,表明本文構(gòu)建的微電解體系對于DC的降解有顯著的效果.其他學(xué)者在研究nZVI和納米Fe/Cu顆粒對硝酸鹽去除結(jié)果表明,納米Fe/Cu顆粒的雙金屬體系對模擬地下水中硝酸鹽的去除效果亦優(yōu)于nZVI[30-31].
圖3 不同材料對DC的去除效果對比
本文構(gòu)建的微電解體系對于DC的去除本質(zhì)上是nZVI和CF在DC溶液中形成了無數(shù)微小的腐蝕原電池.當(dāng)投入DC溶液中的MCF材料數(shù)量不同時,形成的微小腐蝕原電池數(shù)量也不同,因此對于DC的去除效果也有差異.分別加入1.0,2.0,3.0,4,5g MCF來考察MCF的投加量對于DC降解的影響.
圖4 MCF的投加量對于DC降解的影響
由圖4可知,具備微電解特性的MCF的投加量對于DC的降解過程有重要的影響.對于100mL, 50mg/LDC,當(dāng)投加量為1.0g時,90min DC的去除率僅為36%;而當(dāng)投加量逐漸增加為2.0,3.0,4.0和5.0g時,90minDC的去除率依次為:57%,90%,99%,和99%.由此可見,隨著投加量的增加,DC的去除率也隨之增加,整體上呈現(xiàn)正相關(guān).此外,當(dāng)投加量增加至4.0g時,20min時去除率就達(dá)到了99%以上,由此可以推測,投加量的增加不僅可以提高DC的去除效果,還可以加快微電解處理DC的速度,更高效地去除溶液中的DC.當(dāng)投加量進(jìn)一步增加到5.0g時,去除率提高并不明顯,說明即使再加入更多的MCF材料,對DC去除率影響較小,而更多的MCF材料添加明顯不符合經(jīng)濟(jì)效益.綜上所述,本實驗最終確定的最優(yōu)投加量為4.0g.
為研究DC初始濃度對于DC去除的影響,本研究設(shè)置3個DC溶液濃度梯度,分別為10,30,50mg/L.當(dāng)投加量為4.0g時,微電解反應(yīng)去除DC的過程更高效,為了更明顯地反映出MCF材料對于不同初始濃度DC的去除效果,本實驗選取的投加量為3.0g,其余實驗參數(shù)與前文一致.
通過圖5可知,當(dāng)DC初始濃度較低時,如10, 30mg/L, MCF可在20min內(nèi)快速去除溶液中的DC,DC的去除率達(dá)到了99%和97%,而50mg/L的DC去除率為73%,這主要是因為微電解對于DC的去除過程是發(fā)生在MCF材料表面,在DC溶液中可以形成以nZVI小球為陽極,泡沫銅為陰極的微電解體系,nZVI小球和泡沫銅表面接觸的間隙發(fā)生著微觀的腐蝕電化學(xué)反應(yīng),二者接觸的間隙也就是活性位點(diǎn)存在的地方.而表面反應(yīng)是DC去除速率的控制步驟,表面活性位點(diǎn)決定了其降解DC的效能,只要保證足夠的表面反應(yīng)活性位點(diǎn)就能使得MCF降解DC快速有效.同時本文也考察了DC反應(yīng)90min后的礦化度,3個濃度梯度的TOC去除率分別為58%,52%和35%,說明MCF礦化DC的能力較強(qiáng).
本實驗研究了DC初始濃度為50mg/L時,不同MCF投加量下,其去除溶液中DC的反應(yīng)動力學(xué).如圖6所示,5種投加量下的ln(/0)與時間均成良好的線性關(guān)系,圖7中擬合的直線斜率表示MCF投加量和反應(yīng)速率常數(shù)的關(guān)系.5組MCF處理DC的反應(yīng)速率常數(shù)和擬合的相關(guān)系數(shù)2值如表1.5組反應(yīng)擬合的相關(guān)系數(shù)2均大于0.9,表明具備微電解特性的MCF處理DC模擬廢水的動力學(xué)過程符合準(zhǔn)一級動力學(xué)模型.
圖6 不同投加量下MCF降解DC反應(yīng)動力學(xué)關(guān)系
由表1及圖6,圖7可知,當(dāng)處理100mL,50mg/L的DC模擬廢水,MCF的投加量為5.0g時,值為0.0609min-1,隨著投加量的減少,依次減小,直至減少到投加量為1.0g時,僅為0.0050min-1.這是由于隨著MCF投加量的減少,形成的微小腐蝕原電池數(shù)量減少,同時表面積減少,不有利于MCF材料吸附和降解溶液中的DC,使得反應(yīng)速率常數(shù)顯著下降.
圖7 不同投加量下MCF處理DC反應(yīng)速率常數(shù)
表1 不同投加量下MCF降解DC準(zhǔn)一級動力學(xué)擬合
由圖8可見,當(dāng)DC初始濃度過低時,如10mg/L, MCF可在5min內(nèi)快速去除溶液中的DC,反應(yīng)過程中的DC在200~400nm范圍內(nèi)的吸光度均很低.這表明MCF不僅能快速去除溶液中的DC,最終也不會引起DC轉(zhuǎn)換為其他帶苯環(huán),C=O和C=N(吸收峰在280nm左右)的中間產(chǎn)物滯留在溶液中,故而不會造成二次污染.
圖8 10mg/L DC在反應(yīng)0~20min時紫外全掃描圖
MCF投加量3g/100mL
根據(jù)實驗結(jié)果和相關(guān)研究,圖9提出了在水環(huán)境中MCF降解DC反應(yīng)機(jī)理.在陽極(nZVI)處,電子由nZVI提供,然后通過腐蝕原電池[32]轉(zhuǎn)移到DC和陰極(CF).水電離產(chǎn)生的H+在陰極上得到電子,形成活性氫[H],進(jìn)一步轉(zhuǎn)變?yōu)镠2,在這過程中[H]部分降解DC.CF不光作為陰極,也在微電解體系中起到催化作用,加速了陽極(Fe)的腐蝕,從而提高了降解DC的能力[33].
圖9 MCF降解DC反應(yīng)機(jī)理
利用nZVI在陽極上通過微電解反應(yīng)提供的電子,Fe被氧化成Fe(II),形成Fe(III)-DC絡(luò)合物,Fe(II)通過溶解氧與DC形成 Fe(III)TC絡(luò)合物和活性氧(ROS).同時,Fe(II)氧化過程中形成的ROS引起DC降解[34].Fe(II)在中性pH值下易被溶解氧氧化,形成穩(wěn)定的Fe(III).Fe(III)可以與DC絡(luò)合,氧化DC形成Fe(II)和DC×自由基[35].[H]可通過腐蝕原電池進(jìn)一步降解DC×自由基.通過微電解反應(yīng),絡(luò)合反應(yīng)以及產(chǎn)生的ROS一起促使DC降解完全為碳酸和水等.
3.1 本研究通過改進(jìn)的還原方法把nZVI負(fù)載在CF骨架上和空隙中,制備了具有微電解特性的MCF.
3.2 隨著MCF投加量的增加,DC的去除率也隨之增加,整體上呈現(xiàn)正相關(guān).處理不同濃度DC時,保證足夠的表面反應(yīng)活性位點(diǎn)能使得MCF降解DC快速有效,最高去除率為99%.與此同時,MCF處理DC模擬廢水的動力學(xué)過程符合準(zhǔn)一級動力學(xué)模型.當(dāng)MCF的投加量為5.0g時,值為0.0609min-1.
3.3 在水環(huán)境里MCF降解DC反應(yīng)機(jī)理中,CF不光作為陰極, nZVI微球和CF表面接觸的間隙發(fā)生著微觀的腐蝕電化學(xué)反應(yīng);也在微電解體系中起到催化作用,加速陽極(nZVI)的腐蝕.最后通過微電解反應(yīng),絡(luò)合反應(yīng)以及產(chǎn)生的ROS一起促使DC降解完全為碳酸和水等.
[1] Xu J, Xu Y, Wang H, et al. Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river [J]. Chemosphere, 2014,119:1379-1385.
[2] Cheng W, Li J, Wu Y, et al. Behavior of antibiotics and antibiotic resistance genes in eco-agricultural system: A case study [J]. Journal of Hazardous Materials, 2016,304:18-25.
[3] Kulshrestha P, Giese R F. Aga D S, Investigating the molecular interactions of oxytetracycline in clay and organic matter: insights on factors affecting its mobility in soil [J]. Environmental Science & Technology, 2004,38(15):4097-4105.
[4] Martnez J L. Antibiotics and antibiotic resistance genes in natural environments [J]. Science, 2008,321(5887):365-367.
[5] Bolobajev J, Trapido M, Goi A. Effect of iron ion on doxycycline photocatalytic and Fenton-based autocatatalytic decomposition [J]. Chemosphere, 2016,153:220-226.
[6] Daghrir R, Drogui P, Delegan N, et al. Electrochemical degradation of chlortetracycline using N-doped Ti/TiO2photoanode under sunlight irradiations [J]. Water Research, 2013,47(17):6801-6810.
[7] Khan M H, Jung J Y. Ozonation of chlortetracycline in the aqueous phase: Degradation intermediates and pathway confirmed by NMR [J]. Chemosphere, 2016,152:31-38.
[8] 周 賀,王雙玲,徐夢瑤,等.管網(wǎng)多相界面下抗生素抗性菌的分布特征研究 [J]. 中國環(huán)境科學(xué), 2017,37(6):2347-2351. Zhou H, Wang S L, Xu M Y, et al. Study on the distribution characteristics of antibiotic resistant bacteria (ARB) in the multi-phase interfaces of water pipe network [J]. China Environment Science, 2017,37(6):2347-2351.
[9] Chen G, Zhan L, Dong Y H. Oxidative degradation kinetics and products of chlortetracycline by manganese dioxide [J]. Journal of Hazardous Materials, 2011,193(20):128-138.
[10] 鮑艷宇,周啟星,萬 瑩,等.3種四環(huán)素類抗生素在褐土上的吸附和解吸 [J]. 中國環(huán)境科學(xué), 2010,30(10):1383-1388. Bao Y Y, Zhou Q X, Wan Y, et al. Adsorption and desorption of three tetracycline antibiotics in cinnamon soils of China [J]. China Environment Science, 2010,30(10):1383-1388.
[11] Li B, Zhang T. Different removal behaviours of multiple trace antibiotics in municipal wastewater chlorination [J]. Water Research, 2013,47(9):2970-2982.
[12] Kim T H, Kim S D, Kim H Y, et al. Degradation and toxicity assessment of sulfamethoxazole and chlortetracycline using electron beam, ozone and UV [J]. Journal of Hazardous Materials, 2012, 227-228:237-242.
[13] Salazar R, Bago J J, et al. Organic xerogels doped with Tris (2,2¢- bipyridine) ruthenium(II) as hydroxyl radical promoters: Synthesis, characterization, and photoactivity [J]. Chemical Engineering Journal, 2016,306:289-297.
[14] Honseini M, Safari G H, Kamani H, et al. Sonocatalytic degradation of tetracycline antibiotic in aqueous solution by sonocatalysis [J]. Toxicological & Environmental Chemistry, 2013,95(10):1680-1689.
[15] Yang S F, Lin C F, Wu C J, et al. Fate of sulfonamide antibiotics in contact with activated sludge – Sorption and biodegradation [J]. Water Research, 2012,46(4):1301-1308.
[16] Aydn E, M ?, Taskan E, et al. Chlortetracycline removal by using hydrogen based membrane biofilm reactor [J]. Journal of Hazardous Materials, 2016,320:88-95.
[17] Yang X, Yu X, Wang W. Mechanism, kinetics and application studies on enhanced activated sludge by interior microelectrolysis [J]. Bioresource Technology, 2009,100(2):649-653.
[18] Fan L, Ni J, Wu Y, et al. Treatment of bromoamine acid wastewater using combined process of micro-electrolysis and biological aerobic filter [J]. Journal of Hazardous Materials, 2008,162(2/3):1204-1210.
[19] Gong D. Pretreatment of petroleum refinery wastewater by microwave-enhanced Fe/GAC micro-electrolysis [J]. Desalination & Water Treatment, 2014,52(13-15):2512-2518.
[20] Liu W W, Tu X Y, Wang X P, et al. Pretreatment of coking wastewater by acid out, micro-electrolysis process with in situ electrochemical peroxidation reaction [J]. Chemical Engineering Journal, 2012, s200(16):720–728.
[21] Zhou H, Shen Y, Lu P, et al. Degradation of 1-butyl-3- methylimidazolium chloride ionic liquid by ultrasound and zero- valent iron/activated carbon [J]. Separation & Purification Technology, 2013,104(2):208-213.
[22] Hosseini S M, Ataie-ashtiani B, Kholghi M. Nitrate reduction by nano-Fe/Cu particles in packed column [J]. Desalination, 2011, 276(1–3):214-221.
[23] Zhou H, Lu P, Shen Y, et al. Identification of degradation products of ionic liquids in an ultrasound assisted zero-valent iron activated carbon micro-electrolysis system and their degradation mechanism [J]. Water Research, 2013,47(10):3514-3522.
[24] Trujilloreyes J, S Nchezmendieta V, Col Ncruz A, et al. Removal of indigo blue in aqueous solution using Fe/Cu nanoparticles and C/Fe- Cu nanoalloy composites [J]. Water, Air, & Soil Pollution, 2010, 207(1):307-317.
[25] And J P F, Roberts A L. Reaction of 1,1,1-Trichloroethane with Zero-Valent Metals and Bimetallic Reductants [J]. Environmental Science & Technology, 1998,32(13):1980-1988.
[26] Li H, Cheng F, Zhu Z, et al. Preparation and electrochemical performance of copper foam-supported amorphous silicon thin films for rechargeable lithium-ion batteries [J]. Journal of Alloys & Compounds, 2011,509(6):2919-2923.
[27] Sun Y, Li J, Huang T, et al. The influences of iron characteristics, operating conditions and solution chemistry on contaminants removal by zero-valent iron: A review [J]. Water Research, 2016,100:277-295.
[28] 李 卉,趙勇勝,韓占濤,等.蔗糖改性納米鐵原位反應(yīng)帶對硝基苯污染的模擬修復(fù)研究 [J]. 中國環(huán)境科學(xué), 2015,35(11):3352-3358. LI H, Zhao Y S, Han Z T, et al. Simulated remediation for nitrobenzene pollution with in-situ reactive zone of sucrose-modified nanoscale zero valent iron [J]. China Environment Science, 2015,(11): 3352-3358.
[29] Zhang W X. Nanoscale Iron Particles for Environmental Remediation: An Overview [J]. Journal of Nanoparticle Research, 2003,5(3):323- 332.
[30] Shubair T, Eljamal O, Khalil A M E, et al. Multilayer system of nanoscale zero valent iron and Nano-Fe/Cu particles for nitrate removal in porous media [J]. Separation & Purification Technology, 2018,193:242-254.
[31] Khalil A, Eljamal O, Saha B B, et al. Performance of nanoscale zero- valent iron in nitrate reduction from water using a laboratory-scale continuous-flow system [J]. Chemosphere, 2018,197:502-512.
[32] Fp V D Z, Bisschops I A, Lettinga G, et al. Activated carbon as an electron acceptor and redox mediator during the anaerobic biotransformation of azo dyes [J]. Environmental Science & Technology, 2003,37(2):402-408.
[33] Liu Y Z, Wang C, Sui Z Y, et al. Degradation of Chlortetracycline Using Nano Micro-Electrolysis Materials with Loading Copper [J]. Separation & Purification Technology, 2018,203:29-35.
[34] Wang H, Yao H, Sun P, et al. Transformation of Tetracycline Antibiotics and Fe(II) and Fe(III) Species Induced by Their Complexation [J]. Environmental Science & Technology, 2016,50(1): 145-153.
[35] Wang H, Yao H, Sun P, et al. Oxidation of tetracycline antibiotics induced by Fe(III) ions without light irradiation [J]. Chemosphere, 2015,119(2):1255-1261.
Removal of doxycycline by modified copper foam with micro electrolysis characteristics.
LIU Yu-zhi1, WANG Chen2, ZOU Dong-lei1, DONG Zhao-jun1*
(1.College of New Energy and Environment, Jilin University, Changchun 130000, China;2.School of the Environment, Nanjing University, Nanjing 210023, China)., 2019,39(7):2864~2870
Modified foam copper (MCF) with micro-electrolytic properties was prepared in this study through an improved reduction method by loading nano-zero-valent iron (nZVI) on porous copper foam (CF). The surface morphology and element distribution of CF before and after nZVI loading were analyzed using SEM, SEMMAPPING and EDX. Besides, The study investigated the effects of removal methods, MCF dosages and initial DC concentrations on the degradation of DC with nZVI loading on MCF. The removal efficiency of DC using nZVI with MCF was much better than that without MCF. When DC concentration was 50mg/L, MCF dosage was 4.0g, and the reaction time was 20min, the removal efficiency of DC could reach as high as 99%. In addition, it was found that DC degradation with MCF fitted the pseudo-first-order reaction kinetics, and the reaction rate constantbecame larger with the increase of MCF dosage. When the MCF dosage was 5.0g, the maximumvalue was 0.0609min-1. Finally, the mechanism of DC degradation with MCF was explored based on all the results and it provided a certain theoretical basis for MCF practical application.
copper foam;micro-electrolysis;nanoscale-zero-valent iron;doxycycline
X703.5
A
1000-6923(2019)07-2864-07
劉雨知(1992-),男,安徽宣城人,吉林大學(xué)博士研究生,主要從事水處理新材料研究.發(fā)表論文7篇.
2018-12-24
吉林大學(xué)無機(jī)合成與制備化學(xué)國家重點(diǎn)實驗室開放課題(2016-25)
* 責(zé)任作者, 工程師, dongzhaojun@jlu.edu.cn