胡 優(yōu),李 敏,任姮燁,司炳成,2
基于加熱光纖分布式溫度傳感器的土壤含水率測(cè)定方法
胡 優(yōu)1,李 敏1,任姮燁1,司炳成1,2※
(1.西北農(nóng)林科技大學(xué)旱區(qū)農(nóng)業(yè)水土工程教育部重點(diǎn)實(shí)驗(yàn)室,楊凌 712100; 2.薩斯喀徹溫大學(xué)土壤科學(xué)系,加拿大薩斯卡通市 S7N5A8)
為探討加熱光纖分布式溫度傳感技術(shù)測(cè)量土壤含水率不同方法的可行性,通過室內(nèi)土槽試驗(yàn),加熱埋設(shè)于砂土的碳纖維光纖,利用分布式溫度傳感器測(cè)量不同含水率下沿光纖的溫度變化,建立最大升溫值、累積升溫值和熱導(dǎo)率與土壤含水率的關(guān)系,并比較這3種方法推求土壤含水率的測(cè)量精度。結(jié)果表明,光纖的溫度波動(dòng)隨采樣間距的增大或時(shí)間間隔的增大均減小,合理的采樣間距和時(shí)間間隔設(shè)置能控制溫度波動(dòng)小于±0.1 ℃。在低(0~0.1 m3/m3)、中(>0.1~0.2 m3/m3)和高(>0.2~0.35 m3/m3)3個(gè)含水率水平,熱導(dǎo)率法的測(cè)量精度均高于最大升溫值法和累積升溫值法,并且3種方法的測(cè)量精度均隨含水率增加而降低;熱導(dǎo)率法的均方根誤差為0.015 m3/m3,低于最大升溫值法(0.038 m3/m3)和累積升溫值法(0.050 m3/m3)。研究對(duì)高時(shí)空分辨率精確獲取田間尺度土壤墑情信息發(fā)展精準(zhǔn)農(nóng)業(yè)具有重要意義。
土壤;含水率;熱導(dǎo)率;光纖;碳纖維;分布式溫度傳感器
土壤含水率是農(nóng)業(yè)、水文、氣象等學(xué)科重要的基本參數(shù),實(shí)現(xiàn)土壤含水率在田間尺度下實(shí)時(shí)和連續(xù)的分布式原位測(cè)定是實(shí)施高效農(nóng)業(yè)和精準(zhǔn)灌溉的基礎(chǔ)。現(xiàn)有土壤含水率的測(cè)定主要利用烘干法[1]、時(shí)域反射儀(time-do-main reflectometry,TDR)法[2-4]、頻域反射儀法[5]、中子儀法[6]和熱脈沖法[7-9]等進(jìn)行單個(gè)土樣或者單點(diǎn)的小尺度測(cè)定,或利用衛(wèi)星遙感法估算千米級(jí)大尺度的區(qū)域含水率。而在農(nóng)業(yè)生產(chǎn)中最亟需的田間(米到千米級(jí))中尺度卻無有效和精確的方法。宇宙射線法可以測(cè)量幾十厘米深度中尺度的平均含水率[10],但田間水分的空間變異情況無法獲知[11-12]??焖侔l(fā)展的無人機(jī)遙感法能根據(jù)光譜圖像推算田間尺度土壤含水率,但轉(zhuǎn)換關(guān)系的不確定性及受天氣影響較大限制了測(cè)量精度和使用條件[13],在植被覆蓋度高的地方測(cè)量困難,且只適用于監(jiān)測(cè)表層土壤的含水率[14]。近年來,分布式溫度傳感(distributed temp-erature sensing,DTS)技術(shù)開始被應(yīng)用于土壤含水率的測(cè)量[15-16],有望實(shí)現(xiàn)田間尺度下土壤含水率實(shí)時(shí)、精確、連續(xù)的動(dòng)態(tài)原位測(cè)定。該方法的另一優(yōu)點(diǎn)是有望同時(shí)得到相同時(shí)間、相同地點(diǎn)和相同尺度下的土壤水熱信息,為農(nóng)田、土壤和生態(tài)等系統(tǒng)的水熱運(yùn)動(dòng)、耦合和能量平衡等研究提供基礎(chǔ)。
探針熱脈沖法是目前測(cè)定土壤熱性質(zhì)最流行的方法[17-18],曾被應(yīng)用于探測(cè)火星土壤熱特性,該方法還可以通過熱特性與含水率的關(guān)系反推求含水率[19]。其中,雙探針熱脈沖法可以由土壤熱容與含水率的線性物理關(guān)系推求含水率,但探針間距的變化會(huì)給測(cè)量帶來誤差。單探針熱脈沖法可以通過熱導(dǎo)率與含水率的半理論或經(jīng)驗(yàn)?zāi)P屯魄蠛蔥20]。目前,DTS技術(shù)測(cè)量土壤含水率有被動(dòng)加熱光纖法[16]和主動(dòng)加熱光纖法[21-22]2類。被動(dòng)加熱光纖法通過光纖測(cè)量由晝夜輻射引起的近地表溫度波動(dòng)推算含水率,當(dāng)太陽輻射較弱時(shí)(如陰天或受植被遮蓋的土地)存在較大的不確定性,只適用于溫度波動(dòng)足夠大、深度小于30 cm的地表附近。而基于熱脈沖探針原理的主動(dòng)加熱光纖法[23],可以進(jìn)行任意時(shí)間任意土壤深度的測(cè)量,應(yīng)用更為廣泛。其中基于雙探針熱脈沖的主動(dòng)加熱DTS技術(shù)能同時(shí)測(cè)量土壤熱導(dǎo)率、熱擴(kuò)散率和熱容,并利用熱容推求含水率[24],但精度易受光纖間距的影響[25-26],且長距離保持2條布設(shè)的光纖相互平行施工難度大,導(dǎo)致其應(yīng)用受限。單探針熱脈沖的主動(dòng)加熱DTS法僅需埋設(shè)1條光纖,避免了上述缺點(diǎn),得到了更多的青睞。該方法可以直接利用熱脈沖溫度隨時(shí)間變化的信息,如最大升溫值(Δmax)[27]、累積升溫值(Δcum)[15]與土壤含水率的經(jīng)驗(yàn)關(guān)系來推求含水率;Ciocca等[28]通過溫度信息得到的中間變量熱導(dǎo)率()來推求含水率,但他們加熱時(shí)間較短,只能通過冷卻階段溫度值計(jì)算熱導(dǎo)率,會(huì)增大測(cè)量誤差。Li等[7]利用熱脈沖單探針技術(shù)測(cè)量土壤含水率,比較了Δmax法、Δcum法和法的優(yōu)缺點(diǎn)和測(cè)量精度。由于不銹鋼探針傳熱性能好,且與土壤顆粒直接接觸,而光纖和碳纖維與土壤顆粒間被光纖的多層包裹層隔開,會(huì)影響含水率的測(cè)量精度。目前,缺乏光纖測(cè)量土壤含水率方法的探索和討論。此外,每一時(shí)刻傳感光纖上所獲得的信息實(shí)際上是光纖上某段距離、某段時(shí)間內(nèi)光信號(hào)的累加,采樣時(shí)空分辨率越高,光信號(hào)越難區(qū)分開,也更易受外界噪音的干擾,因此,需要分析不同時(shí)空分辨率對(duì)DTS溫度測(cè)量的影響。
本文利用碳纖維作為加熱材料,分析了DTS在不同采樣間距、不同時(shí)間間隔下溫度的波動(dòng)規(guī)律,為滿足不同溫度精度要求,選擇合理的采樣間距和時(shí)間間隔提供參考;同時(shí),測(cè)定了砂土從干燥到飽和不同含水率條件下的熱導(dǎo)率和光纖溫度變化規(guī)律,對(duì)比了Δmax法、Δcum法和法測(cè)量土壤含水率的精度,為基于單探針熱脈沖原理的主動(dòng)加熱光纖-DTS法測(cè)量土壤含水率提供依據(jù)。
基于DTS測(cè)定的熱特性結(jié)果與設(shè)定含水率,建立單調(diào)函數(shù)關(guān)系,然后根據(jù)建立的函數(shù)關(guān)系推求土壤含水率。
DTS是一種基于拉曼散射效應(yīng)測(cè)量溫度并通過光的時(shí)域反射技術(shù)來定位的溫度傳感器,其測(cè)溫原理是:一定能量的脈沖泵浦光注入光纖后,光子與光纖分子發(fā)生非彈性碰撞,吸收或發(fā)出1個(gè)聲子,產(chǎn)生2束背向拉曼散射光。其中,波長大于入射光的斯托克斯散射光不受溫度影響,而波長小于入射光的反斯托克斯散射光有很強(qiáng)的溫度依賴性。因此,可以根據(jù)斯托克斯與反斯托克斯的光強(qiáng)比計(jì)算溫度[29]。光纖上任意一點(diǎn)的溫度值可表示為[30]
式中為絕對(duì)溫度,K;(z)為斯托克斯與反斯托克斯的光強(qiáng)比;Δ¢表示驅(qū)動(dòng)拉曼散射的分子能態(tài)的差值,J;¢為玻爾茲曼常數(shù),J/K;Δ為斯托克斯與反斯托克斯背向散射光損失系數(shù)之差;為到DTS光源的距離,m;為可校準(zhǔn)參數(shù),它與入射光的波長、頻率、背向拉曼散射光、儀器的光子探測(cè)器有關(guān)。
光纖上任一點(diǎn)的位置,即為光行走路程的一半。
式中是光在真空中的速度,m/s;是光纖包層的折射率;′為光向前與向后傳播所需要的時(shí)間,s。
1.2.1 最大升溫值法
由于加熱階段早期的溫度數(shù)據(jù)受光纖熱特性和接觸熱阻影響較大,Striegl[27]把溫度上升達(dá)到穩(wěn)定階段(溫度值與時(shí)間的對(duì)數(shù)為線性關(guān)系)的平均值作為最大升溫值Δmax。Δmax計(jì)算公式為
式中t為上述穩(wěn)定階段的起始時(shí)間,根據(jù)先驗(yàn)試驗(yàn)結(jié)果,本文t取為390 s;t為停止加熱的時(shí)間,本文為600 s;ΔT為第個(gè)時(shí)刻的升溫值,由加熱后該時(shí)刻的溫度值減去初始溫度值(加熱前5 min溫度的平均值)求得;為穩(wěn)定階段內(nèi)升溫值的數(shù)量。當(dāng)加熱條件一定時(shí),max隨著土壤含水率增大而減小。利用測(cè)定的max與含水率的單調(diào)函數(shù)關(guān)系能推求土壤含水率。
1.2.2 累積升溫值法
Sayde等[15]提出光纖被加熱后,土壤含水率越低則累積升溫值Δcum越大,根據(jù)這個(gè)規(guī)律,Δcum可以用來推求含水率。Δcum計(jì)算公式為
對(duì)溫度進(jìn)行積分包含了一定含水率條件下整個(gè)加熱過程的溫度變化,光纖溫度的變化取決于土壤含水率,因此根據(jù)Δcum與含水率的標(biāo)定關(guān)系可以推求含水率。
1.2.3 熱導(dǎo)率法—瞬時(shí)單探針熱脈沖理論
把光纖看成是一個(gè)無限長的線性熱源。對(duì)于一個(gè)無限的恒定熱量輸入的線性熱源,環(huán)境溫度不變化,在無限大的均勻介質(zhì)中徑向的熱傳導(dǎo)方程可以表示為[17, 31]
式中Δ1和Δ2分別是加熱和冷卻階段溫度的增量,℃;-E(-)是指數(shù)積分函數(shù);0是熱源加熱時(shí)間,s;是某個(gè)時(shí)刻,s;是溫度感應(yīng)器到熱源的某個(gè)距離,m;是熱擴(kuò)散率,m2/s;¢=¢/ρ為單位時(shí)間的熱強(qiáng)度,(m2·℃)/s;'是單位時(shí)間單位長度輸入的熱量,J/(m·s);ρ是介質(zhì)的體積熱容量,J/(m3·℃)。
式中λ和λ分別為加熱、冷卻階段的熱導(dǎo)率,W/(m·℃),則熱導(dǎo)率=¢/(4π),為方程(7)或(8)的斜率;和'為常數(shù),與時(shí)間無關(guān)。因?yàn)榧訜犭A段計(jì)算的熱導(dǎo)率比冷卻階段更加準(zhǔn)確[33],本文采用加熱階段的升溫值計(jì)算土壤熱導(dǎo)率。
土壤熱導(dǎo)率是含水率的單調(diào)遞增函數(shù),通過建立與的關(guān)系從而推求。
本試驗(yàn)在西北農(nóng)林科技大學(xué)水利與建筑學(xué)院水熱測(cè)定實(shí)驗(yàn)室進(jìn)行,利用熱脈沖DTS技術(shù)測(cè)量砂土的含水率,室內(nèi)試驗(yàn)從2017年10月2日開始到2018年4月6日結(jié)束。試驗(yàn)材料砂土取自陜西楊凌渭河河岸,砂土容重為1.53 g/cm3,飽和含水率為0.33 m3/m3,pH值為8.5。在室內(nèi)烘干并過1 mm篩,分3次壓實(shí)裝入長寬高為4.0 m × 0.3 m × 0.3 m的不銹鋼槽。光纖室內(nèi)水分現(xiàn)場(chǎng)測(cè)試如圖1。
圖1 光纖土壤水分室內(nèi)測(cè)試照片
2.2.1 DTS溫度精度分析試驗(yàn)
分析不同采樣間距、不同時(shí)間間隔條件下DTS溫度的波動(dòng)規(guī)律,以評(píng)估DTS系統(tǒng)本身測(cè)定溫度的精度,并確定合適的采樣間距。光纖總長40 m,將首尾兩端各10 m置于冰浴保溫箱中,在冰浴箱底部放置起泡器,使冰水混合均勻并防止溫度上下結(jié)層、分布不均。分別設(shè)置6個(gè)采樣時(shí)間間隔1、2、4、10、20和30 s,4個(gè)采樣間距0.125、0.25、0.50和1.00 m,共24個(gè)組合,每個(gè)組合重復(fù)測(cè)量3次,每次測(cè)量10 min,在冰浴內(nèi)共進(jìn)行了72次溫度測(cè)試。
2.2.2 DTS測(cè)量土壤含水率試驗(yàn)
將光纖埋設(shè)于裝有砂土的土槽,對(duì)光纖的碳纖維包裹層加熱,利用DTS記錄不同含水率下光纖的溫度隨時(shí)間變化特征,并通過上述3種方法推求土壤含水率。試驗(yàn)布置如圖2所示。分布式溫度傳感器為英國Silixa公司生產(chǎn)的ULTIMA-S,其最小采樣距離為0.125 m,最大采樣間距為1.0 m,空間分辨率為0.25 m,時(shí)間分辨率為1 s,溫度分辨率為0.01 ℃,感測(cè)距離長達(dá)5 km。設(shè)置DTS采樣時(shí)間間隔為30 s,空間間距為0.5 m。為了使光纖加熱過程能夠受熱均勻并且產(chǎn)生足夠的熱量,采用蘇州南智傳感科技有限公司生產(chǎn)的碳纖維內(nèi)加熱型光纖NZS-DTS-C09,該光纖耐電電壓為0~360 V,電阻為21 Ω/m,外徑8.3 mm,工作溫度為-20~120 ℃。光纖由內(nèi)到外依次為纖芯、包層、涂覆層和光纖護(hù)套、碳纖維、纖維護(hù)套,如圖2所示。采用TDR-315連續(xù)測(cè)定試驗(yàn)期間的土壤含水率并通過數(shù)據(jù)采集器(CR1000,Campbell Scientific)連續(xù)采集含水率數(shù)據(jù)。PT100為鉑電阻溫度傳感器,與光纖一同置于冰浴箱中,作為DTS測(cè)量的參考溫度。光纖首尾兩端各10 m置于冰浴保溫箱內(nèi)用以校準(zhǔn)DTS測(cè)得的溫度,直至光纖溫度接近PT100的溫度開始進(jìn)行試驗(yàn)測(cè)量。
碳纖維光纖布置在土槽中心,用DTS測(cè)量加熱和冷卻階段(停止加熱后的10 min時(shí)長)的溫度值。DTS儀器測(cè)量并記錄圖2中到DTS儀器的距離分別為17.76、18.26、18.76、19.26、19.76、20.26、20.76和21.26 m 的光纖上8個(gè)位置的溫度值,間距為0.5 m(和DTS采樣間距一致),再通過顯示器實(shí)現(xiàn)實(shí)時(shí)監(jiān)測(cè);將電線連接碳纖維光纖與可調(diào)變壓器,用來給光纖加熱,加熱功率為5.77 W/m,每次加熱時(shí)間10 min,每日重復(fù)3次。在土槽中布設(shè)8個(gè)TDR,與光纖上8個(gè)溫度測(cè)點(diǎn)對(duì)齊,對(duì)含水率進(jìn)行連續(xù)測(cè)定。先進(jìn)行了干砂土試驗(yàn),然后在土槽土壤表層鋪1層濾紙,往槽中加水,直至表面有積水,讓其充分飽和,進(jìn)行飽和砂土試驗(yàn)。之后,將土槽底部預(yù)留的排水孔打開,確保底部無積水,用空調(diào)保持室內(nèi)恒溫,讓土壤自由蒸發(fā),這樣可以使土壤水分分布均勻,直至接近干砂土,期間進(jìn)行不同含水率的非飽和砂土試驗(yàn)。
試驗(yàn)測(cè)試順序?yàn)閺母缮巴恋斤柡蜕巴磷詈蟮椒秋柡蜕巴?,避免了重新裝填或配不同含水率的土壤造成對(duì)土壤結(jié)構(gòu)的擾動(dòng)。每次加熱后DTS測(cè)量8個(gè)測(cè)點(diǎn)的溫度值,每天加熱并測(cè)量3次,取3次測(cè)量的溫度平均值作為該日光纖加熱后溫度的變化,并用其計(jì)算熱導(dǎo)率。同時(shí),用TDR監(jiān)測(cè)土壤含水率,1 d中土壤含水率變化量忽略不計(jì)。由于17.76和21.26 m位置的光纖處于土槽邊界受邊界效應(yīng)影響,而18.26和20.76 m位置排水過快使含水率值的分布范圍過窄,所以,以上4個(gè)位置的測(cè)試結(jié)果后文不進(jìn)行分析。本文通過加熱光纖的方法,用DTS記錄了整個(gè)含水率范圍加熱后溫度的動(dòng)態(tài)變化,然后計(jì)算得到Δmax、Δcum和。用TDR連續(xù)監(jiān)測(cè)土壤含水率??偣矞y(cè)量的樣本數(shù)量為22組,采用其中12組Δmax、Δcum和對(duì)應(yīng)的含水率數(shù)據(jù)擬合得到標(biāo)定曲線,另外10組數(shù)據(jù)驗(yàn)證標(biāo)定曲線推求含水率的準(zhǔn)確性,驗(yàn)證數(shù)據(jù)包含了高、中、低3個(gè)含水率水平。
注:DTS為分布式分布傳感器;圖中TDR對(duì)應(yīng)的數(shù)值為光纖上的點(diǎn)到DTS的距離,m。
烘干法是校正其他土壤含水率測(cè)定方法的唯一標(biāo)準(zhǔn)方法,但該方法需要在試驗(yàn)過程中不斷取土,對(duì)土槽土樣具有破壞性,因此,本研究利用基于時(shí)域反射技術(shù)的TDR-315(Acclima,美國)探針原位監(jiān)測(cè)測(cè)定的土壤含水率來驗(yàn)證DTS法測(cè)得的含水率,并采用均方根誤差(root mean square error,RMSE)和決定系數(shù)22個(gè)指標(biāo)進(jìn)行評(píng)價(jià)。試驗(yàn)前已利用烘干法對(duì)TDR-315測(cè)量誤差進(jìn)行校正。
盡管本研究使用的DTS采樣間距和時(shí)間間隔較大,但越高的時(shí)空采樣頻率下溫度值的精度可能會(huì)受影響,因此,確定適宜的采樣間距是DTS獲取準(zhǔn)確溫度不可或缺的一步??紤]到冰浴內(nèi)溫度在測(cè)量時(shí)間內(nèi)可以保持相對(duì)穩(wěn)定,觀察冰浴內(nèi)光纖恒定溫度下的波動(dòng)情況能反映儀器的系統(tǒng)誤差。表1是不同采樣間距Δ、時(shí)間間隔Δ的溫度波動(dòng)(為冰浴中光纖上距離DTS儀器10 m位置20 min內(nèi)溫度的標(biāo)準(zhǔn)差)??梢钥闯鰷囟炔▌?dòng)隨著Δ和Δ的增大而減小。當(dāng)(Δ,Δ)為(0.125 m,1 s)時(shí)溫度波動(dòng)最大,達(dá)到±0.71 ℃;(Δ,Δ)為(1 m,30 s)時(shí)溫度波動(dòng)最小為±0.07 ℃,這2種組合溫度波動(dòng)相差約10倍。(Δ,Δ)為(0.5 m,10 s)、(1 m,4 s)和(1 m,10 s)或Δ>20 s時(shí),光纖的溫度波動(dòng)都小于0.2 ℃,可滿足大多數(shù)應(yīng)用需求。實(shí)際使用中可根據(jù)表1規(guī)律及研究和應(yīng)用需求確定適宜的采樣間距和時(shí)間間隔。因?yàn)楸驹囼?yàn)采用的是4 m長土槽,為了得到足夠的溫度采樣點(diǎn),并且讓溫度波動(dòng)控制在0.1 ℃范圍內(nèi),因此本文選擇的(Δ,Δ)為(30 s,0.5 m)。
表1 不同采樣間距及時(shí)間間隔下DTS的溫度波動(dòng)
圖3是不同含水率條件下砂土加熱和冷卻過程中土壤升溫值(Δ,由加熱后的光纖溫度值減去加熱前5 min的溫度平均值求得)的動(dòng)態(tài)變化。從圖3可以看出,Δ隨土壤含水率增大而減小,從0~600 s(600 s停止加熱),干砂土的Δ最大為10.85 ℃,飽和砂土的Δ最小為4.49 ℃。加熱過程中,Δ的上升速率逐漸減小,并逐漸趨于穩(wěn)定;Δ的增加速率隨含水率的增加而減?。▓D3),這是因?yàn)橥寥李w粒間存在“水橋”的連接,使得含水率更高的土壤具有更好的導(dǎo)熱路徑,并且具有更大的熱容量。體積含水率在0.24~0.33 m3/m3時(shí),升溫曲線幾乎重疊,說明該區(qū)間的含水率不再是影響土壤傳熱的決定因素,也進(jìn)一步說明隨著含水率增大,Δ對(duì)含水率的敏感性逐漸降低。
圖3 不同含水率下DTS測(cè)定的土壤升溫值動(dòng)態(tài)變化
用最小二乘法擬合了Δmax、Δcum及與含水率在光纖不同位置的標(biāo)定曲線(如圖4),2都很高,均在0.96以上(表2),擬合度良好。Δmax與Δcum隨含水率的變化有相似的變化趨勢(shì),與含水率呈指數(shù)遞減關(guān)系,并且隨含水率增大曲線斜率逐漸減小,說明Δmax與Δcum對(duì)含水率的敏感性逐漸降低,這些與Sayde等[15]和Striegl等[27]研究結(jié)果契合。與含水率呈指數(shù)遞增關(guān)系,隨含水率的增大曲線斜率沒有明顯減小的趨勢(shì),說明在砂土的整個(gè)含水率范圍,熱導(dǎo)率對(duì)含水率都有較好的敏感性,與Ciocca等[28]研究結(jié)果一致。隨著含水率越大,3種方法的觀測(cè)值(圖4中實(shí)心點(diǎn),擬合得到標(biāo)定曲線)偏離標(biāo)定曲線越遠(yuǎn),這是因?yàn)橥寥浪?,只有吸濕水、薄膜水和毛管水能夠傳遞熱量給土壤顆粒,而自由水(重力水)做無規(guī)則布朗運(yùn)動(dòng),一定程度上會(huì)阻礙熱量的傳遞。對(duì)于不同的土壤質(zhì)地、容重、有機(jī)質(zhì)含量等,標(biāo)定曲線會(huì)有差異,所以要對(duì)它們分別校正。
對(duì)表2中公式進(jìn)行驗(yàn)證,通過求預(yù)測(cè)值(DTS測(cè)得的最大升溫值、累積升溫值和熱導(dǎo)率通過3種方法得到的標(biāo)定曲線推求的含水率)與實(shí)測(cè)值(TDR-315觀測(cè)的含水率)之間的RMSE,來比較3種方法在不同含水率范圍的誤差程度(如圖5和表3)。對(duì)于法,在整個(gè)含水率范圍,測(cè)量值與預(yù)測(cè)值的散點(diǎn)均在或者靠近1∶1線,有良好的預(yù)測(cè)結(jié)果。對(duì)于Δmax和Δcum法,含水率為0~0.1 m3/m3范圍,散點(diǎn)都在1∶1線的周圍,有較好的預(yù)測(cè)結(jié)果,0.1~0.25 m3/m3的范圍,散點(diǎn)都在1∶1線的下方,會(huì)低估含水率,而大于0.25 m3/m3的范圍,散點(diǎn)大都在1∶1 線的上方,會(huì)高估含水率。
劃分了3個(gè)含水率范圍(低、中、高)比較3種方法預(yù)測(cè)值與實(shí)測(cè)值的RMSE,結(jié)果表明,低的含水率范圍RMSE小,高的含水率范圍RMSE大(如表3),這是因?yàn)殡S著含水率的增大,Δcum、Δmax、對(duì)含水率的敏感性逐漸降低。在0~0.1 m3/m3的含水率范圍,3種方法的RMSE差異不大,Δcum法比Δmax法略高0.007 m3/m3,Δmax法比法略高0.008 m3/m3。在0.1~0.2 m3/m3的含水率范圍,Δcum法與Δmax法差異很小,但都比法高0.03 m3/m3。在0.2~0.35 m3/m3的含水率范圍,3種方法之間差異都較大,Δcum法比Δmax法高0.025 m3/ m3,Δmax法比法高0.03 m3/m3。對(duì)每個(gè)含水率范圍,RMSE的大小順序?yàn)棣um>Δmax>法,法在整個(gè)含水率范圍都具有較好的準(zhǔn)確度,法預(yù)測(cè)含水率效果要優(yōu)于其他2種方法。
注:各處理樣本數(shù)為12。
表2 3種方法得到的光纖上不同位置的標(biāo)定曲線及擬合效果
注:Δmax、Δcum和分別為最大升溫值(℃)、累積升溫值(℃)和熱導(dǎo)率(W·m-1·℃-1)。下同。
Note: Δmax、Δcumandare the maximum temperature rise (℃), cumulative temperature rise (℃) and thermal conductivity (W·m-1·℃-1), respectively.Same as below.
注:各處理樣本數(shù)為10。
表3 3種方法在不同含水率范圍的均方根誤差(RMSE)
本文對(duì)高中低3個(gè)含水率范圍3種方法的DTS測(cè)量精度進(jìn)行了分析。Sayde等[15]通過室內(nèi)土柱試驗(yàn)首次采用Δcum法測(cè)量砂土含水率,研究表明,Δcum法的測(cè)量誤差隨含水率的增加呈線性關(guān)系,體積含水率為0.05 m3/ m3時(shí),測(cè)量的可重復(fù)性精度為0.001 m3/m3;體積含水率為0.41 m3/m3時(shí),可重復(fù)性精度為0.046 m3/m3。本研究Δcum法3個(gè)含水率范圍的RMSE在0.027~0.075 m3/m3之間,但整個(gè)含水率范圍的平均RMSE小于0.05 m3/m3。Striegl等[27]利用Δmax法測(cè)量了田間尺度的含水率,體積含水率≤0.31 m3/m3時(shí),RMSE為0.016 m3/m3;體積含水率>0.31 m3/m3時(shí),RMSE達(dá)到0.05 m3/m3,本研究的Δmax法3個(gè)含水率范圍得到的RMSE在0.02~0.05 m3/m3之間,與Striegl等的結(jié)果接近。Ciocca等[28]采用法在土柱中測(cè)量了壤土含水率,研究表明,含水率為0.3 m3/m3時(shí),測(cè)量的精確度為0.04 m3/m3,本文在高含水率范圍,法精度也能達(dá)到0.02 m3/m3,一方面Ciocca等只加熱120 s,加熱階段還達(dá)不到升溫值的漸近線,采用冷卻階段溫度值計(jì)算會(huì)帶來誤差[33];另一方面將光纖盤卷在土柱中,也不符合線性熱源的假設(shè),從而影響含水率測(cè)量的準(zhǔn)確度。所以本研究Δcum和Δmax法的含水率測(cè)量精度與其他作者接近,但法測(cè)量精度在高中低3個(gè)含水率水平都要優(yōu)于他人研究。
Sayde等[15]研究表明,Δcum法測(cè)量含水率的誤差顯著小于Δmax法,與本文結(jié)果剛好相反,主要因?yàn)楸疚牡牟蓸訒r(shí)間間隔是30 s,而Sayde的時(shí)間間隔是5 s,所以Sayde能把整個(gè)加熱時(shí)間分割成很微小的片段,提高了計(jì)算Δcum的準(zhǔn)確度,進(jìn)而減小含水率測(cè)量誤差。因此,應(yīng)用Δcum法預(yù)測(cè)含水率時(shí),應(yīng)適當(dāng)減小采樣時(shí)間間隔。付永威等[34]和Li等[7]研究表明,的計(jì)算受探針特性的影響很小,而Δmax和Δcum會(huì)受探針特性的影響[7],這也是本研究光纖上不同位置處Δmax和Δcum差異較大而差異較小的原因,從而導(dǎo)致了Δmax和Δcum法測(cè)量含水率誤差較大。并且,當(dāng)>0.1 m3/m3時(shí)Δmax和Δcum法對(duì)敏感性變?nèi)酰ㄒ廊痪哂休^好的敏感性,因而,法優(yōu)于Δmax和Δcum法。所以,要提高Δmax和Δcum法的測(cè)量精度,還得提高碳纖維光纖的制作工藝,主要提高碳纖維包裹光纖和橫縱向分布的均勻度,并適當(dāng)減小光纖護(hù)套厚度。Benítez-Buelga等[35]提到了用主動(dòng)加熱光纖法估算并用其預(yù)測(cè)含水率,但作者考慮光纖護(hù)套的影響沒有利用光纖測(cè)量,最后通過Δcum法預(yù)測(cè)了土壤含水率。然而,光纖護(hù)套對(duì)估算是否真正存在影響,還有待進(jìn)一步研究??傊ax和Δcum法雖然能夠達(dá)到一定的精度,但最大升溫值和累積升溫值沒有物理意義,兩者與含水率之間為經(jīng)驗(yàn)關(guān)系,受光纖特性、熱源能量的輸入及土壤物理性質(zhì)等多種因素影響。但其優(yōu)點(diǎn)是加熱時(shí)間比法短,如圖3所示,僅需加熱不到200 s,不同含水率土壤的升溫值已有明顯區(qū)分度,但熱導(dǎo)率的計(jì)算需要更長時(shí)間的加熱才能得到升溫漸近線。加熱時(shí)間短在野外電源受限時(shí)優(yōu)勢(shì)明顯。法具有物理意義,只與土壤物理性質(zhì)有關(guān),而且與的關(guān)系已有許多研究進(jìn)展,并發(fā)展了很多()模型,這為通過土壤熱導(dǎo)率推求含水率提供了簡(jiǎn)便可行的方法。所以利用法的主動(dòng)加熱光纖-DTS測(cè)量具有很重要的現(xiàn)實(shí)意義。
測(cè)量含水率的不確定性主要來自幾個(gè)方面:1)加熱碳纖維采用的是交流電源,日內(nèi)電壓會(huì)有一些波動(dòng),導(dǎo)致加熱功率會(huì)有微小偏差。2)TDR-315由于受土壤接觸間隙或鹽分的影響,測(cè)量含水率也存在一定的不確定性。雖然,本研究采用的DTS是當(dāng)今十分先進(jìn)的設(shè)備,分辨度、精度都很高,但也會(huì)受到外界噪音的干擾,因?yàn)槭覂?nèi)試驗(yàn),干擾不會(huì)很大,所以DTS帶來的不確定性很小。本研究采用的碳纖維光纖還未廣泛使用,處在測(cè)試階段,光纖的制作工藝、結(jié)構(gòu)需要進(jìn)一步改善,碳纖維的均勻度可能會(huì)帶來一定的不確定性。
測(cè)量誤差可以通過如下3種方式減少[15]:1)通過多次熱脈沖結(jié)果的平均來提高信噪比;2)增大加熱強(qiáng)度;3)延長加熱時(shí)間。然而,增大加熱強(qiáng)度、延長加熱時(shí)間雖可以提高DTS測(cè)量準(zhǔn)確度,但也要防止土壤溫度升高過大使得光纖周圍土壤水分在溫度勢(shì)作用下重新分布,甚至產(chǎn)生相變。
本文分析了碳纖維加熱光纖-分布式溫度傳感器不同采樣間距和時(shí)間間隔對(duì)溫度波動(dòng)的影響,對(duì)比了最大升溫值法、累積升溫值法和熱導(dǎo)率法測(cè)量含水率的精度,結(jié)論如下:
1)溫度波動(dòng)隨采樣間距的增大或時(shí)間間隔的增大均減小,本研究使用的DTS的最大時(shí)空采樣分辨率(1 s,0.125 m)下溫度波動(dòng)最大,范圍為±0.71 ℃,采用合理的采樣間距和時(shí)間間隔設(shè)置能控制溫度波動(dòng)小于±0.1 ℃;用戶需根據(jù)需求選擇合理的采樣參數(shù)以降低溫度波動(dòng)從而減小測(cè)量誤差;
2)最大升溫值、累積升溫值和熱導(dǎo)率與土壤含水率的關(guān)系均可用指數(shù)函數(shù)表達(dá)。3種方法計(jì)算的土壤含水率均與實(shí)測(cè)含水率接近,但最大升溫值法和累積升溫值法在含水率較高時(shí)稍微高估含水率。3種方法的測(cè)量精度均隨含水率增加而降低。在低含水率(0~0.1 m3/ m3)、中含水率(>0.1~0.2 m3/m3)和高含水率(>0.2~0.35 m3/m3)范圍內(nèi),熱導(dǎo)率法的測(cè)量精度均高于最大升溫值法和累積升溫值法;熱導(dǎo)率法的總體精度(RMSE為0.015 m3/m3)高于最大升溫值法(RMSE為0.038 m3/m3)和累積升溫值法(RMSE為0.050 m3/m3);因此,3種方法均能較準(zhǔn)確測(cè)量土壤含水率,且熱導(dǎo)率法的測(cè)量精度更高。
[1] O¢Kelly B C, Sivakumar V. Water content determinations for peat and other organic soils using the oven-drying method[J]. Drying Technology, 2014, 32(6): 631-643.
[2] ?erny R. Time-domain reflectometry method and its application for measuring moisture content in porous materials: A review[J]. Measurement, 2009, 42(3): 329-336.
[3] Evett S R. Soil Water Measurement By Time Domain Reflectometry[M]. New York: Encyclopedia of Water Science, 2003:894-898.
[4] Baker J M, Allmaras R R. System for automating and multiplexing soil moisture measurement by time-domain reflectometry[J]. Soil Scisocamj, 1990, 54(1): 1-6.
[5] Tsheko R, Savage M J. Calibration of a frequency-domain reflectometer for determining soil-water content in a clay loam soil[J]. Water Sa, 2006, 32(1): 37-42.
[6] Evett S R, Steiner J L. Precision of neutron scattering and capacitance type soil water content gauges from field calibration[J]. Soil Scisocamj, 1995, 59(4): 961-968.
[7] Li M, Si B C, Hu W, et al. Single-probe heat pulse method for soil water content determination:Comparison of methods[J]. Vadose Zone Journal, 2016, 15(7): 1-13.
[8] Basinger J M, Kluitenberg G J, Ham J M, et al. Laboratory evaluation of the dual-probe heat-pulse method for measuring soil water content[J]. Vadose Zone Journal, 2003, 2(4): 552-560.
[9] Kamai T, Kluitenberg G J, Hopmans J W. A dual-probe heat-pulse sensor with rigid probes for improved soil water Content Measurement[J]. Soil Science Society of America Journal, 2015, 79(4): 1059-1072.
[10] Bogena H R, Huisman J A, Baatz R, et al. Accuracy of the cosmic-ray soil water content probe in humid forest ecosystems: The worst case scenario[J]. Water Resources Research, 2013, 49(9): 5778-5791.
[11] Rosolem R, Shuttleworth W J, Zreda M, et al. The effect of atmospheric water vapor on neutron count in the cosmic-ray soil moisture observing system[J]. Journal of Hydrometeorology, 2013, 14(5): 1659-1671.
[12] Zreda M, Shuttleworth W J, Zeng X, et al. COSMOS: The cosmic-ray soil moisture observing system[J]. Hydrology and Earth System Sciences, 2012, 17(3): 1065-1076.
[13] Wang L, Qu J J. Satellite remote sensing applications for surface soil moisture monitoring: A review[J]. Frontiers of Earth Science in China, 2009, 3(2): 237-247.
[14] Weihermüller L, Huisman J A, Lambot S, et al. Mapping the spatial variation of soil water content at the field scale with different ground penetrating radar techniques[J]. Journal of Hydrology, 2007, 340(3): 205-216.
[15] Sayde C, Gregory C, Gil-Rodriguez M, et al. Feasibility of soil moisture monitoring with heated fiber optics[J]. Water Resources Research, 2010, 46(6):1-8.
[16] Steele-dunne S C, Rutten M M, Krzeminska D M, et al. Feasibility of soil moisture estimation using passive dis-tributed temperature sensing[J]. Water Resources Research, 2010, 46: 1-12.
[17] Bristow K L. Measurement of thermal properties and water content of unsaturated sandy soil using dual-probe heat-pulse probes[J]. Agricultural & Forest Meteorology, 1998, 89(2): 75-84.
[18] Bristow K L, Kluitenberg G J, Goding C J, et al. A small multi-needle probe for measuring soil thermal properties, water content and electrical conductivity[J]. Computers & Electronics in Agriculture, 2001, 31(3): 265-280.
[19] 張曉, 王月月, 任圖生. 利用熱脈沖技術(shù)測(cè)量土壤表層含水率 [J]. 農(nóng)業(yè)工程學(xué)報(bào), 2015, 31(2): 72-78. Zhang Xiao, Wang Yueyue, Ren Tusheng. Measuring soil water content in surface layer with heat-pulse technique[J]. Transactions of the Chinese Society of Agricultural Eng-ineering (Transactions of the CSAE), 2015, 31(2): 72-78. (in Chinese with English abstract)
[20] Lu S, Ren T S, Gong Y S, et al. An improved model for predicting soil thermal conductivity from water content at room temperature[J]. Soil Science Society of America Journal, 2007, 71(1): 8-14.
[21] Sayde C, Thomas C K, Wagner J, et al. High-resolution wind speed measurements using actively heated fiber optics [J]. Geophysical Research Letters, 2015, 42(22): 10064-10073.
[22] Sayde C, Buelga J B, Rodriguez-Sinobas L, et al. Mapping variability of soil water content and flux across 1–1000 m scales using the actively heated fiber optic method[J]. Water Resources Research, 2015, 50(9): 7302-7317.
[23] He H, Dyck M, Horton R, et al. Distributed Temperature Sensing for Soil Physical Measurements and Its Similarity to Heat Pulse Method[M]. Cambridge: Academic Press, 2017:173-230.
[24] Benítezbuelga J, Sayde C, Rodríguezsinobas L, et al. Heated fiber optic distributed temperature sensing: a dual-probe heat-pulse approach[J]. Vadose Zone Journal, 2014, 13(11): 1-10.
[25] Kluitenberg G J, Kamai T, Vrugt J A, et al. Effect of probe deflection on dual-probe heat-pulse thermal conductivity measurements[J]. Soil Science Society of America Journal, 2010, 74(5): 1537-1540.
[26] Liu G, Li B, Ren T, et al. Analytical solution of heat pulse method in a parallelepiped sample space with inclined needles[J]. Soil Science Society of America Journal, 2008, 72(5): 1208-1216.
[27] Striegl A M. Heated distributed temperature sensing for field scale soil moisture monitoring[J]. Ground Water, 2012, 50(3): 340-347.
[28] Ciocca F, Lunati I, Van De Giesen N, et al. Heated optical fiber for distributed soil-moisture measurements: A lysimeter experiment[J]. Vadose Zone Journal, 2012, 11(4): 1-11.
[29] Tyler S W, Selker J S, Hausner M B, et al. Environmental temperature sensing using Raman spectra DTS fiber-optic methods[J]. Water Resources Research, 2009, 45:W00D23.doi:10.1029/2008WR007052.
[30] Hausner M B, Suárez F, Glander K E, et al. Calibrating single-ended fiber-optic raman spectra distributed temperature sensing data[J]. Sensors, 2011, 11(11): 10859-10879.
[31] De Vries D A, Peck A J. On the cylindrical probe method of measuring thermal conductivity with special reference to soils. I. Extension of theory and discussion of probe characteristics[J]. Aust J Phys, 1958, 11(62): 65-70.
[32] Blackwell J H. A transient-flow method for determination of thermal constants of insulating materials in bulk part I-theory[J]. Journal of Applied Physics, 1954, 25(2): 137-144.
[33] Dang L, Leong W H. Thermal conductivity probe-part II-an experimental analysis[J]. International Journal of Heat and Mass Transfer, 2015, 86(10): 4-14.
[34] 付永威, 盧奕麗, 任圖生. 探針有限特性對(duì)熱脈沖技術(shù)測(cè)定土壤熱特性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2014, 30(19): 71-77. Fu Yongwei, Lu Yili, Ren Tusheng. Influences of finite probe property on soil thermal property estimated by heat pulse technique[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(19): 71-77. (in Chinese with English abstract)
[35] Benítez-Buelga J, Rodríguez-Sinobas L, Calvo R S, et al. Calibration of soil moisture sensing with subsurface heated fiber optics using numerical simulation[J]. Water Resources Research, 2016, 52(4):2985-2995.
Measurement of soil water content using distributed temperature sensor with heated fiber optics
Hu You1, Li Min1, Ren Hengye1, Si Bingcheng1,2※
(1.712100,2.758,)
Soil water content has great spatial-temporal variability, so accurate field-scale soil water content acquisition with high spatial-temporal resolution is of grave significance for precision agriculture. The distributed temperature sensing (DTS) technology combined with the principle of heat pulse probe is expected to achieve this goal; however, there isn’t research to compare and evaluate the advantages and disadvantages of different methods to estimate soil water content using heated DTS technology. In this study, the indoor soil tank tests were carried on to heat the carbon-fiber optical cable embedded in sand, and the temperature variations along the fiber optics at different water content were measured by the DTS. The relationship between soil water content and maximum temperature rise, cumulative temperature rise and thermal conductivity were established, and the measurement accuracies of soil water content derived from the above mentioned 3 estimated methods were compared. The results showed that the temperature fluctuation of the fiber optics decreased with the increase of the sampling spacing or the time interval, and the reasonable sampling spacing and time interval could control the temperature fluctuation within a range between -0.1 and 0.1 ℃. The temperature rise value of fiber optics decreased with the increase of soil water content. The temperature rise was the highest for the dry sand and was the smallest when the soil was saturated. The maximum temperature rise and cumulative temperature rise had a similar trends with the change of water content, and decreased exponentially with the increase of water content. The slope of curve decreased gradually with the increase of water content, and the sensitivity to water content gradually reduced. However, there was an increased exponential relationship between thermal conductivity and water content. With the increase of water content, the slope of curve did not decrease obviously. In the whole range of water content of sand, thermal conductivity had a good sensitivity to water content. For thermal conductivity method, at the all range of water content, the scatter points between measured and predicted values were on or near the 1:1 line, showing good predictions. For the maximum temperature rise and cumulative temperature rise methods, the scatter points were all around the 1:1 line when the water content range was in the 0-0.1 m3/m3, which had better prediction results, while the water content range was in the 0.1-0.25 m3/m3, where the scatter points were below the 1:1 line, which wound underestimate the moisture content. When the water content range was greater than 0.25 m3/m3, the scatter points were mostly above the 1:1 line, which overestimated the moisture content. The measurement accuracy of the thermal conductivity method was higher than that of the maximum temperature rise method and of the cumulative temperature rise method regardless of the low (0-0.1 m3/m3), medium (>0.1-0.2 m3/m3) and high (>0.2-0.35 m3/m3) water content ranges. The measurement accuracies of the 3 methods decreased with the increase of water content. The root mean square error of the thermal conductivity method was 0.015 m3/m3, which was lower than that of the maximum temperature rise method (0.038 m3/m3) and the cumulative temperature rise method (0.050 m3/m3). All of the 3 methods could measure soil water content accurately, but the accuracy of thermal conductivity method was the highest. However, although the maximum temperature rise and cumulative temperature rise methods could achieve certain accuracy, they had no physical meanings, the relationships between those 2 and water content were influenced by many factors, such as fiber optics characteristics and physical properties of soil. The thermal conductivity method had physical significance and was only related to the physical properties of soil. Moreover, the relationship between thermal conductivity and water content had been studied, and a lot of thermal conductivity models have been developed, which provided a simple and feasible method for estimating water content through soil thermal conductivity. Therefore, it was very attractive to measure water content by the active heating fiber optics-DTS using thermal conductivity method. This study provides guidance for water content measurement methods using DTS. It is of great significance to develop high-time-resolution in-situ monitoring techniques for soil water content at different spatial scales, and the ultimate goal is to accurately understand the water content dynamics in the field to guide the precision irrigation.
soils; water content; thermal conductivity; fiber optics;carbon-fiber; distributed temperature sensor
10.11975/j.issn.1002-6819.2019.10.006
S152.8
A
1002-6819(2019)-10-0042-08
2018-09-23
2019-03-10
國家自然科學(xué)基金項(xiàng)目(41601222、41630860);西北農(nóng)林科技大學(xué)基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(2452017317)
胡 優(yōu),博士生,主要從事分布式光纖測(cè)定土壤水熱性質(zhì)的研究。Email:hyagriwater@126.com。
司炳成,教授,主要從事土壤水文方面的研究。Email:bingchengsi@sina.com。
胡 優(yōu),李 敏,任姮燁,司炳成.基于加熱光纖分布式溫度傳感器的土壤含水率測(cè)定方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(10):42-49. doi:10.11975/j.issn.1002-6819.2019.10.006 http://www.tcsae.org
Hu You, Li Min, Ren Hengye, Si Bingcheng. Measurement of soil water content using distributed temperature sensor with heated fiber optics [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(10): 42-49. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.10.006 http://www.tcsae.org