亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        一維M形勢壘透射系數(shù)的計(jì)算與分析*

        2019-06-29 07:32:38吳仍來
        物理通報(bào) 2019年7期
        關(guān)鍵詞:勢壘方形形勢

        吳仍來

        (嶺南師范學(xué)院物理科學(xué)與技術(shù)學(xué)院 廣東 湛江 524048)

        1 引言

        在經(jīng)典力學(xué)的范疇,宏觀物體不能跨越比其動(dòng)能大的勢壘,該類經(jīng)典力學(xué)案例最常見的有兩種,其一,小球克服重力勢能跨越斜木板問題:斜木板頂端和底端的重力勢能差大于小球初始動(dòng)能時(shí),從底端出發(fā)的小球不可能跨過斜木板;其二,帶電粒子克服電勢能跨越電容器的兩個(gè)極板問題:電容器兩極板的電勢能差值大于帶電粒子的初始動(dòng)能時(shí),從極板低電勢能一端出發(fā)的帶電粒子不能到達(dá)另一極板.從上面兩個(gè)案例可知經(jīng)典力學(xué)表現(xiàn)出很強(qiáng)的因果定律,在力的作用下,物體具有決定性的運(yùn)動(dòng)狀態(tài).但是同樣的兩個(gè)案例,如果將物體的尺寸都減小到微觀領(lǐng)域納米量級(jí),經(jīng)典力學(xué)的決定性結(jié)果將不再成立.這時(shí)物體變成微觀粒子,波粒二象性的特征非常顯著,其運(yùn)動(dòng)狀態(tài)服從量子力學(xué)中波函數(shù)描述的結(jié)果,并可能導(dǎo)致與經(jīng)典力學(xué)完全相違背的結(jié)果出現(xiàn)[1],即:微觀物體能夠貫穿比其動(dòng)能大的勢壘,這種勢壘貫穿現(xiàn)象在量子力學(xué)領(lǐng)域被稱為隧道效應(yīng).隧道效應(yīng)在顯微技術(shù)領(lǐng)域具有相當(dāng)重要的應(yīng)用價(jià)值,催生了掃描隧道電子顯微鏡的誕生[1].針對勢壘貫穿問題,很多教材和文獻(xiàn)都進(jìn)行了討論,最典型的有量子力學(xué)教材中方形勢壘的貫穿問題[1,2],此外,文獻(xiàn)[3]分析了一維多個(gè)位勢結(jié)構(gòu)的透射系數(shù),并對其中的諧振隧穿現(xiàn)象進(jìn)行了討論;文獻(xiàn)[4]計(jì)算了一維梯形勢壘的透射系數(shù),并討論了透射系數(shù)隨勢壘斜率的變化;文獻(xiàn)[5]計(jì)算了一維三角形多勢壘結(jié)構(gòu)的共振透射系數(shù).上述研究從不同結(jié)構(gòu)出發(fā),對一維體系的勢壘貫穿現(xiàn)象進(jìn)行了分析和討論.基于上述研究結(jié)果,本文設(shè)計(jì)了一維M型勢壘結(jié)構(gòu),該結(jié)構(gòu)對應(yīng)著部分量子點(diǎn)內(nèi)部的勢能分布情況,當(dāng)微觀粒子(如電子)透過M形勢壘時(shí),其透射系數(shù)的分析對其電導(dǎo)和輸運(yùn)特性非常重要,因此本文利用薛定諤方程對電子通過M形勢壘時(shí)的透射系數(shù)進(jìn)行了求解和數(shù)值分析.

        2 理論模型和求解

        (1)

        圖1 M形勢壘的模型圖

        從經(jīng)典力學(xué)的角度,當(dāng)電子的能量E小于勢壘的高度U0,則電子不能到達(dá)勢壘的Ⅱ,Ⅲ,Ⅳ區(qū).但是經(jīng)典力學(xué)只能求解宏觀粒子低速運(yùn)動(dòng)問題,對于微觀粒子,應(yīng)該用量子力學(xué)方法求解.式(1)中勢能分布與時(shí)間無關(guān),反映微觀粒子全部運(yùn)動(dòng)狀態(tài)的波函數(shù)滿足一維定態(tài)薛定諤方程[1,2]

        (2)

        式中m為電子的有效質(zhì)量,?為普朗克常量,E為電子的本征能量,Ψ(x)為屬于本征能量E的本征波函數(shù).這里為了簡便,忽略勢壘對電子有效質(zhì)量的影響,默認(rèn)電子的有效質(zhì)量為其靜止質(zhì)量,m=9.1×10-31kg.

        接下來在每個(gè)勢壘區(qū)列出定態(tài)薛定諤方程,并分別進(jìn)行求解.

        在Ⅰ區(qū)和Ⅳ區(qū),電子的波函數(shù)均滿足

        (3)

        式(3)可簡化為

        (4)

        則Ⅰ區(qū)電子波函數(shù)的通解可表示為

        ΨⅠ(x)=AⅠeikx+BⅠe-ikx

        (5)

        式(5)中ΨⅠ(x)的下標(biāo)Ⅰ表示波函數(shù)的取值范圍在Ⅰ區(qū),下文波函數(shù)的表示方法均類似,AⅠ和BⅠ為波函數(shù)的待定系數(shù),AⅠeikx表示Ⅰ區(qū)向x正方向運(yùn)動(dòng)的電子的波函數(shù),即電子的入射波函數(shù);BⅠe-ikx表示Ⅰ區(qū)向x負(fù)方向運(yùn)動(dòng)的電子的波函數(shù),即電子的反射波函數(shù).同理,Ⅳ區(qū)電子的波函數(shù)可表示為

        ΨⅣ(x)=AⅣeikx+BⅣe-ikx

        (6)

        上式中AⅣ和BⅣ為Ⅳ區(qū)電子波函數(shù)的待定系數(shù),AⅣeikx表示Ⅳ區(qū)向x正方向運(yùn)動(dòng)的電子的波函數(shù),即透射后電子的波函數(shù);BⅣe-ikx表示Ⅳ區(qū)向x負(fù)方向運(yùn)動(dòng)的電子的波函數(shù).由于電子是從左邊入射,到達(dá)右邊Ⅳ區(qū)后不會(huì)再有反射,所以Ⅳ區(qū)的電子只能向右運(yùn)動(dòng),因此BⅣ=0.

        在Ⅱ區(qū),電子的波函數(shù)滿足

        EΨⅡ(x)

        (7)

        式(7)可簡化為

        (8)

        上式為Airy方程[5,6],其解為第一類艾里函數(shù)Ai(ξ)和第二類艾里函數(shù)Bi(ξ)的線性組合

        ΨⅡ(ξ)=AⅡAi(ξ)+BⅡBi(ξ)

        (9)

        式中AⅡ和BⅡ?yàn)棰騾^(qū)電子波函數(shù)的待定系數(shù).

        在Ⅲ區(qū),電子的波函數(shù)滿足

        EΨⅢ(x)

        (10)

        式(10)亦可簡化為Airy方程

        (11)

        則Ⅲ區(qū)電子的波函數(shù)可表示為Ai(ζ)和Bi(ζ)的線性組合

        ΨⅢ(ζ)=AⅢAi(ζ)+BⅢBi(ζ)

        (12)

        式中AⅢ和BⅢ為Ⅲ區(qū)電子波函數(shù)的待定系數(shù).

        AⅠ+BI=AⅡAi(ξI)+BⅡBi(ξI)

        (13)

        ikAⅠ-ikBⅠ=

        -κAⅡAi'(ξⅠ)-κBⅡBi′(ξI)

        (14)

        上面兩式中

        AⅡAi(ξⅡ)+BⅡBi(ξⅡ)=

        AⅢAi(ζⅡ)+BⅢBi(ζⅡ)

        (15)

        -κAⅡAi′(ξⅡ)-κBⅡBi′(ξⅡ)=

        κAⅢAi′(ζⅡ)+κBⅢBi′(ζⅡ)

        (16)

        在式(15)和(16)中

        AIVeika=AⅢAi(ζI)+BⅢBi(ζⅠ)

        (17)

        ikAIVeika=

        κAⅢAi′(ζⅠ)+κBⅢBi′(ζⅠ)

        (18)

        式(17)和(18)中

        對應(yīng)x=a時(shí)ζ的取值,根據(jù)對比有

        ξⅠ=ζⅠ

        u=Ai(ξⅠ)σ=Bi(ξⅠ)

        u′=Ai′(ξⅠ)σ′=Bi′(ξⅠ)

        c=Ai(ξⅡ)d=Bi(ξⅡ)

        c′=Ai′(ξⅡ)d′=Bi′(ξⅡ)

        式(13)~(18)可分別簡化為

        AⅠ+BⅠ=uAⅡ+σBⅡ

        (19)

        (20)

        cAⅡ+dBⅡ=cAⅢ+dBⅢ

        (21)

        (22)

        AIVeika=uAⅢ+σBⅢ

        (23)

        (24)

        利用ik乘以式(23)再減去式(24)得

        (25)

        上式中

        α=κu′-iku

        β=κσ′-ikσ

        將式(25)代入式(23)得

        (26)

        上式中利用了艾里函數(shù)的性質(zhì):對于任意的變量ξ,艾里函數(shù)滿足朗斯基行列式

        即有

        將式(26)代入式(25)得

        (27)

        (28)

        AⅡ=π(cd′+c′d)AⅢ+2πd′dBⅢ

        (29)

        利用ik乘以式(19)再加上式(20)得

        2ikAⅠ=-αAⅡ-βBⅡ

        (30)

        將式(28)和(29)代入式(30)得

        2ikAⅠ=

        -α[π(cd′+c′d)AⅢ+2πd′dBⅢ]+

        (31)

        將式(26)和(27)代入式(31),并整理公式可得

        (32)

        由式(32)可得M形勢壘電子的透射系數(shù)

        (33)

        對于寬度為a,高度為U0的方形勢壘,透射系數(shù)的表達(dá)式為[1]

        (34)

        上式中

        3 數(shù)值計(jì)算與分析

        基于式(33)和(34),下面通過數(shù)值求解畫出透射系數(shù)隨入射電子的能量、勢壘的高度和寬度的變化圖像.

        圖2給出透射系數(shù)隨電子能量的變化,其中勢壘高度U0=1.0 eV,勢壘寬度a=0.8 nm.實(shí)線M形勢壘的結(jié)果顯示:當(dāng)電子的能量為0.68 eV時(shí),透射系數(shù)為1,此時(shí)電子發(fā)生了諧振隧穿,M形勢壘相對電子的運(yùn)動(dòng)來說是透明的;在諧振隧穿前,透射系數(shù)會(huì)隨電子能量的增加而增加;在諧振隧穿后,透射系數(shù)隨電子能量的增加會(huì)有個(gè)減小的過程.虛線方形勢壘的結(jié)果給出,只有電子的能量大于勢壘的高度1.0 eV時(shí),方形勢壘才會(huì)出現(xiàn)諧振隧穿.這意味著M形勢壘比方形勢壘更方便電子諧振隧穿,因?yàn)镸形勢壘比方形勢壘中間多了個(gè)V形勢阱,所以能在入射電子的能量小于勢壘高度時(shí)就發(fā)生諧振隧穿.圖2結(jié)果還顯示,即使入射電子的能量大于勢壘的高度,M形和方形勢壘電子的透射率也可能小于1,只有當(dāng)入射電子的能量遠(yuǎn)遠(yuǎn)大于勢壘的高度時(shí),透射系數(shù)才會(huì)一直接近于1.

        圖2 透射系數(shù)隨電子能量的變化

        圖3給出透射系數(shù)隨勢壘高度的變化,其中入射電子的能量E=1.0 eV,勢壘寬度a=0.8 nm.M形勢壘的結(jié)果顯示,在U0=1.97E時(shí)電子會(huì)發(fā)生諧振隧穿,在諧振隧穿前,隨著勢壘高度的增加透射系數(shù)先減小后增加,在諧振隧穿后,透射系數(shù)隨勢壘高度的增加單調(diào)下降,直到透射系數(shù)接近于零.

        圖3 透射系數(shù)隨勢壘高度的變化

        對比圖3中M形勢壘和方形勢壘的結(jié)果,可發(fā)現(xiàn):在U0<0.66E時(shí),M形勢壘的透射系數(shù)一直比方形勢壘的更?。辉赨0>0.66E時(shí),M形勢壘的透射系數(shù)一直比方形勢壘的更大.這說明在低勢壘區(qū),電子更容易透射方形勢壘,而在高勢壘區(qū),電子更容易透射M形勢壘.

        圖4給出透射系數(shù)隨勢壘寬度的變化,其中入射電子的能量E=1.0 eV.不同小圖中,勢壘的高度U0不同.結(jié)果顯示,U0=0.8E時(shí),無論M形勢壘還是方形勢壘,透射系數(shù)隨著勢壘寬度的增加都近乎呈現(xiàn)周期性的諧振隧穿,且最小透射系數(shù)大于0.5;U0=E時(shí),隨勢壘寬度的增加,方形勢壘的透射系數(shù)迅速單調(diào)下降,但M形勢壘的透射系數(shù)還是近乎周期性地呈現(xiàn)諧振隧穿,再次反映M形勢壘相比方形勢壘更容易發(fā)生諧振隧穿;在U0=1.5E和U0=2E時(shí),M形勢壘的透射系數(shù)發(fā)生諧振隧穿的次數(shù)相比U0=E時(shí)減少很多,且透射系數(shù)的部分峰值已經(jīng)小于1,對應(yīng)著沒有諧振隧穿產(chǎn)生;在U0=4E時(shí),M形勢壘中雖然有透射峰的出現(xiàn),但已經(jīng)不會(huì)出現(xiàn)諧振隧穿;在U0=5E時(shí),更是連透射峰都消失了,透射系數(shù)隨勢壘寬度的增加迅速單調(diào)衰減至零.上述結(jié)果表明,勢壘高度與電子的能量差不多大時(shí),M形勢壘中才容易出現(xiàn)諧振隧穿,隨著勢壘高度的增加,M形勢壘中發(fā)生諧振隧穿的次數(shù)會(huì)越來越少,直至沒有諧振隧穿產(chǎn)生.

        圖4 透射系數(shù)隨勢壘寬度的變化

        4 結(jié)論

        本文構(gòu)造了一維M形勢壘的模型,基于薛定諤方程的求解,給出了M形勢壘中透射系數(shù)的表達(dá)式,并數(shù)值分析了透射系數(shù)隨入射電子的能量、勢壘高度和寬度的變化情況.結(jié)果表明,在勢壘高度不變時(shí),達(dá)到諧振隧穿前,透射系數(shù)會(huì)隨入射電子的能量的增加而增加,且當(dāng)電子的能量小于勢壘的高度時(shí),M形勢壘中依然會(huì)出現(xiàn)諧振隧穿.在入射電子的能量不變時(shí),達(dá)到諧振隧穿前,隨著勢壘高度的增加透射系數(shù)會(huì)先減小后增加,在諧振隧穿后,隨勢壘高度的增加透射系數(shù)單調(diào)下降直至為零.在入射電子的能量不變時(shí),若勢壘高度與電子能量相當(dāng),透射系數(shù)隨著勢壘寬度的增加會(huì)近乎呈現(xiàn)周期性的諧振隧穿,當(dāng)勢壘的高度逐漸變大,M形勢壘中發(fā)生諧振隧穿的次數(shù)會(huì)越來越少,最后會(huì)沒有諧振隧穿產(chǎn)生.進(jìn)一步,本文將M形勢壘的透射系數(shù)和方形勢壘的透射系數(shù)做了比較,發(fā)現(xiàn)M形勢壘比方形勢壘更容易出現(xiàn)諧振隧穿,在低勢壘區(qū),電子更容易透射方形勢壘,而在高勢壘區(qū),電子更容易透射M形勢壘.

        猜你喜歡
        勢壘方形形勢
        方形料倉堵料解決方法
        捕捉方形泡泡
        方形夾具在線切割切槽的應(yīng)用
        哈爾濱軸承(2021年4期)2021-03-08 01:00:48
        變方形
        溝道MOS 勢壘肖特基(TMBS)和超級(jí)勢壘整流器
        電子制作(2017年19期)2017-02-02 07:08:45
        論我國器官移植面臨的新形勢及其立法需求
        勢壘邊界對共振透射的影響
        東南亞地區(qū)形勢:2015年
        東南亞研究(2015年2期)2015-02-27 08:30:45
        熔合勢壘形狀的唯像研究
        熔合勢壘厚度對熔合截面的影響
        国产女人乱码一区二区三区| 日本亚洲欧美高清专区| 亚洲成a人片在线观看中文!!!| 国产亚洲日本精品二区| 插鸡网站在线播放免费观看| 另类内射国产在线| 久久国产影视免费精品| 无码熟妇人妻av在线影片| 亚洲AV无码永久在线观看| 国产黄色一级到三级视频| 色大全全免费网站久久| 亚洲日韩av无码中文字幕美国| 狼友AV在线| 精品人妻午夜中文字幕av四季| 国色天香社区视频在线| 精品无码中文视频在线观看| 国产激情一区二区三区成人免费| 久久久精品少妇—二区| 国产98色在线 | 国产| 亚洲精品国产v片在线观看| 久久久久亚洲AV无码去区首| 免费观看人妻av网站| 久久99精品九九九久久婷婷| 国产a级网站| 牛仔裤人妻痴汉电车中文字幕| 精品精品国产高清a毛片 | 国产成人无码区免费网站| 久久久诱惑一区二区三区| 日本黑人乱偷人妻在线播放| 日韩毛片无码永久免费看| 亚洲天堂中文| 搞黄色很刺激的网站二区| √天堂资源中文www| 抽搐一进一出试看60秒体验区| 亚洲国产不卡av一区二区三区| 国产亚洲精品av一区| 麻豆果冻传媒在线观看| 亚洲精品天堂av免费看| 亚洲岛国一区二区三区| 色播亚洲视频在线观看| 亚洲色大成在线观看|