徐艷麗,常 春,3※,白 凈,李 攀,陳俊英,韓秀麗,方書起
脂肪酶催化制備生物基化學(xué)品乙酰丙酸乙酯的工藝優(yōu)化
徐艷麗1,2,常 春1,2,3※,白 凈1,2,李 攀1,2,陳俊英1,2,韓秀麗1,2,方書起1,2
(1. 鄭州大學(xué)化工與能源學(xué)院,鄭州 450001;2. 河南省杰出外籍科學(xué)家工作室,鄭州 450001;3. 浙江大學(xué)生物質(zhì)化工教育部重點實驗室杭州 310027)
為了建立新型生物基化學(xué)品乙酰丙酸乙酯的生物法合成工藝路線,該文以乙酰丙酸為主要原料,采用脂肪酶生物催化轉(zhuǎn)化法制備乙酰丙酸乙酯??疾炝巳軇┝?、酶量、反應(yīng)時間、原料醇酸摩爾比對乙酰丙酸乙酯產(chǎn)率的影響,并在此基礎(chǔ)上,采用響應(yīng)面試驗設(shè)計優(yōu)化了乙酰丙酸乙酯生成工藝條件。結(jié)果顯示:在反應(yīng)溫度為45 ℃、轉(zhuǎn)速為150 r/min、反應(yīng)時間為 2.8 h、催化劑量為 35.5 mg、溶劑量為2.6 mL、醇酸摩爾比為1.7:1時,乙酰丙酸乙酯的摩爾產(chǎn)率達(dá)到87.6 %。進(jìn)一步考察在最優(yōu)條件下催化劑的循環(huán)利用壽命,酶在重復(fù)12次的情況下產(chǎn)率依然能夠達(dá)到76.3%。研究結(jié)果為酶催化乙酰丙酸乙酯提供了依據(jù)。
生物質(zhì);優(yōu)化;乙酰丙酸;乙酰丙酸乙酯;脂肪酶
化石能源的大量消耗引起環(huán)境污染問題,不斷上漲的石油價格促使我們尋找一種可替代能源進(jìn)行化工生產(chǎn)[1]。生物質(zhì)能是自然界中有生命的植物提供的能量。這些植物以生物質(zhì)作為媒介儲存太陽能[2]。生物質(zhì)資源的利用方式為直接燃燒,氣化轉(zhuǎn)化為高附加值的化學(xué)產(chǎn)品[3-4]。提高生物質(zhì)資源的利用率,不僅可以解決由秸稈焚燒帶來的環(huán)境問題,而且可以節(jié)約資源,提高秸稈的經(jīng)濟(jì)價值,緩解石油壓力,因此充分開發(fā)和利用儲量豐富的生物質(zhì)能具有重要的現(xiàn)實意義[5-6]。
乙酰丙酸乙酯(ethyl levulinate,EL)是一種具有廣泛用途的新型生物基化學(xué)品,它可作為燃料添加劑,帶有EL添加劑燃料的燃燒更完全,燃燒過程更穩(wěn)定[7]。EL還可廣泛用于食品行業(yè)、醫(yī)藥行業(yè)、農(nóng)業(yè),橡膠、涂料等制造業(yè)[8]。目前,EL合成方法主要有以下4種:1)糠醇醇解法:Neves等采用樹脂為催化劑考察EL產(chǎn)率和副產(chǎn)物的影響,糠醇醇解的過程中有乙醚生成,過程中須使用高溫高壓裝置,增加了工業(yè)化生產(chǎn)過程的難度和成本[9-10];2)5-氯甲基糠醛醇解法:Mark等[11]在近臨界乙醇中,用生物質(zhì)經(jīng)5-氯甲基糠醛合成EL,乙酰丙酸酯的收率能達(dá)到80%,但是此反應(yīng)中使用鹽酸,會存在腐蝕設(shè)備的問題。3)生物質(zhì)直接醇解法:生物質(zhì)原料如小麥、玉米、棉花、水稻可以通過直接醇解合成EL,此種方法為一步法合成乙酰丙酸乙酯,生產(chǎn)工藝簡單,能夠有效的減少廢水的排放[12-13]。Zhao等[14-15]研究了利用分子篩催化果糖制EL,產(chǎn)率達(dá)到68.7%。同時研究了葡萄糖,蔗糖,菊粉和纖維素的轉(zhuǎn)化,也具有較高的產(chǎn)率。但是直接醇解采用的溫度多在200 ℃左右,催化劑碳化較嚴(yán)重[16]。4)乙酰丙酸酯化法:Fernanda采用硫酸鐵為催化劑,催化乙酰丙酸(levulinic acid, LA)與乙醇發(fā)生酯化反應(yīng)合成EL,反應(yīng)的轉(zhuǎn)化率和產(chǎn)率較高,但后期催化劑的回收處理比較麻煩[17-19]。
利用生物酶催化方法制備EL是一種新穎的EL制備方法。酶催化反應(yīng)條件溫和,消耗能量少,同時固定化酶的回收也較為簡單[20-21]。如:Kalpesh采用南極假似酵母脂肪酶(Nov 435)為催化劑合成乙酰丙酸丁酯,并考察工藝條件的影響。然而,目前對于酶催化制備EL的研究較少。因此,有必要深入開展EL生物催化合成的研究。在前期研究中,本課題組開展了生物質(zhì)基乙酰丙酸的制備工藝的研究[23-24]。在此基礎(chǔ)上,本研究將重點研究生物酶催化乙酰丙酸合成EL的工藝研究,為嘗試探索由生物質(zhì)原料制備生物基化學(xué)品EL的化學(xué)/生物法提供參考依據(jù)。
LA、無水乙醇、正丁醇購自天津風(fēng)船試劑有限公司;萘、EL購自上海阿拉丁有限公司;以上藥品均為分析純。諾維信固定化酶(Nov435)酶活10 000 u,Lipozyme TLIM酶,Lipozyme 40086酶,酶活均為10 000 u,均購自北京高瑞森科技有限公司。試驗用水均為去離子水;搖床,上海智城分析儀器有限公司;氣相色譜儀,杭州科曉GC1690;電子分析天平,梅特勒-托利多有限公司AL-204;0.45m有機(jī)濾膜,武漢恒信世紀(jì)科技有限公司。
將一定體積的甲基叔丁基醚(methyl tert-butyl ether, MTBE)、乙醇、乙酰丙酸、一定質(zhì)量的脂肪酶(Nov 435)依次加入50 mL具塞三角瓶中,然后將三角瓶放入預(yù)熱到設(shè)定溫度的搖床中,并設(shè)定此時為零時刻,反應(yīng)一定時間后,將三角瓶迅速放入自來水中冷卻10 min,用微量取樣器取反應(yīng)液0.3 mL加入4.7 mL無水乙醇中,混合均勻,經(jīng)0.45m的微孔有機(jī)濾膜過濾,取過濾后的濾液2 mL與1 mL內(nèi)標(biāo)溶液混合進(jìn)氣相色譜儀進(jìn)行定量測定[25]。
首先采用單因素的試驗方法,為了確定最適宜的酶催化反應(yīng)條件,根據(jù)單因素對EL產(chǎn)率的影響規(guī)律,進(jìn)一步采用Box-Behnken的組合法設(shè)計了四因素三水平優(yōu)化試驗方案。采用軟件design-expert 8.0.6。如表1所示。
表1 設(shè)計因素及水平
反應(yīng)后的液相產(chǎn)物中的EL采用氣相色譜進(jìn)行定量分析,氣相色譜測定條件為:以N2為載氣,在FFAP毛細(xì)管柱(30 m×0.32 mm×0.33m,大連中匯達(dá)科學(xué)儀器有限公司)上進(jìn)行分離,檢測器為氫火焰離子化檢測器(FID)。程序升溫程序為:柱箱初溫100 ℃,保持2 min,然后以10℃/min 的速率升至210 ℃,保持9 min。進(jìn)樣口溫度240 ℃,檢測器溫度250℃,進(jìn)樣量1L[25-27]。乙酰丙酸乙酯的產(chǎn)率計算見式(1):
其中1為LA的分子量116.12 g/mol;2為EL的分子量144.17 g/mol;1為加入LA的質(zhì)量;2為生成EL的質(zhì)量,g。
反應(yīng)后的溶液經(jīng)真空抽濾,得到的固體酶催化劑,用甲基叔丁基醚洗滌3次?;厥蘸蟮拇呋瘎┻M(jìn)行重復(fù)性試驗。
2.1.1 酶的種類對EL產(chǎn)率的影響
試驗首先進(jìn)行了酶的篩選,研究選取3種常用酯化脂肪酶進(jìn)行考察。在溫度45 ℃,轉(zhuǎn)速150 r/min,乙酰丙酸0.007 mol,乙醇0.008 mol,時間2.5 h,酶量30 mg,甲基叔丁基醚3 mL的條件下,分別對Nov 435,TLIM和40086催化制備EL的產(chǎn)率進(jìn)行比較,以篩選用于EL合成的適宜催化劑。如圖1所示,在所有脂肪酶中,Nov435具有較高的EL產(chǎn)率(54.8%),而脂肪酶TLIM和40086催化得到的EL產(chǎn)率明顯較低。Nov 435是一種多功能酶,在酯化和轉(zhuǎn)酯化反應(yīng)中已得到廣泛應(yīng)用[28],因此,選用Nov435進(jìn)行后續(xù)的試驗研究。
注:溫度45 ℃,轉(zhuǎn)速150 r·min-1,乙酰丙酸0.007 mol,乙醇0.008 mol,時間2.5 h,酶量30 mg,甲基叔丁基醚3mL。
2.1.2 溶劑體積對EL產(chǎn)率的影響
在預(yù)試驗中,曾采用無溶劑的方法進(jìn)行酶催化反應(yīng),但發(fā)現(xiàn)反應(yīng)速率明顯下降,一次反應(yīng)結(jié)束后,脂肪酶基本喪失活性。為此,采用添加溶劑的方法進(jìn)行試驗研究。 Kirtikumar[28]研究了正己烷、乙基甲酮、甲苯,二乙基乙醚,MTBE對丁酯與乙酰丙酸的影響,發(fā)現(xiàn)MTBE對反應(yīng)影響最大。因此,本試驗采用MTBE為共溶劑,考察其在EL酶催化合成的影響規(guī)律。圖2 a為MTBE體積(1.0~5.0 mL)對EL產(chǎn)率的影響。在溫度45 ℃,轉(zhuǎn)速150 r/min,LA 0.007 mol,乙醇0.008 mol,時間2.5 h,酶量30 mg條件下,EL的產(chǎn)率隨著甲基叔丁基醚的體積的增加而逐漸增加,在MTBE體積為2 mL時達(dá)到最大值(82.5%)。之后,EL產(chǎn)率隨著MTBE體積的增加呈下降趨勢,這是由于MTBE體積增大使得反應(yīng)物分子碰撞幾率較小,且改變了酶最適pH值的環(huán)境,導(dǎo)致EL產(chǎn)率的降低,Kirtikumar等[28]也曾得到類似的結(jié)果。因此,試驗中MTBE的體積選擇為2 mL。
2.1.3 酶量對EL產(chǎn)率的影響
在溫度45 ℃,LA 0.007 mol,乙醇 0.008 mol,轉(zhuǎn)速150 r/min,反應(yīng)時間2 h,MTBE 2 mL的條件下,進(jìn)一步考察酶量(10~60 mg)對EL產(chǎn)率的影響。從圖2 b中看出,當(dāng)酶量從0~30mg,EL的產(chǎn)率逐漸增加,30 mg時EL產(chǎn)率達(dá)到最大值。隨著酶量的繼續(xù)增加,EL的產(chǎn)率沒有明顯變化。從經(jīng)濟(jì)角度考慮,選用最少的酶量有利于減少成本,故選用酶量為30 mg為適宜條件。
2.1.4 時間對EL產(chǎn)率的影響
圖2 c顯示了時間對EL產(chǎn)率的影響規(guī)律。溫度45 ℃,轉(zhuǎn)速150 r/min,LA 0.007 mol,乙醇0.008 mol,酶量30 mg,MTBE 2 mL的條件下,隨著反應(yīng)時間的增加,EL的產(chǎn)率不斷增加,當(dāng)時間為2 h時達(dá)到最大。隨著時間的延長,EL的產(chǎn)率基本保持不變。
2.1.5 醇酸摩爾比對EL產(chǎn)率的影響
圖2 d顯示了醇酸摩爾比對EL產(chǎn)率的影響規(guī)律。反應(yīng)溫度為45 ℃,LA 0.007 mol,轉(zhuǎn)速150 r/min,反應(yīng)時間2 h,MTBE 2 mL,酶量30 mg的條件下,考察了摩爾比為0.5∶1、1∶1、1.5∶1、2∶1和3∶1對EL產(chǎn)率的影響。對于一定量的LA,乙醇含量的增加會導(dǎo)致EL產(chǎn)率的增大,當(dāng)乙醇與LA的摩爾比為1.5∶1時,EL產(chǎn)率達(dá)到最大值,當(dāng)乙醇的含量繼續(xù)增加,EL的產(chǎn)率反而下降。這是因為當(dāng)LA含量較高時,酸性較強(qiáng),易造成酶失活;隨著乙醇量的增加,改善了溶液的pH值,有利于酶的催化。但當(dāng)乙醇含量繼續(xù)增大時,溶液的pH值偏離了酶的最適作用范圍,且高乙醇含量對酶有抑制作用。因此,1.5∶1為較適宜的醇酸比。
a. 產(chǎn)率隨溶劑量的變化 a.Variation of yield with solvent volumeb. 產(chǎn)率隨酶量的變化 b. Variation of yield with enzyme amount c. 產(chǎn)率隨時間的變化 c. Variation of yield with timed. 產(chǎn)率隨醇酸摩爾比的變化 d. Variation of yield with ratio of EtOH to LA
根據(jù)設(shè)計方案,試驗共分為29組,其中24組為分析因點,5組為零點,零點試驗用來估計誤差。試驗結(jié)果如表2所示。根據(jù)試驗結(jié)果,利用響應(yīng)面進(jìn)行模型回歸。采用響應(yīng)面分析方法對試驗數(shù)據(jù)進(jìn)行回歸,擬合得到EL產(chǎn)率模型可信結(jié)果(表3所示)。
表2 試驗設(shè)計和結(jié)果
EL產(chǎn)率=75.06+14.81+21.53+1.28+0.54–
5.83–1.1+4.75–2.93+5.85+
1.6–5.752–13.502–2.022–1.552(2)
根據(jù)試驗數(shù)據(jù),采用響應(yīng)面分析方法對試驗數(shù)據(jù)進(jìn)行回歸,擬合得到乙酰丙酸乙酯產(chǎn)率與不同因素的回歸方程 (2),模型可信度結(jié)果如表3所示。
圖3是三維響應(yīng)面圖,表現(xiàn)出催化劑的量,反應(yīng)時間,醇酸摩爾比對產(chǎn)率的交互作用。圖3 a顯示催化劑的量和時間對乙酰丙酸乙酯產(chǎn)率的影響,反應(yīng)時間1 h,酶量10 mg,EL產(chǎn)率低于20%,酶量的增加,反應(yīng)時間的延長都能提高EL產(chǎn)率,但酶量增大對EL產(chǎn)率提高影響不大。圖3b顯示了醇酸摩爾比和反應(yīng)時間對EL產(chǎn)率的影響,從圖中可以看出,醇酸摩爾比逐漸增大,產(chǎn)率升高,隨后呈現(xiàn)降低的趨勢。圖3c顯示了醇酸摩爾比和酶量對EL產(chǎn)率的影響,在酶量較低時,改變摩爾比對EL產(chǎn)率的增加沒有明顯的影響,酶量為30 mg時,改變醇酸摩爾比,對EL產(chǎn)率的影響比較明顯。從表3可知模型的值小于0.0001,失擬項0.05>0.01,為不顯著,表明該模型有較高的顯著性,擬合精度高。從反應(yīng)時間、酶量,醇酸摩爾比,MTBE體積的值來看,影響EL產(chǎn)率的因素大小依次為酶量、反應(yīng)時間、醇酸摩爾比、MTBE體積。決定系數(shù)R為0.9725,表明模型預(yù)測值與試驗值吻合度較高。
表3 模型方差分析
注:固定因素條件為溫度45 ℃,轉(zhuǎn)速150 r×min–1,LA 0.007 mol,反應(yīng)時間2 h,MTBE 2 mL,酶量30 mg,醇酸摩爾比1.5∶1
通過編碼值與試驗值的轉(zhuǎn)換求得最優(yōu)條件[5],所得結(jié)果為:反應(yīng)溫度45 ℃、轉(zhuǎn)速150 r/min、反應(yīng)時間2.8 h、催化劑質(zhì)量35.5 mg、溶劑量2.6 mL、醇酸比為1.7∶1,此時得到模型理論EL的產(chǎn)率為87.2 %。在優(yōu)化出的最佳試驗條件下進(jìn)行重復(fù)試驗,EL的平均產(chǎn)率為87.6%,與模型預(yù)測結(jié)果基本一致,表明模型可靠。與Alice[29]等的研究進(jìn)行對比發(fā)現(xiàn):1)文獻(xiàn)中采用的為轉(zhuǎn)化率,本文采用的產(chǎn)率,兩者考察結(jié)果不同;2)文獻(xiàn)中未考察酶的重復(fù)利用,本人曾做過重復(fù)試驗,發(fā)現(xiàn)在此條件下,酶第二次使用幾乎沒有活性,轉(zhuǎn)化率和產(chǎn)率近似為0。因此本研究在酶的重復(fù)利用上優(yōu)于前人報道;3)文獻(xiàn)中所使用的酶量高于本論文,本研究的酶量經(jīng)優(yōu)化后小于報道結(jié)果,有利于降低生產(chǎn)成本。
在響應(yīng)面優(yōu)化出來的最優(yōu)條件下,考察了催化劑重復(fù)使用對EL產(chǎn)率的影響。如圖4所示,試驗共重復(fù)進(jìn)行12次,當(dāng)酶重復(fù)催化反應(yīng)第5次時,EL的產(chǎn)率依然達(dá)到86.2%。經(jīng)過12次以后,EL的產(chǎn)率降低為76.2%。在試驗中,觀察到固定化酶顆粒在使用5次后,開始發(fā)生部分破損,尤其在使用12次后,顆粒破損非常嚴(yán)重,這造成了酶無法全部回收,可能是造成產(chǎn)率降低的主要原因。此外,乙醇溶劑對酶也具有一定的抑制[30],這兩方面共同造成了酶催化合成EL產(chǎn)率的降低。
圖4 N435的重復(fù)使用對乙酰丙酸乙酯產(chǎn)率的影響
本研究考察了在甲基叔丁基醚溶劑中,脂肪酶Nov435催化乙酰丙酸和乙醇合成乙酰丙酸乙酯的工藝。
1)選用3種常用酯化反應(yīng)的脂肪酶Nov435,脂肪酶TLIM和40086,其中Nov435具有較高的EL產(chǎn)率(54.8%);
2)考察了溶劑量、酶量、反應(yīng)時間、原料醇酸摩爾比對乙酰丙酸乙酯產(chǎn)率的影響。隨著溶劑體積的增多,乙酰丙酸乙酯產(chǎn)率先增加后減少,較優(yōu)結(jié)果為MTBE體積2 mL;隨著酶量的增加,產(chǎn)率逐漸增加,當(dāng)酶量為30 mg時,繼續(xù)增加酶量,產(chǎn)率不再繼續(xù)增加,較優(yōu)酶量30 mg;隨著時間的增加,乙酰丙酸乙酯的產(chǎn)率逐漸增加,當(dāng)時間為2 h時,繼續(xù)延長反應(yīng)時間,產(chǎn)率不再增加;隨著原料醇酸摩爾比的增加的產(chǎn)率逐漸增加,當(dāng)達(dá)到1.5:1時,繼續(xù)增加乙醇用量,產(chǎn)率反而降低,故選擇較優(yōu)醇酸摩爾比1.5:1。
3)在單因素基礎(chǔ)上,試驗采用響應(yīng)面法,得到了酶催化的優(yōu)化條件:反應(yīng)溫度45 ℃、轉(zhuǎn)速150 r/min、反應(yīng)時間2.8 h、酶量35.5 mg、MTBE量2.6 mL、醇酸比為1.7∶1,乙酰丙酸乙酯產(chǎn)率達(dá)到87.6%。Nov435脂肪酶重復(fù)5次后仍具有較好的催化活性,產(chǎn)率依然能達(dá)到86.2%,為生物酶催化制備生物基化學(xué)品提供了參考。
[1] 常世彥,康利平. 國際生物質(zhì)能可持續(xù)發(fā)展政策及對中國的啟示[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(11):1-10. Chang Shiyan, Kang Liping. International biomass energy sustainable development policy and its enlightenment to China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(11): 1-10. (in Chinese with English abstract)
[2] Zainol Muzakkir Mohammad, Amin Nor Aishah Saidina, Asmadi Mohd. Kinetics and thermodynamic analysis of levulinic acid esterification using lignin-furfural carbon cryogel catalyst[J]. Renewable Energy, 2019, 130: 547-557.
[3] Liu Chunguang, Feng Qingna, Yang Jirui, et al. Catalytic production of levulinic acid and ethyl levulinate from uniconazole-induced duckweed (Lemna minor)[J]. Bioresource Technology, 2018, 255: 50-57.
[4] Patil C R, Niphadkar P S, Bokade V V, et al. Esterification of levulinic acid to ethyl levulinate over bimodal micro-mesoporous H/BEA zeolite derivatives[J]. Catalysis Communications, 2014, 43: 188-191.
[5] 鄧琳,常春,何玉遠(yuǎn),等. 甲醇介質(zhì)中小麥秸稈催化轉(zhuǎn)化制備乙酰丙酸甲酯[J]. 高?;瘜W(xué)工程學(xué)報,2018, 32(1):147-154. Deng Lin, Chang Chun, He Yuyuan, et al. Catalytic conversion of wheat straw into methanol to prepare methyl levulinate[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(1): 147-154. (in Chinese with English abstract)
[6] 胡二峰,趙立欣,吳娟,等. 生物質(zhì)熱解影響因素及技術(shù)研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報,2018, 34(14):212-220. Hu Erfeng, Zhao Lixin, Wu Juan, et al. Advances in research on factors affecting biomass pyrolysis and technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(14): 212-220. (in Chinese with English abstract)
[7] 趙世強(qiáng). 固體酸催化醇解碳水化合物制備乙酰丙酸乙酯的研究[D]. 鄭州:鄭州大學(xué),2015. Zhao Shiqiang. Preparation of Ethyl Levulinate by Solid Acid Catalyzed Alcoholysis of Carbohydrate[D]. ZhengZhou: ZhengZhou University, 2015. (in Chinese with English abstract)
[8] 常春,孔鵬飛,趙世強(qiáng). Al2(SO4)3催化纖維素生成乙酰丙酸乙酯的實驗研究[J]. 鄭州大學(xué)學(xué)報:工學(xué)版,2016,37(4):31-35. Chang Chun, Kong Pengfei, Zhao Shiqiang. Experimental study on the formation of ethyl levulinate by Al2(SO4)3[J]. Journal of Zhengzhou University: Engineering Edition, 2016, 37(4): 31-35.(in Chinese with English abstract)
[9] Neves Patrícia, Lima Sérgio, Pillinger Martyn, et al. Conversion of furfuryl alcohol to ethyl levulinate using porous aluminosilicate acid catalysts[J]. Catalysis Today, 2013, 219(218): 76-84.
[10] Lange Jean-Paul, van de Graaf Wouter D, Haan René J. Conversion of furfuryl alcohol into ethyl levulinate using solid acid catalysts[J]. Chem Sus Chem, 2009, 2(5): 437-441.
[11] Mark Mascal, Edward B Nikitin. High-yield conversion of plant biomass into the key value-added feedstocks 5- (hydroxymethyl) furfural, levulinic acid, and levulinic esters via 5-(chloromethyl)furfural[J]. Green Chemistry, 2010, 12(3): 370-373.
[12] 關(guān)倩. 植物纖維原料加壓液化制備乙酰丙酸乙酯的研究[D]. 北京:中國林業(yè)科學(xué)研究院,2016. Guan Qian. Study on Preparation of Ethyl Levulinate by Pressurized Liquefaction of Plant Fiber Raw Materials[D]. Beijing: Chinese Academy of Forestry, 2016. (in Chinese with English abstract)
[13] Zhao Hongye, Hao Jianxiu, Ban Yanpeng, et al. Novel and efficient cobalt catalysts synthesized by one-step solution phase reduction for the conversion of biomass derived ethyl levulinate[J]. Catalysis Today, 2019, 319(1): 145-154.
[14] Zhao Shiqiang, Xu Guizhuan, Chang Chun, et al. Direct conversion of carbohydrates into ethyl levulinate with potassium phosphotungstate as an efficient catalyst[J]. Catalysts, 2015, 5(4): 1897-1910.
[15] Zhao Shiqiang, Xu Guizhuan, Chang Junli, et al. Direct production of ethyl levulinate from carbohydrates catalyzed by H-ZSM-5 supported phosphotungstic acid[J]. Bio Resources, 2015, 10(2): 2222-2234.
[16] 趙繪婷. 雙功能固體酸催化葡萄糖制備乙酰丙酸甲酯的研究[D]. 鄭州:鄭州大學(xué),2016. Zhao Huiting. Study on Preparation of Methyl Levulinate by Bifunctional Solid Acid Catalyzed Glucose[D]. ZhengZhou: ZhengZhou University, 2016. (in Chinese with English abstract)
[17] Martins Fernanda, Rodrigues Fabio, Silva Marcio. Fe2(SO4)3catalyzed levulinic acid esterification: production of fuel bioadditives[J]. Energies, 2018, 11(5): 1263-1273.
[18] Ogino Isao, Suzuki Yukei, Mukai Shin R. Esterification of levulinic acid with ethanol catalyzed by sulfonated carbon catalysts: Promotional effects of additional functional groups[J]. Catalysis Today, 2018, 314(15): 62-69.
[19] Fernandes D R, Rocha A S, Mai E F, et al. Levulinic acid esterification with ethanol to ethyl levulinate production over solid acid catalysts[J]. Applied Catalysis A: General, 2012, (425/426): 199-204.
[20] Altuntepe Emrah, Emel Yanenko Vladimir N, Forster- Rotgers Maximilian, et al. Thermodynamics of enzyme- catalyzed esterifications: II. Levulinic acid esterification with short-chain alcohols[J]. Applied Microbiology and Biotechnology, 2017, 101(20): 7509-7521.
[21] 劉海洲,張媛媛,張廣柱,等. 固定化酶制備技術(shù)的研究進(jìn)展[J]. 化學(xué)工業(yè)與工程技術(shù),2009,30(1):21-23. Liu Haizhou, Zhang Yuanyuan, Zhang Guangzhu, et al. Research progress in immobilized enzyme preparation technology[J]. Chemical Industry and Engineering Technology, 2009, 30(1): 21-23. (in Chinese with English abstract)
[22] Kalpesh V Yadav. Ganapati D Bhavsar. n-Butyl levulinate synthesis using lipase catalysis: comparison of batch reactor versus continuous flow packed bed tubular microreactor[J]. Journal of Flow Chemistry, 2018, 8(2): 97-105.
[23] 常春,馬曉建,岑沛霖. 小麥秸稈制備新型平臺化合物-乙酰丙酸的工藝研究[J]. 農(nóng)業(yè)工程學(xué)報,2006,22(6):161-164. Chang Chun, Ma Xiaojian, Cen Peilin. Study on the preparation of a new platform compound, levulinic acid, from wheat straw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(6): 161-164. (in Chinese with English abstract)
[24] 常春,安冉,孔鵬飛. SO42-/ZrO2/USY催化纖維素醇解制備乙酰丙酸乙酯[J]. 鄭州大學(xué)學(xué)報:工學(xué)版,2018,39(2):80-85. Chang Chun, An Ran, Kong Pengfei. SO42-/ZrO2/USY catalyzed cellulose alcoholysis to prepare ethyl levulinate[J]. Journal of Zhengzhou University: Engineering Edition, 2018, 39(2): 80-85. (in Chinese with English abstract)
[25] Chang Chun, Deng Lin, Xu Guizhuan. Efficient conversion of wheat straw into methyl levulinate catalyzed by cheap metal sulfate in a biorefinery concept[J]. Industrial Crops and Products, 2018, 117: 197-204.
[26] An Ran, Xu Guizhuan, Chang Chun, et al. Efficient one-pot synthesis of n-butyl levulinate from carbohydrates catalyzed by Fe2(SO4)3[J]. Journal of Energy Chemistry, 2017, 26(3): 556-563.
[27] Deng Lin, Chang Chun, An Ran, et al. Metal sulfates- catalyzed butanolysis of cellulose: Butyl levulinate production and optimization[J]. Cellulose, 2017, 24(12): 5403-5415.
[28] Kirtikumar C Badgujar., Bhalchandra M Bhanage. The green metric evaluation and synthesis of diesel-blend compounds from biomass derived levulinic acid in supercritical carbon dioxide[J]. Biomass and Bioenergy, 2016, 84: 12-21.
[29] Alice Lee, Naz Chaibakhsh, Mohd Basyaruddin Abdul Rahman, et al. Optimized enzymatic synthesis of levulinate ester in solvent-free system[J]. Industrial Crops and Products, 2010, 32(3): 246-251.
[30] 趙興秀,何義國,趙長青,等. 脂肪酶固定化及其催化生物柴油研究[J]. 食品研究與開發(fā),2015,36(22):159-164. Zhao Xingxiu, H. E. Yiguo, Zhao Changqing, et al. Study on lipase immobilization and immobilized lipase's application in synthesis of biodiesel[J]. Food Research and Development, 2015, 36(22): 159-164. (in Chinese with English abstract)
Optimization of preparation of bio-based ethyl levulinate catalysed by lipase
Xu Yanli1,2, Chang Chun1,2,3※, Bai Jing1,2, Li Pan1,2, Chen Junying1,2, Han Xiuli1,2, Fang Shuqi1,2
(1.450001,; 2.450001,; 3.310027,)
The large consumption of fossil energy and the rising price of petroleum prompt us to look for an alternative resource for chemical production. Utilization of biomass resources can not only solve environmental problems, but also save resources and improve the economic value of biomass. Ethyl levulinate (EL) has a wide range of industrial applications. It can be used as an additive for various fuels and widely used in food, medicine, agriculture, rubber, manufacturing and other industries. At present, EL is mainly produced by chemical method. In contrast, the preparation of EL by biological method has the advantages of mild reaction conditions, low energy consumption and simple recovery of immobilized enzyme. It is considered as a new preparation method. In our previous studies, the preparation process of bio-levulinic acid has been reported. On this basis, lipase-catalyzed synthesis of EL from levulinic acid and ethanol was further studied. In this study, three lipases were screened, Nov435, Lipozyme TL IM and Lipozyme 40086, respectively. The results showed that Nov435 had good activity. Then, using NOV435 as biocatalyst, the effects of solvent volume (MTBE), enzyme amount, reaction time and molar ratio of ethanol to levulinic acid on EL yield were studied by single factor experiments. According to the experimental results, the reaction conditions were further optimized by response surface design. The experimental design includes 29 experiments and 5 repetitions at the central point to obtain the estimation of experimental errors. The quadratic equations of reaction temperature, lipase amount, MTBE volume and the molar ratio of ethanol to levulinic acid were obtained with EL yield as the optimized response. Using the equation, the optimum reaction conditions were obtained: reaction temperature 45 ℃, lipase amount 35.5 mg, MTBE 2.6 mL, molar ratio of ethanol to levulinic acid 1.7:1, rotating speed 150 r/min, reaction time 2.8 h. Under the optimum reaction conditions, the EL yield was estimated to be 87.6%. The validation experiment showed that the experimental result was 87.6%, which was very close to the predicted value. The catalyst reuse times of lipase under optimum conditions were studied and 12 repetitive experiments were carried out. The results showed that the recovery process of lipase was simple and easy to reuse. After five reuses, the high EL yield of 86.2% was still maintained. However, the EL yield decreased to 76.2% after 12 repeats due to the damage of lipase particles. In conclusion, this study showed that lipase-catalyzed EL production is an effective method, which provided an important basis for the preparation of EL by enzymatic method.
biomass; optimization; levulinic acid; ethyl levulinate; lipase
10.11975/j.issn.1002-6819.2019.10.029
TQ352
A
1002-6819(2019)-10-0227-07
2018-11-16
2019-02-15
生物質(zhì)化工教育部重點實驗室(浙江大學(xué))開放基金資助項目(2018BCE001);河南省杰出外籍科學(xué)家工作室生物質(zhì)資源加工與高效利用(GZS2018004)
徐艷麗,博士生,研究方向:生物質(zhì)能源的利用。Email:475573352@qq.com
常 春,教授,博士生導(dǎo)師,主要從事生物質(zhì)能源化工的研究。Email:chunchang@zzu.edu.cn
徐艷麗,常 春,白 凈,李 攀,陳俊英,韓秀麗,方書起.脂肪酶催化制備生物基化學(xué)品乙酰丙酸乙酯的工藝優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(10):227-233. doi:10.11975/j.issn.1002-6819.2019.10.029 http://www.tcsae.org
Xu Yanli, Chang Chun, Bai Jing, Li Pan, Chen Junying, Han Xiuli, Fang Shuqi.Optimization of preparation of bio-based ethyl levulinate catalysed by lipase[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(10): 227-233. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.10.029 http://www.tcsae.org