易敏,呂青,劉柯柯,王禮君,吳玉嬌,周澤揚(yáng),龍夢(mèng)嫻
?
家蠶微孢子蟲(chóng)極管蛋白2(NbPTP2)的表達(dá)、純化和定位特征
易敏1,2,呂青1,劉柯柯1,王禮君1,吳玉嬌1,周澤揚(yáng)1,龍夢(mèng)嫻1,2
(1西南大學(xué)家蠶基因組生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室/微孢子蟲(chóng)感染與防控重慶市重點(diǎn)實(shí)驗(yàn)室,重慶 400715;2西南大學(xué)生物技術(shù)學(xué)院,重慶 400715)
【目的】微孢子蟲(chóng)是一種細(xì)胞內(nèi)專性寄生的真核生物,幾乎能感染所有生物,包括人類。極管作為微孢子蟲(chóng)特有的侵染器官,主要由極管蛋白組成。極管蛋白在微孢子蟲(chóng)侵染宿主與穩(wěn)定孢子結(jié)構(gòu)中發(fā)揮重要作用。本研究通過(guò)克隆、表達(dá)家蠶微孢子蟲(chóng)()極管蛋白2(NbPTP2),分析其在成熟孢子極管上的定位特征,為深入研究極管蛋白的功能打下基礎(chǔ)?!痉椒ā靠寺〖倚Q微孢子蟲(chóng)。利用Expasy、SignalP 4.1、TMHMM Server V.2.0和NetPhos 3.1 Server等在線軟件對(duì)NbPTP2的序列特征進(jìn)行分析,包括氨基酸組成、蛋白質(zhì)理論分子量、等電點(diǎn)、信號(hào)肽、跨膜結(jié)構(gòu)域和磷酸化位點(diǎn)。此外,利用MEGA 7.0軟件構(gòu)建不同種屬微孢子蟲(chóng)極管蛋白2的系統(tǒng)進(jìn)化樹(shù)。通過(guò)克隆,將其與原核表達(dá)載體pET32a(+)連接,構(gòu)建pET32a(+)-NbPTP2重組表達(dá)質(zhì)粒。將測(cè)序正確的重組質(zhì)粒轉(zhuǎn)化到大腸桿菌Rosetta中,IPTG誘導(dǎo)異源表達(dá),經(jīng)鎳柱親和層析純化融合蛋白后免疫新西蘭大白兔制備多克隆抗體。利用免疫印跡檢測(cè)NbPTP2在成熟孢子中的表達(dá)情況,并通過(guò)間接免疫熒光試驗(yàn)(IFA)分析NbPTP2在家蠶微孢子蟲(chóng)成熟孢子中的定位特征?!窘Y(jié)果】成功克隆并獲得長(zhǎng)為834 bp的基因序列,該蛋白編碼278個(gè)氨基酸殘基,理論分子質(zhì)量為30.9 kD,等電點(diǎn)為9.39,無(wú)跨膜結(jié)構(gòu)域,N端存在信號(hào)肽,具有潛在的磷酸化修飾位點(diǎn)。系統(tǒng)進(jìn)化樹(shù)分析結(jié)果顯示,家蠶微孢子蟲(chóng)NbPTP2與西方蜜蜂微孢子蟲(chóng)NaPTP2、東方蜜蜂微孢子蟲(chóng)NcPTP2的親緣關(guān)系最近。Western blot結(jié)果表明,編碼的蛋白質(zhì)在成熟孢子的孢子總蛋白中有表達(dá),分子量大小約為39 kD。IFA定位特征分析結(jié)果顯示,NbPTP2能定位于家蠶微孢子蟲(chóng)的整條極管上,證實(shí)其為一種極管蛋白?!窘Y(jié)論】明確了NbPTP2與其他微孢子蟲(chóng)極管蛋白2的親緣關(guān)系,NbPTP2在成熟家蠶微孢子蟲(chóng)中有表達(dá),且能定位于微孢子蟲(chóng)發(fā)芽后的整條極管上。研究結(jié)果可為極管的結(jié)構(gòu)解析與極管蛋白功能的研究提供依據(jù)。
家蠶;家蠶微孢子蟲(chóng);極管蛋白2;原核表達(dá);定位分析
【研究意義】家蠶微孢子蟲(chóng)()能夠在侵染宿主家蠶()后通過(guò)快速的水平傳播和經(jīng)卵垂直傳播引發(fā)家蠶微粒子病,給我國(guó)乃至世界蠶業(yè)生產(chǎn)帶來(lái)巨大經(jīng)濟(jì)損失[1-2]。極管作為微孢子蟲(chóng)特有的侵染器官,主要由極管蛋白組成。極管蛋白在微孢子蟲(chóng)侵染宿主與穩(wěn)定孢子結(jié)構(gòu)中發(fā)揮重要功能。因此,對(duì)家蠶微孢子蟲(chóng)極管蛋白基因進(jìn)行鑒定及定位分析,可對(duì)后續(xù)微孢子蟲(chóng)極管蛋白的生物學(xué)功能研究提供有利參考?!厩叭搜芯窟M(jìn)展】微孢子蟲(chóng)是微孢子蟲(chóng)門中的一類胞內(nèi)專性寄生的真核生物[3-4]。其宿主十分廣泛,能感染幾乎所有的無(wú)脊椎動(dòng)物和脊椎動(dòng)物,甚至免疫功能不全的艾滋病病人與癌癥患者[5-7]。不同宿主來(lái)源的微孢子都具有相似的侵染機(jī)制,即成熟孢子能在特殊外界環(huán)境刺激下迅速?gòu)棾鰳O管,隨后具有感染性的孢原質(zhì)通過(guò)這根中空的極管運(yùn)輸?shù)剿拗骷?xì)胞中,以此開(kāi)啟新的生命周期[8-11]。研究發(fā)現(xiàn),極管由兩個(gè)主要部分構(gòu)成,即前端垂直區(qū)域和后部螺旋區(qū)域。前端垂直部分也稱為極柄,片狀極膜層圍繞在其周圍;后螺旋區(qū)呈4—30圈的螺旋狀,不同種屬微孢子蟲(chóng)的極管圈數(shù)不相同[12-13]。未彈出的極管會(huì)規(guī)則盤繞在孢原質(zhì)周圍;彈出后的極管直徑為0.1—0.2 μm,其長(zhǎng)度約為50—150 μm。極管溶解特性比較特殊,它能溶于DTT或-巰基乙醇等還原劑中[14-15],但不溶于1%—3% SDS、1% Triton X-100、1%—10% H2O2等溶液中[16]。極管主要由蛋白質(zhì)組成,目前經(jīng)過(guò)鑒定的極管蛋白分別為PTP1、PTP2、PTP3、PTP4和PTP5[17-21]。PTP1是一種主要極管蛋白,富含脯氨酸,可使肽鏈具有一定的硬度和韌性[22],PTP1在維持極管的結(jié)構(gòu)穩(wěn)定和運(yùn)輸孢原質(zhì)等過(guò)程中具有關(guān)鍵作用[12,23]。PTP2的預(yù)測(cè)分子量大小約為30 kD,N端具有信號(hào)肽,不溶于SDS,但易溶于DTT還原劑[24],具有保守的半胱氨酸位點(diǎn),推測(cè)PTP2通過(guò)形成蛋白聚合體發(fā)揮維持極管結(jié)構(gòu)穩(wěn)定的功能[14,25]。PTP3富含谷氨酸和天冬氨酸,且蛋白分子量明顯大于PTP1和PTP2,約為150 kD。其溶解性與PTP1、PTP2相反,PTP3可溶于SDS卻不能溶于DTT類還原劑中[18]。在極管形成過(guò)程中,PTP3可能與PTP1、PTP2具有離子鍵的相互作用,可作為其他極管蛋白組裝的支架蛋白[10,18]。最新研究從海倫腦炎微孢子中鑒定得到PTP4,確定其能與宿主細(xì)胞的轉(zhuǎn)鐵蛋白受體1發(fā)生相互作用,影響微孢子蟲(chóng)對(duì)宿主的侵染[26]。PTP5也在兔腦炎微孢子蟲(chóng)()中得到了鑒定,PTP4、PTP5基因座位類似于PTP1/PTP2,二者也位于同一個(gè)基因簇中,但關(guān)于PTP5與其他蛋白的相互作用與聯(lián)系還未知[20,27]。【本研究切入點(diǎn)】迄今,家蠶微孢子蟲(chóng)全基因序列測(cè)序分析已經(jīng)完成[28],但有關(guān)家蠶微孢子蟲(chóng)極管蛋白基因的研究鮮有報(bào)道,僅限于對(duì)NbPTP1的定位及其糖基化修飾特征進(jìn)行了研究[29-30]。而對(duì)極管蛋白2(NbPTP2)的基因克隆、表達(dá)和定位分析尚未見(jiàn)報(bào)道?!緮M解決的關(guān)鍵問(wèn)題】以家蠶微孢子蟲(chóng)為材料,鑒定NbPTP2的表達(dá)和定位特征,為解析家蠶微孢子蟲(chóng)極管結(jié)構(gòu)、闡明侵染機(jī)制以及微孢子蟲(chóng)病的有效防治提供重要參考。
試驗(yàn)于2018年在西南大學(xué)家蠶基因組生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室完成。
1.1.1 菌株與載體 大腸桿菌()DH5和Rosetta感受態(tài)細(xì)胞購(gòu)買自重慶靈精生物有限公司;家蠶微孢子蟲(chóng)CQ1株(保藏號(hào):CVCC102059)和pET-32a(+)表達(dá)質(zhì)粒由本實(shí)驗(yàn)室保存。
1.1.2 實(shí)驗(yàn)動(dòng)物 新西蘭大白兔購(gòu)于重慶恩斯維爾生物科技有限公司。
1.1.3 數(shù)據(jù)來(lái)源 家蠶微孢子蟲(chóng)CQ1株的基因組數(shù)據(jù)來(lái)源于本實(shí)驗(yàn)室測(cè)序數(shù)據(jù)庫(kù)(http://microbe.swu. edu.cn/silkpathdb/);構(gòu)建家蠶微孢子蟲(chóng)、感染哺乳動(dòng)物微孢子蟲(chóng)和感染昆蟲(chóng)微孢子蟲(chóng)極管蛋白2的系統(tǒng)進(jìn)化樹(shù)數(shù)據(jù)來(lái)源于NCBI數(shù)據(jù)庫(kù)(http://www.ncbi.nlm. nih.gov/)。
1.1.4 試劑與儀器 PrimerSTAR Max DNA聚合酶、Ⅰ和RⅠ限制性內(nèi)切酶購(gòu)自TaKaRa公司;DNA膠回收試劑盒、Plasmid mini kit Ⅰ質(zhì)粒提取試劑盒(OMEGA)購(gòu)于范德生物科技有限公司;150—212 μm玻璃珠、弗氏佐劑、HRP標(biāo)記山羊抗兔 IgG、His-tag抗體(兔單抗)等購(gòu)于Sigma;His鎳親和層析柱(GE公司);ECL化學(xué)發(fā)光底物購(gòu)自Bio-Rad公司。核酸電泳儀DYY-12,北京六一儀器廠;UV凝膠成像系統(tǒng),Bio-Rad公司;化學(xué)發(fā)光成像系統(tǒng),四川奧卓科技有限公司;Gene Amp PCR系統(tǒng)9700,Applied Biosystems;超聲波細(xì)胞粉碎儀JY92-2D,寧波新芝生物科技股份有限公司;激光共聚焦顯微鏡FV1200,奧林巴斯(中國(guó))有限公司。
根據(jù)(GenBank登錄號(hào):HQ881498.1)基因序列,利用primer5.0軟件設(shè)計(jì)特異性引物 F(5′-CCGATGTTTTTATCTCTAAACCG-3′,下劃線為RI酶切位點(diǎn))和R(5′-TTTTCCTTTTTCAAGTAGAATTGGAACCAT-3′,下劃線為I酶切位點(diǎn)),以家蠶微孢子蟲(chóng)基因組DNA為模板利用聚合酶鏈?zhǔn)椒磻?yīng)(PCR)擴(kuò)增。反應(yīng)體系:Prime STAR Max 12.5 μL,模板DNA 1 μL,ddH2O 9.5 μL,正反引物各1 μL(100 μmol?L-1)。反應(yīng)條件:98℃3 min;98℃ 15 s,59℃ 15 s,72℃退火30 s,30個(gè)循環(huán);72℃ 7 min,4℃終止。擴(kuò)增得到的產(chǎn)物利用1.2%瓊脂糖凝膠電泳檢測(cè),并利用膠回收試劑盒(Gel Extraction Kit)參照說(shuō)明書步驟進(jìn)行膠回收。
通過(guò)ExPASy Proteomics Server的在線軟件Protparam(https://web.expasy.org/protparam/)對(duì)NbPTP2進(jìn)行理化性質(zhì)的分析和預(yù)測(cè);利用SignalP 4.1(http:// www.cbs.dtu.dk/services/SignalP/)在線分析NbPTP2的信號(hào)肽;應(yīng)用TMHMM Server V.2.0(http://www. cbs.dtu.dk/services/TMHMM/)程序在線預(yù)測(cè)NbPTP2的跨膜結(jié)構(gòu)域;應(yīng)用NetPhos 3.1 Server(http://www. cbs.dtu.dk/services/NetPhos/)在線預(yù)測(cè)NbPTP2中磷酸化位點(diǎn)。使用Mega 7.0軟件繪制家蠶微孢子蟲(chóng)、幾種感染昆蟲(chóng)和哺乳動(dòng)物的微孢子蟲(chóng)極管蛋白2的系統(tǒng)進(jìn)化樹(shù)。
構(gòu)建pET32a(+) -NbPTP2載體步驟如下:(1)將PCR產(chǎn)物和pET-32a(+)載體進(jìn)行雙酶切。雙酶切體系:RI(20 000 U?mL-1)與I(20 000 U?mL-1)各1 μL,10×CutSmart Buffer 5 μL,目的片段20 μL,ddH2O補(bǔ)足50 μL。37℃下反應(yīng)3 h,酶切產(chǎn)物利用1%瓊脂糖凝膠電泳檢測(cè),并利用膠回收試劑盒(Gel Extraction Kit)參照說(shuō)明書步驟進(jìn)行膠回收;(2)連接酶切產(chǎn)物:PCR雙酶切產(chǎn)物與pET32a(+) 載體雙酶切產(chǎn)物比例為7﹕1, T4DNA連接酶(400 000 U?mL-1)1 μL,10×T4DNA連接酶Buffer 1 μL,ddH2O補(bǔ)足10 μL。16℃連接過(guò)夜;(3)轉(zhuǎn)化:從-80℃取出DH5感受態(tài)細(xì)胞,將10 μL連接產(chǎn)物混入感受態(tài)中,冰上放置30 min,42℃熱激90 s,冰上放置3 min,加入500 μL LB培養(yǎng)基,180 r/min培養(yǎng)30 min后涂布至含有氨芐青霉素LB平板培養(yǎng)基上;(4)檢測(cè)陽(yáng)性克隆:37℃培養(yǎng)過(guò)夜后挑取克隆,經(jīng)菌液PCR與雙酶切驗(yàn)證正確后,將其質(zhì)粒送至生工生物工程(上海)股份有限公司進(jìn)行測(cè)序。
將測(cè)序正確的pET32a(+) -NbPTP2重組質(zhì)粒轉(zhuǎn)化Rosetta感受態(tài)細(xì)胞,陽(yáng)性克隆以1%的接種量接種于含氨芐青霉素的LB液體培養(yǎng)基中,37℃下180r/min培養(yǎng)至OD600=0.6—0.8時(shí),添加IPTG至終濃度為0.6 mmol?L-1,37℃下180r/min誘導(dǎo)表達(dá)4h。離心收集菌體,加入適量PBS重懸,同時(shí)加入適量蛋白酶抑制劑PMSF,超聲裂解后4℃下12 000 r/min離心20 min分別收集上清和沉淀進(jìn)行后續(xù)試驗(yàn)。參照GE公司鎳柱親和層析純化說(shuō)明書,純化融合蛋白,SDS-PAGE電泳檢測(cè)蛋白的表達(dá)形式。并將純化的融合蛋白樣品送上海中科新生命生物科技公司進(jìn)行蛋白質(zhì)質(zhì)譜檢測(cè)。質(zhì)譜采用蛋白質(zhì)內(nèi)切酶(Trypsin)對(duì)蛋白質(zhì)樣品進(jìn)行酶解,然后使用LC-MS/MS(nano LC-QE)對(duì)酶解后的樣品進(jìn)行分析。最后使用MASCOT等質(zhì)譜匹配軟件對(duì)LC-MS/MS數(shù)據(jù)進(jìn)行分析,同時(shí)比對(duì)Nosema bombycis uniprot數(shù)據(jù)庫(kù),獲得目標(biāo)蛋白質(zhì)定性鑒定信息。
1.6.1 多克隆抗體制備 將適量純化后的融合蛋白混合等體積的Freund佐劑(第1次為完全佐劑,之后用不完全佐劑)充分乳化,皮下注射新西蘭大白兔。每隔一周免疫1次,共免疫4次,第3周時(shí)取耳緣靜脈血清測(cè)定抗體效價(jià),第5周后進(jìn)行心臟采血,收集多克隆抗體血清,分裝后-20℃保存?zhèn)溆谩?/p>
1.6.2 免疫印跡檢測(cè) 取108個(gè)家蠶微孢子蟲(chóng),分別加入300μL RIPA裂解液、3μL蛋白酶抑制劑PMSF、20% DTT 30 μL、0.4 g玻璃珠破碎5 min,于4℃旋轉(zhuǎn)儀旋轉(zhuǎn)5 min后再次破碎,重復(fù)5次。12 000 r/min離心15 min,上清即為孢子總蛋白。將提取的孢子總蛋白質(zhì)樣品經(jīng)SDS-PAGE電泳后轉(zhuǎn)移到PVDF 膜上,封閉。按 1﹕3 000體積比稀釋的NbPTP2抗血清與PVDF膜于室溫孵育1h,TBST洗滌3次后,用 1﹕6 000體積比稀釋羊抗兔IgG室溫孵育1 h,TBST洗滌后加入ECL化學(xué)曝光底物,置于化學(xué)發(fā)光成像系統(tǒng)檢測(cè)結(jié)果。
1.6.3 間接免疫熒光檢測(cè)(IFA) 取一個(gè)載玻片利用多聚賴氨酸(0.01%,/)包被10 min后,均勻涂抹適量的家蠶微孢子蟲(chóng)。待半干時(shí)滴加適量0.1mol?L-1KOH,置于30℃恒溫培養(yǎng)箱40min誘導(dǎo)微孢子蟲(chóng)體外發(fā)芽。多聚甲醛(4%,/)固定25 min,PBST清洗。封閉液封閉2 h,清洗后利用NbPTP2抗血清與陰性血清(未經(jīng)免疫的健康新西蘭大白兔的血清作為陰性抗血清)作為一抗,4℃孵育過(guò)夜,PBST清洗。將Alexa594標(biāo)記的羊抗兔二抗37℃孵育1 h,PBST清洗。DAPI染色15 min,清洗后加入抗熒光猝滅劑封片,利用共聚焦熒光顯微鏡FV1200(奧林巴斯(中國(guó))有限公司,重慶)觀察NbPTP2在家蠶微孢子蟲(chóng)中的定位特征。
利用ExPASy Proteomics Server在線軟件Protparam對(duì)NbPTP2進(jìn)行分析和預(yù)測(cè),結(jié)果顯示NbPTP2理論分子質(zhì)量為30.9 kD,等電點(diǎn)為9.39,富含賴氨酸、谷氨酸,其中賴氨酸含量高達(dá)11.9%。利用SignalP預(yù)測(cè)NbPTP2的N端存在信號(hào)肽,NetPhos預(yù)測(cè)NbPTP2具有潛在的磷酸化位點(diǎn),TMHMMServer預(yù)測(cè)NbPTP2蛋白無(wú)跨膜區(qū)。
對(duì)多種屬微孢子蟲(chóng)PTP2蛋白進(jìn)化樹(shù)分析結(jié)果發(fā)現(xiàn)(圖1),兩種感染蜜蜂的西方蜜蜂微孢子蟲(chóng)()和東方蜜蜂微孢子蟲(chóng)()的極管蛋白2(NaPTP2和NcPTP2)與NbPTP2的距離較近,具有較高的同源性。感染哺乳動(dòng)物的微孢子蟲(chóng)極管蛋白2(EcPTP2、EiPTP2和EhPTP2)之間具有較高同源性,聚為一支,但與NbPTP2距離較遠(yuǎn),同源性較低。
圖1 不同種屬微孢子蟲(chóng)極管蛋白2系統(tǒng)進(jìn)化樹(shù)
將重組pET32a(+)-NbPTP2的質(zhì)粒,進(jìn)行PCR及雙酶切驗(yàn)證,瓊脂糖凝膠電泳檢測(cè)出現(xiàn)大小與目的片段大?。?34 bp)一致的條帶(圖2)。陽(yáng)性克隆序列測(cè)序正確。
M:DL2000 Plus Marker;1:pET32a(+)-NbPTP2重組質(zhì)粒的PCR產(chǎn)物PCR product of pET32a(+)-NbPTP2 recombinant plasmid;2:pET32a(+)- NbPTP2重組質(zhì)粒的雙酶切產(chǎn)物Double enzyme digestion product of pET32a(+)- NbPTP2 recombinant plasmid
重組質(zhì)粒轉(zhuǎn)化Rosetta表達(dá)菌株,SDS-PAGE檢測(cè)IPTG誘導(dǎo)后獲得大量NbPTP2重組蛋白,且蛋白質(zhì)主要以包涵體形式表達(dá)。參照GE公司的鎳柱純化方法得到分子量約為52 kD的融合蛋白NbPTP2-His(圖3)。經(jīng)LC-MS/MS質(zhì)譜鑒定后,證實(shí)其蛋白為NbPTP2(表1)。
利用制備的NbPTP2兔多克隆抗體對(duì)家蠶微孢子蟲(chóng)成熟孢子的總蛋白進(jìn)行Westernblot分析,結(jié)果發(fā)現(xiàn)在約39kD位置出現(xiàn)NbPTP2特異性條帶(圖4)。
間接免疫熒光試驗(yàn)結(jié)果顯示,與陰性對(duì)照相比,NbPTP2抗血清孵育后的極管發(fā)出明顯的紅色熒光,并且紅色熒光信號(hào)位于整根極管(圖5-G),說(shuō)明重組融合蛋白NbPTP2-His的抗血清夠能特異地識(shí)別發(fā)芽孢子的極管。在陰性對(duì)照中,采用未經(jīng)免疫的健康新西蘭大白兔的血清作為陰性抗血清,在間接免疫熒光試驗(yàn)結(jié)果中顯示,陰性抗血清不能與極管特異性識(shí)別發(fā)出紅色熒光(圖5-C)。彈出極管的孢子,細(xì)胞核隨孢原質(zhì)運(yùn)輸至孢殼外,因此無(wú)DAPI染色信號(hào)(圖5-D)。
M:蛋白Marker Protein Marker;1:未誘導(dǎo)的pET32a(+)-PTP2重組菌蛋白Uninduced recombinant bacterial protein ofpET32a(+)-PTP2;2:誘導(dǎo)的pET32a(+)-PTP2重組菌蛋白Induced recombinant bacterial protein ofpET32a(+)-PTP2;3:超聲破碎后的pET32a(+)-PTP2重組菌上清The supernatant of pET32a(+)-PTP2 recombinant bacteria after ultrasonic breaking;4:超聲破碎后的pET32a(+)-PTP2重組菌沉淀The precipitation of pET32a(+)-PTP2 recombinant bacteria after ultrasonic breaking;5:純化后的融合蛋白Purified fusion protein
M:EasySee Western Marker;1:孢子總蛋白 Spore total protein
自從家蠶微孢子蟲(chóng)作為第一種微孢子蟲(chóng)被發(fā)現(xiàn)以來(lái),經(jīng)過(guò)160多年不斷深入研究,至今在全球已鑒定到200余屬、1 400多種微孢子蟲(chóng)[31-32]。微孢子蟲(chóng)的宿主域廣,但所有的微孢子蟲(chóng)都具有結(jié)構(gòu)類似、功能保守的侵染器官——極管[33]。目前發(fā)現(xiàn)至少有5種極管蛋白(即PTP1—PTP5[17-21])。研究發(fā)現(xiàn)不同微孢子蟲(chóng)PTP2間的半胱氨酸位置較為保守[34],因此推測(cè)PTP2能通過(guò)形成二硫鍵,產(chǎn)生分子內(nèi)或分子間的聚合物,發(fā)揮穩(wěn)定極管的作用[10]。早期研究基于微孢子蟲(chóng)SSU rRNA進(jìn)化樹(shù)分析發(fā)現(xiàn)家蠶微孢子蟲(chóng)與西方蜜蜂微孢子蟲(chóng)的親緣關(guān)系最近,但是與哺乳動(dòng)物微孢子蟲(chóng)親緣性較遠(yuǎn)[35]。本研究中通過(guò)構(gòu)建不同種屬微孢子蟲(chóng)極管蛋白2的進(jìn)化樹(shù),得知NbPTP2與蜜蜂微孢子蟲(chóng)的NaPTP2、NcPTP2具有較高的同源性[14,36],說(shuō)明PTP2蛋白在進(jìn)化過(guò)程中與其物種的進(jìn)化具有一致性。
表1 LC-MS/MS質(zhì)譜分析融合蛋白
本研究成功誘導(dǎo)出原核表達(dá)的pET32a(+)- NbPTP2,經(jīng)預(yù)測(cè)NbPTP2的理論分子量約為30.9 kD,在誘導(dǎo)表達(dá)后實(shí)際大小為52 kD,實(shí)際值較預(yù)測(cè)值偏大,可能是表達(dá)載體所帶有的2個(gè)His標(biāo)簽(1.6kD)、Trx標(biāo)簽(11.7 kD)、S標(biāo)簽(1.7kD)及目的蛋白與Trx蛋白融合表達(dá)時(shí)連接部分的蛋白(5.1kD)等原因造成。后續(xù)LC-MS/MS質(zhì)譜鑒定結(jié)果證實(shí)了親和柱層析純化后的蛋白為NbPTP2。Western blot檢測(cè)結(jié)果顯示家蠶微孢子蟲(chóng)成熟孢子中NbPTP2的分子量為39 kD,比其理論分子量偏大,推測(cè)其蛋白進(jìn)行了翻譯后修飾,后續(xù)將對(duì)其翻譯后修飾特征進(jìn)行進(jìn)一步研究。
此外,NbPTP2的定位特征與NbPTP1相同,都是位于發(fā)芽后家蠶微孢子蟲(chóng)的整根極管[29],推測(cè)NbPTP1與NbPTP2之間存在相互作用。研究發(fā)現(xiàn)PTP1和PTP2都富含半胱氨酸[23],二者之間可以通過(guò)二硫鍵結(jié)合形成多聚體從而穩(wěn)定極管結(jié)構(gòu),保證孢原質(zhì)的順利運(yùn)輸[18,37]。在兔腦炎微孢子蟲(chóng)的極管交聯(lián)復(fù)合物中發(fā)現(xiàn)了EcPTP1、EcPTP2和EcPTP3 3種極管蛋白,在酵母雙雜交試驗(yàn)中驗(yàn)證了這3種極管蛋白是具有相互作用的,并推測(cè)PTP3在極管發(fā)育形成過(guò)程中可作為其他極管蛋白組裝的支架蛋白[18-19]。最近研究發(fā)現(xiàn),海倫微孢子蟲(chóng)極管蛋白4(EhPTP4)可以與宿主細(xì)胞表面上的轉(zhuǎn)鐵蛋白受體1發(fā)生相互作用,將孢原質(zhì)準(zhǔn)確地運(yùn)輸并釋放到宿主細(xì)胞表面的凹陷內(nèi),最終通過(guò)內(nèi)吞的方式將孢原質(zhì)運(yùn)送到宿主細(xì)胞內(nèi)進(jìn)行后續(xù)侵染、增殖過(guò)程[26]。極管蛋白通過(guò)與宿主靶蛋白間的相互作用來(lái)提高微孢子蟲(chóng)的侵染率,而對(duì)于PTP2與宿主之間相互作用關(guān)系的研究尚未報(bào)道。
A—D:陰性對(duì)照彈出的極管與陰性血清沒(méi)有熒光反應(yīng),且發(fā)芽的孢子中孢原質(zhì)被輸送到孢子外,已檢測(cè)不到細(xì)胞核The negative control showed no fluorescence reaction between the discharged polar tube and the negative serum, and the sporogen was transported outside, the fluorescence could not be detected;A、E:DIC觀察DIC observation;B、F:DAPI染色觀察DAPI staining observation;C、G:Alexa 594標(biāo)記熒光觀察Alexa 594 fluorescent observation;D、H:疊加圖Merged figures。白色箭頭所示為極管,藍(lán)色熒光為經(jīng)DAPI染色的細(xì)胞核The polar tube was indicated by white arrow, and blue fluorescence was nuclear stained by DAPI
本研究發(fā)現(xiàn),家蠶微孢子蟲(chóng)NbPTP2與感染昆蟲(chóng)微孢子蟲(chóng)PTP2具有一定的保守性,可為今后微孢子蟲(chóng)監(jiān)測(cè)提供可靠的檢測(cè)靶標(biāo)。同時(shí),定位特征分析發(fā)現(xiàn)NbPTP2能定位于家蠶微孢子蟲(chóng)的整根極管上,推測(cè)其在穩(wěn)定極管結(jié)構(gòu)中發(fā)揮重要作用。在后續(xù)的研究中也可通過(guò)RNAi等試驗(yàn)手段,探索PTP2對(duì)極管結(jié)構(gòu)的影響。
從家蠶微孢子蟲(chóng)基因組中克隆到全長(zhǎng)為834 bp的,進(jìn)化樹(shù)分析發(fā)現(xiàn)NbPTP2與蜜蜂微孢子蟲(chóng)的極管蛋白2(NaPTP2和NcPTP2)親緣關(guān)系最近。NbPTP2在家蠶微孢子蟲(chóng)中有表達(dá),分子量為39 kD。定位特征分析結(jié)果發(fā)現(xiàn)NbPTP2存在于家蠶微孢子蟲(chóng)整根極管上。研究結(jié)果可為極管的結(jié)構(gòu)解析與極管蛋白功能的研究提供依據(jù)。
[1] Pan Q, Wang L, Dang X, Ma Z, Zhang X, Chen S, Zhou Z, Xu J. Bacterium-expressed dsRNA downregulates microsporidiagene expression., 2017, 64(2): 278-281.
[2] 周澤揚(yáng), 潘國(guó)慶, 向仲懷. 家蠶微孢子蟲(chóng)研究10年回眸. 蠶業(yè)科學(xué), 2014, 40(6): 949-956.
ZHOU Z Y, PAN G Q, XIANG Z H. A retrospect on researches induring the past ten years., 2014, 40(6): 949-956. (in chinese)
[3] Stentiford G D, Feist S W, Stone D M, Bateman K S, Dunn A M. Microsporidia: diverse, dynamic, and emergent pathogens in aquatic systems.,2013, 29(11): 567-578.
[4] Nadia A E, Thomas W. Microsporidia., 2017, 2: 221-275.
[5] Stentiford G D, Becnel J J, Weiss L M, Keeling P J, Didier E S, Williams B P, Bjornson S, Kent M L, Freeman M A, Brown M J F,Troemel E R, Roesel K, Sokolova Y, Snowden K F, Solter L. Microsporidia - emergent pathogens in the global food chain., 2016, 32(4): 336-348.
[6] Gorbanzadeh B, Sadraei J. PP-171 detection ofandin stool specimens from AIDS patients by modified trichrome-blue and acid-fast trichrome staining methods., 2011, 15(Suppl. 1): S93.
[7] Texier C, Vidau C, Viguès B, El Alaoui H, Delbac F. Microsporidia: a model for minimal parasite-host interactions., 2010, 13(4): 443-449.
[8] Szumowski S C, Troemel E R. Microsporidia-host interactions., 2015, 26: 10-16.
[9] Williams B A P. Unique physiology of host-parasite interactions in microsporidia infections., 2009, 11(11): 1551-1560.
[10] Bouzahzah B, Nagajyothi F, Ghosh K, Takvorian P M, Cali A, Tanowitz H B, Weiss L M. Interactions ofpolar tube proteins., 2010, 78(6): 2745-2753.
[11] Delbac F, Polonais V. The microsporidian polar tube and its role in invasion., 2008, 47: 208-220.
[12] Xu Y J, Weiss L M. The microsporidian polar tube: a highly specialised invasion organelle., 2005, 35(9): 941-953.
[13] WITTNER M, Weiss L M.. ASM Press, 1999.
[14] Polonais V, Belkorchia A, Roussel M, Peyretaillade E, Peyret P, Diogon M, Delbac F. Identification of two new polar tube proteins related to polar tube protein 2 in the microsporidian., 2013, 346(1): 36-44.
[15] Keohane E M, Orr G A, Takvorian P M, Cali A, Tanowitz H B, Wittner M, Weiss L M. Purification and characterization of a microsporidian polar tube protein., 1996, 79(2): 255-259.
[16] Weidner E, Byrd W. The microsporidian spore invasion tube. II. Role of calcium in the activation of invasion tube discharge., 1982, 93(3): 970-975.
[17] 高永珍, 黃可威, 常智杰. 家蠶病原性微孢子蟲(chóng)極絲蛋白的研究. 蠶業(yè)科學(xué), 2001, 27(2): 128-130.
Gao Y Z, Huang K W, Chang Z J. Studies on the polar tube proteins of microsporidium pathogenic to silkworm., 2001, 27(2): 128-130. (in Chinese)
[18] Peuvel I, Peyret P, Méténier G, Vivarès C P, Delbac F. The microsporidian polar tube: evidence for a third polar tube protein (PTP3) in., 2002, 122(1): 69-80.
[19] Delbac F, Peyret P, Metenier G, David D, Danchin A, Vivarès C P. On proteins of the microsporidian invasive apparatus: complete sequence of a polar tube protein of., 1998, 29(3): 825-834.
[20] Weiss L M, Delbac F, Russell Hayman J, Pan G Q, Dang X Q, Zhou Z Y. The microsporidian polar tube and spore wall//, 2014: 261-306.
[21] Polonais V. Identification of new polar tube and spore wall proteins in different microsporidian species. First attempts for the transfection of the microsporidia[D]. France: Université Blaise Pascal - Clermont-Ferrand II, 2006.
[22] Sinsuwonkwat W, Sanyathitiseree P, Phattanakunanan S, Jala S, Lertwatcharasarakul P. Optimized codons of polar tube protein 1 gene ofto enhance protein expression in., 2016, 46(4): 579-587.
[23] BouZAHZAH B, WEISS L. Glycosylation of the major polar tube protein of., 2010, 107(3): 761-764.
[24] WEIDNER E. The microsporidian spore invasion tube. The ultrastructure, isolation, and characterization of the protein comprising the tube., 1976, 71(1): 23-34.
[25] Polonais V, PRENSIER G, Méténier G, Vivarès C P, Delbac F. Microsporidian polar tube proteins: highly divergent but closely linked genes encode PTP1 and PTP2 in members of the evolutionarily distantandgroups., 2005, 42(9): 791-803.
[26] Han B, Polonais V, Sugi T, Yakubu R, Takvorian P M, Cali A, Maier K, Long M X, Levy M, Tanowitz H B, PAN G, DELBAC F, ZHOU Z, WEISS L M. The role of microsporidian polar tube protein 4 (PTP4) in host cell infection., 2017, 13(4): e1006341.
[27] Brosson D, Kuhn L, Delbac F,Garin J, Vivarès C P, Texier C. Proteomic analysis of the eukaryotic parasite(microsporidia): a reference map for proteins expressed in late sporogonial stages., 2006, 6(12): 3625-3635.
[28] Pan G, Xu J, Li T, XIA Q Y, LIU S L, ZHANG G J, LI S G, LI C F, LIU H D, YANG L,. Comparative genomics of parasitic silkworm microsporidia reveal an association between genome expansion and host adaptation., 2013, 14: 186.
[29] 吳玉嬌, 龍夢(mèng)嫻, 陳潔, 李治, 李致宏, 潘國(guó)慶, 李田, 周澤揚(yáng). 家蠶微孢子蟲(chóng)極管蛋白1 (NbPTP1)的基因克隆及原核表達(dá). 蠶業(yè)科學(xué), 2014, 40(2): 258-264.
Wu Y J, Long M X, Chen J, Li Z, Li Z H, Pan G Q, Li T, Zhou Z Y. Cloning and prokaryotic expression ofpolar tube protein 1 (NbPTP1)., 2014, 40(2): 258-264. (in Chinese)
[30] 龍夢(mèng)嫻, 譚瑤瑤, 劉柯柯, 吳玉嬌, 呂青, 潘國(guó)慶, 周澤揚(yáng). 家蠶微孢子蟲(chóng)極管蛋白1 (NbPTP1) 在果蠅S2細(xì)胞中的表達(dá)與糖基化修飾. 生物工程學(xué)報(bào), 2018, 34(9): 1460-1468.
Long M X, Tan Y Y, Liu K K, Wu Y J, Lü Q, Pan G Q, Zhou Z Y. Expression of polar tube protein 1 (NbPTP1) frominS2 cell lines and its glycosylation., 2018, 34(9): 1460-1468. (in Chinese)
[31] Keeling P J, Fast N M. Microsporidia: biology and evolution of highly reduced intracellular parasites., 2002, 56(1): 93-116.
[32] Sapir A, Dillman A R, Connon S A, Grupe B M, Ingels J, Mundo-Ocampo M, Levin L A, Baldwin J G, Orphan V J, Sternberg P W. Microsporidia-nematode associations in methane seeps reveal basal fungal parasitism in the deep sea., 2014, 5: 43.
[33] Franzen C. How do microsporidia invade cells?., 2005, 52(1/2): 36-40.
[34] DELBAC F, PEUVEL I, METENIER G, PEYRETAILLADE E, VIVARES C P. Microsporidian invasion apparatus: identification of a novel polar tube protein and evidence for clustering of ptp1 and ptp2 genes in threespecies., 2001, 69(2): 1016-1024.
[35] Chen Y P, Evans J D, Zhou L, Boncristiani H, Kimura K, Xiao T G, Litkowski A M, Pettis J S. Asymmetrical coexistence ofandin honey bees., 2009, 101(3): 204-209.
[36] Lee R C, Williams B A, BrownA M, Adamson M L, Keeling P J, Fast N M. Alpha- and beta-tubulin phylogenies support a close relationship between the microsporidiaand., 2008, 55(5): 388-392.
[37] 龍夢(mèng)嫻, 吳玉嬌, 陳潔, 潘國(guó)慶, 李春峰, 李田, 陳果, 周澤揚(yáng). 微孢子蟲(chóng)極管蛋白的研究進(jìn)展. 蠶業(yè)科學(xué), 2014, 40(5): 917-923.
LONG M X, WU Y J, CHEN J, PAN G Q, LI C F, LI T, CHEN G, ZHOU Z Y. Research progress in polar tube proteins of microsporidia., 2014, 40(5): 917-923. (in Chinese)
(責(zé)任編輯 岳梅)
Expression, Purification and Localization Analysis of Polar Tube Protein 2 (NbPTP2) from
YI Min1,2, Lü Qing1, LIU KeKe1, WANG LiJun1, WU YuJiao1, ZHOU Zeyang1, LONG MengXian1,2
(1State Key Laboratory of Silkworm Genome Biology, Southwest University/Chongqing Key Laboratory of Microsporidia Infection and Prevention, Chongqing 400715;2College of Biotechnology, Southwest University, Chongqing 400715)
【Objective】Microsporidia are eukaryotic intracellular obligate parasites that infect almost all organisms, including human. As a special infection organ, the polar tube is mainly composed of polar tube proteins. The polar tube protein plays an important role in microsporidia invasion host and maintaining the structure of polar tube. The objective of this study is to clone and expresspolar tube protein 2 (NbPTP2), analyze its localization characteristics in mature spores, and to lay a foundation for further study the function of polar tube proteins.【Method】was amplified fromgenome. The amino acid composition, theoretical molecular weight and predicted isoelectric point of NbPTP2 were analyzed by Expasy online software. SignalP 4.1 and TMHMM Server V. 2.0 were used to predict the signal peptide and transmembrane domain of NbPTP2. the phosphorylation site of NbPTP2 was analyzed by NetPhos 3.1 Server. The phylogenetic tree of NbPTP2 from different microsporidia species was constructed by MEGA 7.0.was amplified fromgenome, then ligated with prokaryotic expression vector pET32a (+). The correctly sequenced recombinant plasmid was transformed intoRosetta, and protein expression was heterologous induced by IPTG. The polyclonal antibody of NbPTP2 was prepared by immunizing New Zealand rabbits with the fusion protein by affinity chromatography purification. The expression of NbPTP2 in mature spores was detected by Western blot. Indirect immunofluorescence assay (IFA) was used to analyze the localization characteristics of NbPTP2 in mature spores of microsporidia. 【Result】Thewith a length of 834 bp was successfully cloned. The protein encodes 278 amino acid residues with a theoretical molecular weight of 30.9 kD, andisoelectric point of 9.39. Moreover, it was predicted to have a N-terminal signal peptide and potential phosphoric acid sites, but no transmembrane domain.The phylogenetic tree analysis result showed that NbPTP2 fromwas closely related to NaPTP2 fromand NcPTP2 from. Western blot result showed that NbPTP2 was expressed in mature spores ofand its molecular weight was about 39 kD. The localization analysis result of IFA indicated that NbPTP2 could locate on the whole polar tube of,and it was confirmed that NbPTP2 was a polar tube protein. 【Conclusion】The relationship between NbPTP2 and polar tube protein 2 from other microsporidia was clarified. NbPTP2 was expressed inand could be localized on the whole polar tube after germination. These results can provide a basis for polar tube structure analysis and polar tube protein function research.
silkworm ();; polar tube protein 2; prokaryotic expression; localization analysis
10.3864/j.issn.0578-1752.2019.10.015
2019-01-11;
2019-03-15
國(guó)家自然科學(xué)基金(31402138)、重慶市基礎(chǔ)科學(xué)與前沿探索項(xiàng)目(cstc2018jcyjAX0550)、西南大學(xué)科研基金(GZRY20180042)、中央高?;究蒲袠I(yè)務(wù)費(fèi)(XDJK2018AA001)、西南大學(xué)博士基金(SWU111081)
易敏,E-mail:y970417@163.com。通信作者龍夢(mèng)嫻,Tel:023-68251088;E-mail:longmx@swu.edu.cn