汪東炎,郭李萍,李豫婷,鄭 蕾,韓 雪**
?
大氣CO2濃度升高對(duì)不同穗型冬小麥灌漿動(dòng)態(tài)的影響*
汪東炎1,郭李萍1,李豫婷1,鄭 蕾2,韓 雪1**
(1. 中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所,北京 100081;2. 首都師范大學(xué)資源環(huán)境與旅游學(xué)院,北京 100048)
利用開放式空氣中CO2濃度升高系統(tǒng)(Free Air CO2Enrichment,F(xiàn)ACE),以CO2濃度為主處理,F(xiàn)ACE圈內(nèi)白天(5:30?18:00)CO2濃度550±17μL·L?1,對(duì)照濃度400±16μL·L?1,品種為副處理,選取大穗型(陜旱8675)、中穗型(京冬8號(hào))和多穗型(勝利麥)3個(gè)小麥品種為研究對(duì)象進(jìn)行實(shí)驗(yàn),研究未來CO2濃度升高條件下,不同穗型冬小麥品種籽粒灌漿特征的動(dòng)態(tài)變化。結(jié)果表明:(1)CO2濃度升高明顯增加了各品種的初始粒重。中穗型品種京冬8號(hào)灌漿前期粒重增加,但最終籽粒重?zé)o影響,其灌漿時(shí)間和平均灌漿速率影響亦不明顯;大穗型品種陜旱8675灌漿時(shí)間比對(duì)照延長19.3%,其籽粒重顯著增加,穗上、中、下部增重分別為11.0%、20.9%、23.3%,全穗增重18.8%;CO2濃度升高后多穗型品種勝利麥灌漿速率的降低抵消了灌漿時(shí)間延長對(duì)籽??傊氐男?yīng),其灌漿過程粒重增加不明顯。(2)CO2濃度升高對(duì)多穗型品種京冬8號(hào)和大穗型品種陜旱8675灌漿參數(shù)(最大灌漿速率、到達(dá)最大灌漿速率的時(shí)間、平均灌漿速率和灌漿時(shí)間)的影響均表現(xiàn)為上部和下部穗大于中部穗,而多穗型品種勝利麥中部穗各灌漿參數(shù)變化幅度明顯高于上、下部穗。(3)CO2濃度升高條件下,京冬8號(hào)和陜旱8675均表現(xiàn)為前期灌漿時(shí)間縮短,中、后期灌漿時(shí)間延長,而其在3個(gè)時(shí)期的平均灌漿速率變化正好相反;勝利麥在3個(gè)時(shí)期的灌漿時(shí)間均延長,平均灌漿速率降低。研究表明大穗型冬小麥品種比多穗型品種對(duì)大氣CO2濃度增加的響應(yīng)更明顯。
FACE;冬小麥;小麥穗型;籽粒灌漿
IPCC報(bào)告指出,自工業(yè)革命以來,大氣中CO2濃度升高了近40%,如不采取限制措施,預(yù)計(jì)到2050 年大氣CO2濃度將達(dá)到550μmol·mol?1[1]。CO2是光合作用的底物,其濃度的增加必然對(duì)作物的生長產(chǎn)生重要影響。有關(guān)大氣 CO2濃度增加對(duì)作物影響的研究方法有可控氣室法、開頂式氣室法和相關(guān)類似方法,這些方法有很大的局限性;而利用開放式空氣CO2濃度增高(Free-air carbon dioxide enrichment,F(xiàn)ACE)技術(shù)進(jìn)行研究,作物對(duì)高CO2濃度的響應(yīng)受其它氣象因素的干擾最小,是研究高CO2濃度對(duì)植物影響的最佳手段[2]。
小麥作為中國重要的糧食作物,CO2是其光合作用的底物,其濃度增加勢必對(duì)小麥的生長有重要的影響。小麥灌漿期是決定最終產(chǎn)量的重要生育階段,籽粒灌漿特征是影響籽粒產(chǎn)量的重要生理性狀,對(duì)其研究可為籽粒產(chǎn)量目標(biāo)制定及育種策略抉擇提供重要依據(jù)[3]。因此,明確CO2濃度升高對(duì)冬小麥灌漿動(dòng)態(tài)的影響具有重要意義。
近年來,F(xiàn)ACE實(shí)驗(yàn)研究表明,開放式CO2濃度升高對(duì)小麥產(chǎn)量構(gòu)成因素、生育期、光合作用等[4-5]有一定影響。CO2濃度升高促進(jìn)小麥顯著增產(chǎn)主要是由于單位面積穗數(shù)顯著增加[4],但在超高產(chǎn)條件下,單位面積上成穗數(shù)出現(xiàn)飽和現(xiàn)象,靠進(jìn)一步提高分蘗成穗率,增加單位面積穗數(shù)較困難[6]。一些成穗率偏低而穗粒重高,具有較大增產(chǎn)潛力的大穗型品種逐漸受到重視。在20世紀(jì)70年代就有學(xué)者提出育種3個(gè)“品種模式”設(shè)想,即大穗型、中穗型和多穗型,中穗型小麥較穩(wěn)產(chǎn),大穗型相比多穗型小麥增產(chǎn)潛力大[7]。各地區(qū)生態(tài)條件和品種特性不同,小麥產(chǎn)量構(gòu)成也表現(xiàn)出多樣性,但歸納起來也即上述3種類型[8]。因此,研究未來大氣CO2濃度增加條件下此3種類型小麥灌漿動(dòng)態(tài)變化具有重要意義。
張凱等[9-10]研究了在FACE條件下春小麥的灌漿特性及產(chǎn)量響應(yīng)。張玲麗等[11-12]研究過大穗型、中穗型、多穗型小麥的源庫關(guān)系及小花發(fā)育與結(jié)實(shí)特性,但是關(guān)于不同穗型冬小麥品種(大穗型、中穗型和多穗型)在高CO2濃度條件下的灌漿動(dòng)態(tài)差異,麥穗不同部位的籽粒灌漿動(dòng)態(tài)的差別,目前尚缺乏報(bào)道。因此,本研究利用FACE平臺(tái),對(duì)大穗型品種陜旱8675、中穗型品種京冬8號(hào)、多穗型品種勝利麥的籽粒全穗和不同穗部位的灌漿動(dòng)態(tài)進(jìn)行研究,以期明確大氣CO2濃度升高對(duì)不同穗型冬小麥灌漿的影響。
實(shí)驗(yàn)于2015年在中國農(nóng)業(yè)科學(xué)院昌平miniFACE實(shí)驗(yàn)基地(40.13°N,116. 14°E)進(jìn)行,該地為暖溫帶、半濕潤大陸性季風(fēng)氣候、褐潮土類型,常年為冬小麥/大豆輪作模式。土壤有機(jī)質(zhì)含量14.10g·kg?1,全氮0.82g·kg?1,速效磷20.0mg·kg?1,速效鉀79.8mg·kg?1,pH8.33。
供試材料為3個(gè)穗型冬小麥品種,包括大穗型品種陜旱8675,中穗型品種京冬8號(hào),多穗型品種勝利麥。陜旱8675是陜西省小麥研究中心旱地小麥種組選育的小麥新品種,矮稈、穗大、抗倒伏、抗旱、穩(wěn)產(chǎn)、分蘗力強(qiáng)等[13];京冬8號(hào)由北京市農(nóng)林科學(xué)院以“中間型”育種模式育成,粒大、穗重[14];勝利麥源自美國中東部,是當(dāng)?shù)刂鳟a(chǎn)推廣品種,其特點(diǎn)是抗銹、耐肥、粒大、株高、穗小而多。
實(shí)驗(yàn)時(shí)間為2015年4?6月,采用開放式CO2濃度升高(FACE)系統(tǒng)[15]進(jìn)行實(shí)驗(yàn)。FACE圈直徑4m,正八邊形。圈中心設(shè)有CO2傳感器和風(fēng)速風(fēng)向傳感器,由主控計(jì)算機(jī)根據(jù)圈內(nèi)CO2濃度控制氣體的釋放,F(xiàn)ACE圈內(nèi)CO2目標(biāo)濃度為550μL·L?1。在田間設(shè)置6個(gè)FACE處理圈,6個(gè)同樣大小的大氣圈為對(duì)照(AMB)。白天(5:30?18:00)FACE圈內(nèi)CO2濃度為550±17μL·L?1,對(duì)照圈內(nèi)CO2濃度為400±16μL·L?1,除CO2濃度不同外,大氣圈和FACE圈的其它實(shí)驗(yàn)條件都一致。實(shí)驗(yàn)采取兩因素裂區(qū)設(shè)計(jì),3次重復(fù)。CO2濃度為主處理,設(shè)對(duì)照(Ambient CO2,400±16μL·L?1)和高濃度CO2(Elevated CO2,550±17μL·L?1)兩個(gè)水平。品種為副處理,選取大穗型(陜旱8675)、中穗型(京冬8號(hào))和多穗型(勝利麥)小麥3種材料為研究對(duì)象進(jìn)行實(shí)驗(yàn)。
全生育期施氮量為188kgN·hm?2,其中底肥施N量為118kgN·hm?2,追肥施N量為70kgN·hm?2,磷肥和鉀肥僅作底肥,施用量分別為165kg·hm?2(P2O5)和90kg·hm?2(KO2)。底肥于播種前一天施用,追肥于小麥拔節(jié)期施用。全生育期灌水定額為750m3·hm?2,平均分成越冬水和拔節(jié)水兩次灌溉。
在開花期選擇同日開花的主莖掛牌標(biāo)記,分部位進(jìn)行取樣和統(tǒng)計(jì)。麥穗上、中、下部穗的劃分方法為:將整穗一次枝梗平分為3部分,遇不能平分時(shí),則上、下部均取平均數(shù)的整數(shù)部分,多余部分劃入中部穗。將試驗(yàn)品種50%麥穗中部小穗開花完成時(shí)期定為開花期,標(biāo)記同一日開花主莖麥穗30株,分別于開花當(dāng)天算起,每6d取標(biāo)記穗 5個(gè),分別將上、中、下部位籽粒摘下,剔除空粒,置75℃烘箱烘干至恒重,去除穎殼并稱重,直至成熟期。用 Logistic 方程分部位、分品種擬合灌漿過程[16]。單粒重隨時(shí)間變化的Logistic方程為
式中,t為開花后天數(shù)(d),y為單粒重(mg),A為理論籽粒最大干重(mg),b、k為特定參數(shù)。對(duì)式(1)求導(dǎo)即得灌漿速率,即
對(duì)式(2)求導(dǎo),得灌漿速率變化率v(t),即
式(1)中,t=0時(shí),計(jì)算得初始灌漿粒重Yo(mg)。式(3)中,v(t) = 0時(shí),計(jì)算到達(dá)最大灌漿的時(shí)間tm=lnb/k(d),對(duì)應(yīng)最大灌漿速率Vm=kb/4(mg·grain?1·d?1)和最大灌漿速率時(shí)粒重Ytm(mg)。灌漿持續(xù)時(shí)間T99(d)定義為開花至最終單粒重為99%A的時(shí)間,則平均灌漿速率為Va=A/T99(mg·grain?1·d?1)。灌漿速率曲線有兩個(gè)拐點(diǎn),對(duì)式(2)求二階導(dǎo)數(shù)等于零時(shí),得兩個(gè)拐點(diǎn)t1=(lnb?1.317)/k,t2=(lnb+1.317)/k,故灌漿過程可分為3個(gè)階段:前期(0?t1)、中期(t1?t2)和后期(t2?t99)。根據(jù)各階段的灌漿時(shí)間和籽粒干重積累量,可計(jì)算出各階段的平均灌漿速率AGR,籽粒干重積累量W。
用Excel進(jìn)行數(shù)據(jù)處理,SAS 9.2統(tǒng)計(jì)軟件進(jìn)行CO2和品種處理的顯著性分析,Logistic曲線擬合和繪圖采用Origin8.5。
由表1可見,在自由大氣CO2濃度條件下,中穗型品種京冬8號(hào)的全穗單粒重顯著高于大穗型品種陜旱8675和多穗型品種勝利麥,比這兩個(gè)品種高約10mg·粒?1(33.6%);CO2濃度升高后,陜旱8675全穗單粒重明顯增加(P<0.05),比對(duì)照增加18.8 %,其它兩個(gè)品種的差異則不顯著。兩種CO2濃度下各品種麥穗均表現(xiàn)為中部單粒重最大,上、下部相對(duì)較小,CO2濃度升高后陜旱8675各部位單粒重均明顯增加(P<0.05),上、中、下部單粒增重分別為11.0%、20.9%、23.3%;京冬8號(hào)下部穗受CO2濃度升高影響較大,單粒重明顯降低;勝利麥上、中、下各部位單粒重均有所增加,但差異不顯著。
將實(shí)驗(yàn)測得的開花后上部穗、中部穗、下部穗單粒重動(dòng)態(tài)進(jìn)行Logistic曲線擬合,相應(yīng)方程式、決定系數(shù)和方程方差分析結(jié)果見表2。由表可知,擬合結(jié)果決定系數(shù)R2在0.95以上(勝利麥在對(duì)照CO2濃度下擬合R2值略低),并且擬合方程方差分析均達(dá)到極顯著水平(P<0.01),說明京冬8號(hào)、陜旱8675和勝利麥在不同CO2濃度下可以用Logistic方程來描述不同部位籽粒的灌漿過程。
表1 兩種CO2濃度處理下不同穗型小麥品種麥穗各部位收獲期單粒重的比較(mg·粒?1)
注:AMB表示自由大氣CO2濃度,即400μL·L?1;FACE表示大氣CO2濃度升高,即550μL·L?1。小寫字母表示處理間在0.05水平上的差異顯著性。下同。
Note: AMB is ambient CO2concentration(400μL·L?1);FACE is free-air carbon dioxide enrichment(550μL·L?1). Lowercase indicates the difference significance among treatments at 0.05 level. The same as below.
表2 不同處理下小麥籽粒灌漿動(dòng)態(tài)Logistic方程
CO2濃度升高后,京冬8號(hào)全穗粒重在灌漿前期(花后6~24d)明顯增加,比自由大氣CO2濃度下增加6.6%~53.4%,特別在灌漿前期開花后6d和12d,分別增加了45.3%、53.4%;陜旱8675在CO2濃度升高下整個(gè)灌漿期(花后6~30d)全穗粒重比自由大氣CO2濃度條件下增加了10.8%~188.8%,在開花后第6天增加了188.8%;CO2濃度升高使勝利麥灌漿前期(花后6~24d)全穗籽粒重減少,相比自由大氣CO2濃度下減少1.5%~6.4%,但灌漿后期全穗粒重增加,最終粒重增加3.9%。
3個(gè)品種上、中、下部穗灌漿粒重變化過程如圖1。由圖可見,CO2濃度升高后,京冬8號(hào)在灌漿前期(花后6~24d)上、中、下部穗粒相比自由CO2濃度條件下增加,花后30d二者無差異;高CO2濃度下,陜旱8675在整個(gè)灌漿期(花后6~30d)上、中、下部穗粒重明顯大于自由大氣CO2濃度;CO2濃度升高后勝利麥的上、下部穗變化比中部穗明顯。在CO2濃度升高條件下,3個(gè)品種各自的上、中、下部穗粒重和全穗單粒重變化均一致,說明FACE處理未改變不同部位籽粒灌漿進(jìn)程的重大特征。研究結(jié)果說明FACE處理增加了中穗型冬小麥灌漿前期粒重,但對(duì)最終粒重基本無增加作用;對(duì)大穗型品種冬小麥粒重增加有明顯促進(jìn)作用,顯著增加其灌漿過程籽粒重和其最終籽粒重;對(duì)多穗型冬小麥整個(gè)灌漿過程籽粒重?zé)o影響。
圖1 三個(gè)冬小麥品種上、中、下部麥穗單粒重變化過程(Logistic曲線)
由表3可見,CO2濃度升高明顯增加了京冬8號(hào)和陜旱8675的灌漿初始粒重(Y0),相比自由大氣CO2濃度下,京冬8號(hào)和陜旱8675的全穗初始粒重分別增加了125.1%、561.3%,對(duì)勝利麥全穗初始粒重?zé)o影響。CO2濃度升高降低了3個(gè)品種全穗的最大灌漿速率(Rm),京冬8號(hào)、陜旱8675和勝利麥全穗分別減少9.0%、19.4%、4.1%。CO2濃度升高后,全穗到達(dá)最大灌漿速率的時(shí)間(Tm)京冬8號(hào)縮短了6.0%,陜旱8675無影響,而勝利麥則延長了5.0%。對(duì)于全穗平均灌漿速率(Ra),CO2濃度升高對(duì)京冬8號(hào)和陜旱8675無影響,勝利麥全穗灌漿速率則減少了4.2%。而3個(gè)品種的灌漿時(shí)間(T99),京冬8號(hào)、陜旱8675和勝利麥分別延長3.9%、19.3%、4.9%。從麥穗不同部位看,CO2濃度升高對(duì)京冬8號(hào)和陜旱8675各灌漿參數(shù)(灌漿初始粒重、最大灌漿速率、到達(dá)最大灌漿速率的時(shí)間、平均灌漿速率和灌漿時(shí)間)的影響均表現(xiàn)為上部穗和下部穗大于中部穗,而勝利麥中部穗各灌漿參數(shù)變化幅度明顯高于上、下部穗。
將籽粒灌漿過程分為前期(0?t1)、中期(t1?t2)、后期(t2?t99)3個(gè)階段,由表4可知,CO2濃度升高明顯縮短了京冬8號(hào)灌漿前期持續(xù)時(shí)間,全穗籽粒平均比對(duì)照縮短14.0%,而灌漿中后期時(shí)間得到延長,全穗籽粒都比對(duì)照延長13.7%,上部穗籽粒延長幅度明顯大于中、下部穗。FACE處理明顯提高了京冬8號(hào)籽粒灌漿前期的平均灌漿速率,全穗比對(duì)照提高20.4%,上、中部穗籽粒平均灌漿速率明顯提高,而中期和后期平均灌漿速率降低,全穗籽粒均比對(duì)照減少9.0%,上部穗籽粒明顯降低??傮w看來上部穗變化幅度大于中、下部穗。
表3 各處理麥穗各部位籽粒灌漿特征參數(shù)
注:Yo為灌漿初始粒重(mg);Tm為到達(dá)最大灌漿速率的時(shí)間(d);Rm為最大灌漿速率(mg·grain?1·d?1);T99為到達(dá)籽粒理論最大干重99%時(shí)的時(shí)間;Ra為平均灌漿速率(mg·grain?1·d?1)。
Note:Yo is initial grain weight of grain filling(mg); Tm is time reached the maximum grain filling rate(d); Rm is maximum grain filling rate(mg·grain?1·d?1); T99 is the time reached the theoretical maximum dry weight value of the grain of 99%(d); Ra is average grain filling rate(mg·grain?1·d?1).
表4 各處理小麥籽粒灌漿前、中、后期持續(xù)時(shí)間、平均灌漿速率和干重積累量
CO2濃度升高后,陜旱8675的籽粒灌漿前期、中期、后期灌漿持續(xù)時(shí)間和速率的變化影響與京冬8號(hào)一致,但變幅大于京冬8號(hào),相比對(duì)照,其全穗籽粒灌漿前期時(shí)間縮短12.6%,灌漿速率增加36.4%;中期和后期灌漿時(shí)間增加48.0%,灌漿速率降低19.1%??傮w看來中部穗變化幅度大于上、下部。
CO2濃度升高延長了勝利麥灌漿前、中、后期持續(xù)時(shí)間,降低了各時(shí)期灌漿速率。全穗灌漿前期增加5.2%,灌漿速率降低4.5%,中期和后期灌漿時(shí)間增加4.8%,灌漿速率降低4.1%。中部穗的變化幅度明顯高于上、下部。
3個(gè)小麥品種全穗和各部位穗在灌漿前、中、后3個(gè)時(shí)期其籽粒積累占整個(gè)生育期比重分別為前期和后期積累量各占21.1%,中期積累量占到57.7%。
在CO2濃度升高的條件下,不同穗型冬小麥的灌漿響應(yīng)不同,CO2濃度升高明顯增加了各品種初始粒重,京冬8號(hào)(中穗型)灌漿時(shí)間和灌漿速率無明顯變化,最終粒重?zé)o影響;顯著增加了陜旱8675(大穗型)的最終籽粒重,主要由于灌漿時(shí)間的延長;勝利麥(多穗型)對(duì)高CO2濃度響應(yīng)不明顯,主要由于灌漿速率的降低抵消了灌漿時(shí)間延長對(duì)產(chǎn)量的促進(jìn)作用。可見,在大氣CO2濃度升高條件下,大穗型冬小麥響應(yīng)更加明顯。
高產(chǎn)條件下,當(dāng)畝穗數(shù)接近飽和、粒數(shù)受分化時(shí)期限制時(shí),則粒重在很大程度上制約著產(chǎn)量的進(jìn)一步提高[17]。小麥的籽粒重是產(chǎn)量的重要組成部分,主要由灌漿速率和灌漿持續(xù)時(shí)間決定[18]。小麥的灌漿速率和持續(xù)時(shí)間由同化物吸收、同化物運(yùn)輸阻力、籽粒增長潛力和環(huán)境因素共同影響[19]。關(guān)于小麥的灌漿特性,特別是灌漿速率和持續(xù)時(shí)間,國內(nèi)外做了很多研究,對(duì)于灌漿參數(shù)和粒重的關(guān)系,由于不同研究者使用的材料及栽培環(huán)境不同,因而得出的結(jié)論不一,一般認(rèn)為籽粒重和灌漿速率、持續(xù)時(shí)間均呈正相關(guān)[20-21]。而關(guān)于不同穗型冬小麥對(duì)高CO2濃度響應(yīng)差異,尚無相關(guān)報(bào)道。
本研究結(jié)果說明,CO2濃度升高條件下,不同穗型冬小麥的灌漿動(dòng)態(tài)響應(yīng)不同,CO2濃度升高對(duì)中穗型品種京冬8號(hào)影響較小,全穗籽粒的灌漿速率提高4.9%,灌漿時(shí)間縮短0.4%,全穗籽粒單重?zé)o變化;大穗型品種陜旱8675全穗籽粒的灌漿速率無變化,灌漿時(shí)間增加19.3%,全穗籽粒單重增加18.8%;多穗型品種勝利麥全穗籽粒的灌漿速率降低4.2%,灌漿時(shí)間增加4.9%,全穗籽粒單重增加3.9%。Li等[10]研究了在自由大氣CO2濃度升高(FACE)條件下春小麥的灌漿動(dòng)態(tài)變化,認(rèn)為CO2濃度升高增加了籽粒的灌漿速率,從而增加了最終粒重;張凱等[9]研究結(jié)果也表明CO2濃度升高增加了春小麥籽粒的灌漿速率,持續(xù)灌漿時(shí)間減少,與本實(shí)驗(yàn)京冬8號(hào)品種研究結(jié)果一致,而與陜旱8675品種結(jié)果相反,可能是大穗型品種穗大粒多,分蘗成穗率很低導(dǎo)致灌漿時(shí)間長的緣故[22]。灌漿速率主要由遺傳因素決定,灌漿持續(xù)期主要取決于環(huán)境因素[17],本研究發(fā)現(xiàn)外界CO2濃度升高明顯增加了陜旱8675的灌漿時(shí)間,增加了最終籽粒重。灌漿時(shí)間短一直是制約中國北方冬小麥區(qū)產(chǎn)量的重要因素[23],因此可以考慮在溫度適合條件下,適當(dāng)早播和延長收獲時(shí)間,可能是在未來高CO2濃度條件下大穗型冬小麥適應(yīng)氣候變化增加產(chǎn)量的重要方式。勝利麥灌漿前期持續(xù)時(shí)間短、速率快可能與其開花較晚(比京東8號(hào)和陜旱8675晚13d),灌漿期間溫度高有關(guān)。溫度是影響小麥籽粒產(chǎn)量和品質(zhì)的一個(gè)重要環(huán)境因子[24-25],如在中國北方溫帶小麥栽培區(qū),籽粒灌漿過程溫度過高會(huì)縮短灌漿時(shí)間,促進(jìn)莖葉早衰,籽粒干物質(zhì)累積量降低,影響粒重增長[26],Chaturvedi等[24]研究表明,在開花和灌漿過程中高溫脅迫抵消了CO2濃度升高對(duì)水稻同化分配和產(chǎn)量的有益影響。由于灌漿速率的降低抵消了灌漿時(shí)間延長對(duì)籽??傊氐男?yīng),而削弱了CO2濃度升高對(duì)勝利麥粒重的促進(jìn)作用。
3個(gè)品種冬小麥在自由大氣CO2濃度和高CO2濃度條件下,均表現(xiàn)為麥穗中部的灌漿速率最高,這可能與麥穗中部最早開花和開花后籽粒的快速生長有關(guān)[27]。另外,在高CO2濃度條件下,京冬8號(hào)和陜旱8675的上部穗或下部穗的灌漿速率、持續(xù)時(shí)間和增減幅度明顯高于中部穗,與Li等[28]研究結(jié)論一致。而勝利麥中部穗變化幅度高于上、下部穗,可能與后期高溫影響有關(guān)[29]。CO2濃度升高對(duì)不同穗型冬小麥的前、中、后期灌漿過程影響也不同。高CO2濃度主要增加了京冬8號(hào)和陜旱8675的灌漿前期平均速率,縮短了灌漿時(shí)間,降低了灌漿中后期灌漿速率而增加了灌漿時(shí)間;而對(duì)于勝利麥CO2濃度升高降低了灌漿前期速率,增加了灌漿時(shí)間,其中后期變化與另外兩個(gè)品種一致。由于試驗(yàn)條件和材料的不同,有關(guān)小麥灌漿的前期、中期和后期對(duì)小麥粒重的影響,不同研究得出的試驗(yàn)結(jié)果存在差異[30-31],尚需進(jìn)一步深入探究。
[1]IPCC.Climate change 2007:the physical science basis.Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change[R].Cambridge, United Kingdom and New York,NY, USA:Cambridge University Press,2007:129-234.
[2]Long S P,Ainsworth E A,Leakey A,et al.Food for thought:lower-than-expected crop yield stimulation with rising CO2concentrations[J].Science,2006,312(5782):1918-1921.
[3]趙致,李家修,張成琦.貴州高原夏秋麥籽粒灌漿特性的研究[J].作物學(xué)報(bào),1998,(1):110-117.
Zhao Z,Li J X,Zhang C Q.Studies on some characteristics of grain filling of wheat with late-summer and early-autumn sowing in Guizhou Plateau[J].Acta Agronomica Sinica,1998,(1): 110-117.(in Chinese)
[4]楊連新,李世峰,王余龍,等.開放式空氣二氧化碳濃度增高對(duì)小麥產(chǎn)量形成的影響[J].應(yīng)用生態(tài)學(xué)報(bào),2007,(1):75-80.
Yang L X,Li S F,Wang Y L,et al.Effects of free-air CO2enrichment (FACE) on yield formation of wheat[J].Chinese Journal of Applied Ecology,2007,(1):75-80.(in Chinese)
[5]韓雪,林而達(dá),郝興宇,等. FACE條件下冬小麥的光合適應(yīng)[J].中國農(nóng)業(yè)氣象,2009,(4):481-485.
Han X,Lin E D,Hao X Y,et al.Photosynthetic acclimation of winter wheat under free air CO2enrichment (FACE)[J].Chinese Journal of Agrometeorology,2009,(4):481-485.(in Chinese)
[6]王文靜.不同穗型冬小麥籽粒灌漿期源庫強(qiáng)度及其與淀粉積累的關(guān)系[J].作物學(xué)報(bào),2004,(9):916-921.
Wang W J.The relationship between source-sink intensity and starch accumulation during grain filling period in two winter wheat cultivars with different spike types[J].Acta Agronomica Sinica,2004,(9):916-921.(in Chinese)
[7]北京市雙橋人民公社科技站,北京市農(nóng)業(yè)科學(xué)院作物研究所雙橋基點(diǎn)組.培育早熟高產(chǎn)冬小麥品種的探討[J].遺傳學(xué)報(bào),1977,(3):201-211.
Beijing Shuangqiao People's Commune Science and Technology Station,Shuangqiao Base Point Group,Crop Research Institute,Beijing Academy of Agricultural Sciences.On the breeding of early-maturing and high-yielding varieties of winter wheat[J].Acta Genetica Sinica,1977,(3): 201-211.(in Chinese)
[8]吳兆蘇.小麥育種學(xué)[M].北京:農(nóng)業(yè)出版社,1990.
Wu Z S.Wheat breeding[M].Beijing:China Agriculture Press,1990. (in Chinese)
[9]張凱,馮起,王潤元,等.CO2濃度升高對(duì)春小麥灌漿特性及產(chǎn)量的影響[J].中國農(nóng)學(xué)通報(bào),2014,30(3):189-195.
Zhang K,Feng Q,Wang R Y,et al.Effects of air CO2enrichment on grain filling characteristics and yield of spring wheat[J].Chinese Agricultural Science Bulletin,2014,30(3): 189-195.(in Chinese)
[10]Li A G,Hou Y S,Gerard W W,et al.Free-Air CO2enrichment and drought stress effects on grain filling rate and duration in spring wheat[J].Crop Science,2000,40:1263-1270.
[11]張玲麗,王輝,馮毅,等.不同類型高產(chǎn)小麥品種產(chǎn)量形成特點(diǎn)及其生理特性分析[J].干旱地區(qū)農(nóng)業(yè)研究,2003,(2): 122-125.
Zhang L L,Wang H,Feng Y,et al.Yield formation and physiological characters of different types with high-yield wheat cultivars[J].Agricultural Research in the Arid Areas,2003,(2):122-125.(in Chinese)
[12]雷亞柯,王輝,宋美麗,等.不同穗型冬小麥源庫關(guān)系及源庫性狀改良[J].麥類作物學(xué)報(bào),2007,(3):493-496.
Lei Y K,Wang H,Song M L,et al.Relationship on source and sink in different varieties of winter wheat and its improvement[J].Journal of Triticeae Crops,2007,(3):493-496. (in Chinese)
[13]王晨光.大氣CO2濃度升高對(duì)冬小麥生長及產(chǎn)量的影響[D].太古:山西農(nóng)業(yè)大學(xué),2015:50.
Wang C G.Effect of elevated CO2on growth and yield of winter wheat[D].Taigu:Shanxi Agricultural University,2015: 50.(in Chinese)
[14]孫家柱,郭仁峻,張福勝,等.新品種京冬8號(hào)選育模式的回顧和總結(jié)[J].萊陽農(nóng)學(xué)院學(xué)報(bào),2001,(4):274-279.
Sun J Z,Guo R J,Zhang F S,et al.A summary on the ideas and strategy for selecting winter wheat variety Jingdong No.8[J].Journal of Laiyang Agricultural College,2001, (4):274-279.(in Chinese)
[15]Han X,Hao X,Lam S K,et al.Yield and nitrogen accumulation and partitioning in winter wheat under elevated CO2:a 3-year free-air CO2enrichment experiment[J].Agriculture,Ecosystems & Environment,2015,209(S1):132-137.
[16]崔黨群.Logistic曲線方程的解析與擬合優(yōu)度測驗(yàn)[J].數(shù)理統(tǒng)計(jì)與管理,2005,(1):112-115.
Cui D Q.Analysis and making good fitting degree test for logistic curve regression equation,application of statistics and management[J].Journal of Applied Statistics and Management,2005,(1):112-115.(in Chinese)
[17]李世清,邵明安,李紫燕,等.小麥籽粒灌漿特征及影響因素的研究進(jìn)展[J].西北植物學(xué)報(bào),2003,(11):2030-2038.
Li S Q,Shao M A,Li Z Y,et al.Review of characteristics of wheat grain fill and factors to influence it[J].Acta Botanica Boreali-occidentalia Sinica,2003,(11):2030-2038.(in Chinese)
[18]Duguid S D,Brule-Babel A L.Rate and duration of grain filling in five spring wheat() genotypes[J]. Canadian Journal of Plant Science,2010,74(4): 681-686.
[19]Bremner P M,Rawson H M.The weights of individual grains of the wheat ear in relation to their growth potential,the supply of assimilate and interaction between grains[J]. Functional Plant Biology,1978,5(1):61-72.
[20]曾浙榮,龐家智,周桂英,等.我國北部冬麥區(qū)小麥品種籽粒灌漿特性的研究[J].作物學(xué)報(bào),1996,(6):720-728.
Zheng Z R,Pang J Z,Zhou G Y,et al.Grain filling properties of winter wheat varieties in northern part of China[J].Acta Agronomica Sinica,1996,(6):720-728.(in Chinese)
[21]劉豐明,陳明燦,郭香鳳,等.高產(chǎn)小麥粒重形成的灌漿特性分析[J].麥類作物學(xué)報(bào),1997,(6):38-41.
Liu F M,Chen M C,Guo X F,et al.Analysis of grain filling characteristics of high yield wheat grain weight formation[J]. Journal of Triticeae Crops,1997,(6):38-41.(in Chinese)
[22]馮偉,郭天財(cái),李曉,等.不同降雨年型下水分處理對(duì)大穗型小麥品種籽粒灌漿及產(chǎn)量的影響[J].水土保持學(xué)報(bào),2005, (1):192-195.
Feng W,Guo T C,Li X,et al.Effects of irrigation on grain filling and yield of large-ear cultivar under different annual precipitation[J].Journal of Soil and Water Conservation,2005, (1):192-195.(in Chinese)
[23]周陽,何中虎,陳新民,等.30余年來北部冬麥區(qū)小麥品種產(chǎn)量改良遺傳進(jìn)展[J].作物學(xué)報(bào),2007,(9):1530-1535.
Zhou Y,He Z H,Chen X M,et al.Genetic gain of wheat breeding for yield in northern winter wheat zone over 30 years[J].Acta Agronomica Sinica,2007,(9):1530-1535.(in Chinese)
[24]Chaturvedi A K,Bahuguna R N,Shah D,et al.High temperature stress during flowering and grain filling offsets beneficial impact of elevated CO2on assimilate partitioning and sink-strength in rice[J].Scientific Reports,2017,7(1):8827.
[25]You L,Rosegrant M W,Wood S,et al.Impact of growing season temperature on wheat productivity in China[J]. Agricultural and Forest Meteorology,2009,149(6): 1009-1014.
[26]金善寶.中國小麥學(xué)[M].北京:農(nóng)業(yè)出版社,1996.
Jin S B.Chinese wheat science[M].Beijing:Chinese Agricultural Press, 1996.(in Chinese)
[27]Simmons S R,Crookston R K.Rate and duration of growth of kernels formed at specific florets in spikelets of spring wheat[J].Crop Science,1979,(19):690-693
[28]Li A G,Hou Y S,Trent A.Effects of elevated atmospheric CO2and drought stress on individual grain ?lling rates and durations of the main stem in spring wheat[J].Agricultural and Forest Meteorology,2001,106,(4):289-301.
[29]Wardlaw I F.The response of wheat to high temperature following anthesis I:the rate and duration of kernel filling[J].Functional Plant Biology,1995,22(3):391-397.
[30]馮素偉,胡鐵柱,李淦,等.不同小麥品種籽粒灌漿特性分析[J].麥類作物學(xué)報(bào),2009,29(4):643-646.
Feng S W,Hu T Z,Li G,et al.Analysis on grain filling characteristics of different wheat varieties[J].Journal of Triticeae Crops,2009,29(4):643-646.(in Chinese)
[31]韓占江,郜慶爐,吳玉娥,等.小麥籽粒灌漿參數(shù)變異及與粒重的相關(guān)性分析[J].種子,2008,(6):27-30.
Han Z J,Hao Q L,Wu Y E,et al.Variation of parameters of grain filling and correlation analysis with grain weight in wheat[J].Seed,2008,(6):27-30.(in Chinese)
Effects of Elevated Atmospheric CO2Concentration on Grain Filling Dynamics of Different Spike-type Winter Wheat
WANG Dong-yan1, GUO Li-ping1, LI Yu-ting1, ZHENG Lei2, HAN Xue1
(1. Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2. College of Resources Environment and Tourism, Capital Normal University, Beijing 100048)
The free air CO2Enrichment (FACE) system was used to study the grain filling dynamics of whole panicles and different positions of wheat panicle in different spike-type cultivars (medium-spike type,. Jindong8, large-spike type,. Shanhan8675 and multi-panicle type,. Triumph) under the elevated CO2concentration of 550±17μL·L?1(5:30?18:00) and the ambient CO2concentration 400±16μL·L?1. The results showed that: (1) the initial grain weight was significantly increased under the elevated CO2concentration. Elevated CO2concentration increased the grain weight of Jingdong8 (medium-spike type) in the early grain filling stage with no effect on the final grain weight, and had no effect on the grain filling duration and average filling rate; Elevated CO2prolonged the grain filling duration of Shanhan8675 (large-spike type) by 19.3% and increased grain weight significantly, the dry weight of the upper, middle and lower parts of the panicle was increased by 11.0%, 20.9% and 23.3%, respectively, and the whole panicle was increased by 18.8%; The Triumph (multi-panicle type) did not show significant increase in grain weight under elevated CO2concentration, due to the lower grain-filling rate offset the prolonged duration effect to the mass maturity. (2) Regarding of the panicle positions, the elevated CO2showed a positive effect of the filling parameters (the maximum grain-filling rate, the time reach maximum growth rate, grain filling duration and average grain filling rate) on the upper and lower position of wheat panicle of Jingdong8 and Shanhan8675, contrast with the Triumph’s middle panicle part of panicle. (3) Elevated CO2shorten the duration of Jindong8 and Shanhan8675 in early grain-filling stage, whereas prolonged the duration of the middle and the last grain-filling stage, which was opposite to the average grain filling rate in the three periods; The grain filling duration of the three stages of Triumph was prolonged, while the average grain filling rate showed the opposite trends. The results suggest that the large-ear type winter wheat will have a better performance than multi-panicle type winter in a CO2-rich world.
FACE; Winter wheat; Variety; Grain filling
10.3969/j.issn.1000-6362.2019.05.002
汪東炎,郭李萍,李豫婷,等.大氣CO2濃度升高對(duì)不同穗型冬小麥灌漿動(dòng)態(tài)的影響[J].中國農(nóng)業(yè)氣象,2019,40(5):284-292
2018?11?02
。E-mail: hanxue@caas.cn
國家自然科學(xué)基金“冬小麥品種對(duì)高濃度CO2差異響應(yīng)的機(jī)理研究”(41505100);國家重點(diǎn)研發(fā)計(jì)劃“北部冬麥區(qū)豐產(chǎn)節(jié)水型優(yōu)質(zhì)強(qiáng)筋小麥品種篩選及其配套栽培技術(shù)”(2016YFD0300401)
汪東炎(1993?),碩士生,主要從事氣候資源與氣候變化研究。E-mail: donyanwang@163.com