亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        精密滾珠絲杠螺母副熱平衡-溫升特性仿真研究

        2019-04-26 08:10:14高長建韓忠建高衛(wèi)國張建軍張大衛(wèi)

        商?鵬,高長建,韓忠建,劉?騰, ,高衛(wèi)國,張建軍,張大衛(wèi)

        ?

        精密滾珠絲杠螺母副熱平衡-溫升特性仿真研究

        商?鵬1,高長建1,韓忠建1,劉?騰1, 2,高衛(wèi)國2,張建軍1,張大衛(wèi)2

        (1. 河北工業(yè)大學機械工程學院,天津 300130;2. 天津大學裝備設計與制造技術天津市重點實驗室,天津 300350)

        滾珠絲杠單元熱特性仿真建模是精密機床直線進給系統(tǒng)熱平衡優(yōu)化設計與熱誤差抑制方法的基礎.目前的建模方法中,對于滾珠螺母副的相對運動環(huán)節(jié)多采取不同程度的簡化措施,這是造成現(xiàn)有模型仿真精確性欠佳的關鍵原因.本文在充分考慮絲杠螺母副相對移動效果的基礎上,構建出一種精密滾珠絲杠單元瞬態(tài)熱平衡-溫升特性有限元仿真模型.首先,利用APDL定義了滾珠螺母與絲杠的位移-時間關系,從而在瞬態(tài)仿真建模中實現(xiàn)了滾珠螺母-絲杠結構的往復線性相對運動效果;其次,綜合考慮了滾珠螺母-絲杠摩擦生熱、滾珠-螺母與滾珠-絲杠間接觸熱阻及中空循環(huán)液-絲杠螺母副的流-固耦合換熱效應等因素,構建起精密滾珠絲杠螺母副的熱平衡-溫升特性仿真模型;基于該模型重點研究了精密滾珠絲杠單元在不同循環(huán)換熱條件下循環(huán)冷卻液換熱功率與絲杠螺母副生熱功率的平衡匹配特性,及其對滾珠絲杠螺母副溫升特性的影響.最終,通過對比試驗驗證了該仿真建模方法的準確性.研究結果表明:循環(huán)冷卻液換熱量不僅來源于螺母副生熱,也來源于絲杠其他結構;只有當循環(huán)液換熱功率增大至螺母副生熱功率的1.5倍左右時,螺母副生熱才可能被冷卻液完全吸收,其溫度值開始低于環(huán)境溫度.該結論可以為滾珠絲杠單元的熱平衡優(yōu)化設計提供理論依據(jù).

        滾珠絲杠;螺母副;接觸熱阻;流-固耦合

        隨著全球制造業(yè)的迅猛發(fā)展,高速度、高效率、高精度已成為數(shù)控加工裝備設計制造領域的必然發(fā)展方向.隨著數(shù)控機床精度的提高,進給系統(tǒng)熱特性對數(shù)控機床最終加工精度的影響越來越大[1].作為高檔數(shù)控機床直線進給系統(tǒng)的關鍵生熱部件,滾珠絲杠單元的螺母副熱態(tài)特性對機床綜合加工精度的影響十分明顯,因此,針對機床運行狀態(tài)下的滾珠絲杠螺母副結構熱平衡-溫升特性進行仿真建模研究,對直線進給系統(tǒng)的熱特性優(yōu)化設計與精密數(shù)控機床熱誤差的抑制等方面都具有重要意義.

        近年來,國內外研究學者圍繞數(shù)控機床滾珠絲杠單元的熱特性仿真建模方法開展了大量研究.文獻[2]將有限元法與改進的集總電容法相結合構建出中空滾珠絲杠系統(tǒng)熱誤差模型,并研究了中空冷卻效應對絲杠熱誤差影響規(guī)律;文獻[3]采用有限元法對數(shù)控機床滾珠絲杠部分進行了穩(wěn)態(tài)、瞬態(tài)的熱-結構耦合仿真分析,所得絲杠結構溫度、熱形變特性規(guī)律為滾珠絲杠結構設計改造提供了理論依據(jù);文獻[4]基于不同進給速度條件下滾珠絲杠主要生熱源生熱條件,借助ANSYS構建滾珠絲杠單元溫度仿真模型,并研究了進給速度對絲杠溫度場的影響規(guī)律;文獻[5]將有限元建模與實驗方法相結合分析了滾珠絲杠系統(tǒng)不同環(huán)境溫度下熱態(tài)特性規(guī)律,為絲杠熱誤差補償模型的構建提供了理論基礎;文獻[6]采用能量守恒法分析了滾珠絲杠螺母副生熱載荷,并將其用于立式加工中心進給系統(tǒng)溫度特性的精確仿真建模;文獻[7]將有限元法與蒙特卡羅法結合,構建出滾珠絲杠單元溫度-熱誤差模型,并基于建模結果構建出一種滾珠絲杠單元熱誤差的精確預測方法;文獻[8]基于摩擦熱與熱對流理論構建出滾珠絲杠系統(tǒng)溫度場有限元模型,并在此基礎上構建出一種精確預測機床動態(tài)熱誤差的神經網絡模型.文獻[9]計算了雙螺母絲杠的熱邊界載荷,并運用有限元軟件建立了雙螺母絲杠的熱固耦合模型,得出預緊力的變化取決于絲杠軸與螺母溫度梯度的大小、螺母徑向熱變形導致預緊力減小的結論,所建立的有限元模型可以為雙螺母絲杠的設計提供理論基礎.由于目前滾珠絲杠熱特性建模方法對于機床加工狀態(tài)下絲杠螺母相對于絲杠的往復運動大都采取了簡化處理,從而影響了分析精度,因此,若實現(xiàn)滾珠絲杠單元運行狀態(tài)下溫升特性的精確分析,必須充分考慮運行狀態(tài)下滾珠絲杠螺母副的往復運動效果及關鍵傳熱學因素.

        本文在滾珠絲杠瞬態(tài)溫度特性仿真模型中,利用APDL(ANSYS parametric design language)定義了螺母位移-時間關系,實現(xiàn)了滾珠螺母-絲杠結構的往復相對運動效果.繼而重點考慮了中空循環(huán)液-絲杠螺母副的流-固耦合換熱效應,構建起滾珠絲杠螺母副的動態(tài)熱平衡-溫升特性仿真模型,并采用對比試驗驗證了該建模方法的準確性.

        1?滾珠絲杠單元結構溫度特性影響因素分析

        圖1所示為滾珠絲杠單元的典型結構.

        由于絲杠電機輸出軸與絲杠軸間一般并不直接接觸,且聯(lián)軸器內安裝的彈性不銹鋼膜片具有隔熱作用,因此滾珠絲杠單元在加工運行狀態(tài)時的結構溫度特性主要受到絲杠螺母副與軸承組(分別裝置于軸承座和電機軸承座中)摩擦生熱、空氣對滾珠絲杠單元結構的熱對流換熱等干擾性影響.同時,滾珠絲杠單元通常設計有內置中空流道,以供循環(huán)冷卻液吸收滾珠螺母副結構的生成熱量(圖1中的箭頭為循環(huán)冷卻液流動方向).

        在數(shù)控機床的加工運行中,絲杠螺母副的摩擦生熱與中空循環(huán)液的換熱效應是影響滾珠絲杠單元結構溫度特性、引起熱誤差的主要因素.因此,針對滾珠絲杠螺母副往復線性運行狀態(tài)下的結構熱平衡-溫度特性進行仿真建模方法研究十分必要.

        圖1?滾珠絲杠單元結構

        2?考慮螺母副往復運動的滾珠絲杠單元瞬態(tài)溫度場仿真建模方法

        2.1?滾珠絲杠螺母副建模及網格劃分

        為實現(xiàn)滾珠絲杠單元溫度特性的瞬態(tài)仿真建模,首先構建滾珠絲杠單元CAD(computer aided design)模型(如圖2(a)所示),繼而基于直接耦合分析法定義熱-固耦合與流體單元,對于滾珠絲杠單元結構部分,除滾珠、絲杠、螺母結構采用soild5單元進行網格劃分以外,其余結構均采用solid70單元進行網格劃分,共產生41803個結點和174867個網格單元(如圖2(b)所示).

        圖2?滾珠絲杠單元CAD建模與網格劃分

        基于滾珠絲杠單元結構的網格劃分,可根據(jù)表1所示數(shù)據(jù)分別定義固體結構與流體部分的物性參數(shù)(循環(huán)冷卻液采用黏度較低、換熱效果較好的5#主?軸油).

        表1?滾珠絲杠單元溫度特性仿真建模物性參數(shù)

        Tab.1 Physical parameters for thermal simulation mod-eling of a ball screw unit

        2.2?滾珠絲杠螺母副熱平衡特性仿真建模方法

        2.2.1?滾珠絲杠螺母副生熱率加載

        滾珠絲杠單元在運行狀態(tài)下,其螺母副將由于其內部摩擦效應生成熱量.該熱量可由式(1)[10]確定,并在滾珠絲杠單元仿真建模時進行加載.

        ?(1)

        ?(2)

        ?(3)

        ?(4)

        2.2.2?滾珠絲杠中空循環(huán)液換熱加載

        在滾珠絲杠中空流道內構建循環(huán)冷卻液流體CAE(computer aided engineering)模型并設置其與流道內壁的熱流耦合傳熱關系,設置冷卻液參數(shù)(冷卻液流體截面積、冷卻液液力直徑、冷卻液流道數(shù)).冷卻液流體單元選取可在2個節(jié)點間進行熱傳導和流體傳輸?shù)膄luid116單元,將冷卻液與絲杠內管壁間的表面效應單元設置為surf152以實現(xiàn)冷卻液與絲杠內壁間對流換熱效應,對流換熱系數(shù)計算公式[11]為

        ?(5)

        滾珠絲杠中空循環(huán)液換熱屬于管內強制熱對流換熱,其努塞爾系數(shù)[12]為

        ???(6)

        2.2.3?滾珠絲杠螺母副接觸熱阻加載

        滾珠絲杠單元結構的主要接觸熱阻位于螺母-滾珠/滾珠-絲杠接觸面.利用具有熱-結構耦合特性的面接觸對target170和contact174單元定義滾珠絲杠單元的螺母-滾珠/滾珠-絲杠3D接觸對,模擬螺母-滾?珠/滾珠-絲杠之間的熱傳導,并以絲杠結構外表面和螺母結構內表面為目標面,在接觸面間設置由文獻[13]模型得到的接觸熱阻值,即

        ?(7)

        2.2.4?滾珠絲杠螺母副往復相對運動仿真設置

        根據(jù)經驗可知,滾珠絲杠單元空載運行達到熱穩(wěn)定狀態(tài)所需時長大約為7200s,因此選取7200s作為滾珠絲杠單元瞬態(tài)仿真總時長[14].又由于測試中常令滾珠螺母副做9m/min勻速往復運動,因此考慮絲杠總行程可計算出滾珠螺母單程運行時長為6s.可利用APDL定義一個1201行的表格,以6s時間間隔依次將時間點輸入到表格中,每個時間點對應滾珠-螺母的位移端點坐標位置.在6s內設置滾珠-螺母從起始位置滑動至終止位置,設定的載荷步為每秒運算1步(即6s時間間隔內滾珠-螺母每秒在絲杠上滑動1/6絲杠行程).基于上述方法在仿真中實現(xiàn)滾珠螺母在絲杠上的周期性往復線性相對運動.

        2.3?其他仿真參數(shù)加載

        為實現(xiàn)滾珠絲杠單元溫度特性的瞬態(tài)仿真,還需根據(jù)滾珠絲杠單元運行工況分別采用文獻[15-16]所述方法對絲杠軸承生熱率與空氣對流換熱系數(shù)進行求解與加載.

        3?滾珠絲杠單元瞬態(tài)熱平衡-溫升特性仿真結果分析

        3.1?仿真工況規(guī)劃

        基于上述仿真建模方法,可在不同熱態(tài)工況條件下實現(xiàn)滾珠絲杠單元瞬態(tài)熱平衡-溫升特性仿真建模.首先根據(jù)第2.2節(jié)所述方法確定出滾珠絲杠熱載荷/邊界條件參數(shù),其加載位置與載荷大小如表2所示.繼而設置環(huán)境溫度恒溫21℃、滾珠絲杠中空循環(huán)冷卻液流量7L/min,分別選取循環(huán)冷卻液入液溫度為12℃、15℃、18℃、21℃,以形成冷卻液與環(huán)境之間的-9℃、-6℃、-3℃、0℃溫差,繼而進行滾珠絲杠單元的瞬態(tài)熱平衡-溫升仿真建模.

        表2 滾珠絲杠單元瞬態(tài)熱特性仿真建模熱載荷/邊界條件與加載位置

        Tab.2 Thermal loads/boundary conditions and their loading positions for the transient thermal simula-tion modeling of a ball screw unit

        3.2?滾珠絲杠單元瞬態(tài)溫度特性仿真結果分析

        圖3和圖4所示分別為冷卻液與環(huán)境溫差???-6℃、循環(huán)冷卻液供液溫度15℃、環(huán)境溫度21℃條件下,典型時刻滾珠絲杠單元循環(huán)冷卻液、結構的瞬態(tài)溫度場.由于循環(huán)冷卻液從滾珠絲杠結構吸收熱量,因此其出液溫度隨時間逐漸升高且始終高于入液溫度(如圖3所示),說明冷卻液對滾珠絲杠結構的冷卻作用隨時間推移逐漸加強.再者滾珠絲杠螺母副、前后軸承處溫升均較為明顯且隨時間呈升高趨勢,說明熱量在其各自結構內部逐漸積累.而螺母副移動經過的絲杠結構溫度逐漸降低,說明循環(huán)冷卻液對滾珠絲杠結構的冷卻效果很明顯.

        圖3 滾珠絲杠單元循環(huán)冷卻液瞬態(tài)溫度場(供液溫度15℃)

        圖4?滾珠絲杠單元結構瞬態(tài)溫度場(供液溫度15℃)

        圖5所示為循環(huán)冷卻液供液溫度分別為12℃、15℃、18℃、21℃條件下的滾珠絲杠單元結構穩(wěn)態(tài)溫度場.根據(jù)熱力學第二定律,由于上述循環(huán)冷卻液供液溫度與環(huán)境溫度21℃的偏差依次縮小(-9℃、-6℃、-3℃、0℃),因此循環(huán)冷卻液的換熱功率依次減小,繼而導致圖5所示絲杠螺母副的溫升量依次?升高.

        3.3?滾珠絲杠單元結構瞬態(tài)熱平衡-溫升特性規(guī)律分析

        從熱平衡角度對上述絲杠螺母副溫升特性進行分析,需首先借助式(8)[17]方法,分別基于循環(huán)冷卻液供液溫度12℃、15℃、18℃、21℃的滾珠絲杠單元循環(huán)冷卻液瞬態(tài)溫度場得到循環(huán)冷卻液換熱功率-時間曲線.

        ?(8)

        圖6(a)所示為循環(huán)冷卻液供液溫度分別為??12℃、15℃、18℃、21℃條件下,絲杠循環(huán)冷卻液換熱功率與滾珠絲杠螺母副生熱功率的對比;圖6(b)所示為上述供液條件下滾珠絲杠單元螺母副的溫升特性曲線.

        圖5?滾珠絲杠單元結構穩(wěn)定溫度場

        由圖6可知,循環(huán)冷卻液換熱功率隨供液溫度與環(huán)境溫度的偏差增大(0℃、-3℃、-6℃、-9℃)而依次提高,螺母副穩(wěn)定溫度值則相應降低.其中循環(huán)液與環(huán)境相差0℃、-3℃、-6℃時,螺母副穩(wěn)定溫度值均高于環(huán)境溫度21℃,環(huán)境對絲杠螺母副具有冷卻作用;只有當循環(huán)液與環(huán)境的溫差增大至-9℃時,螺母副穩(wěn)定溫度值開始低于環(huán)境溫度21℃,環(huán)境對絲杠螺母副具有加熱作用,此時循環(huán)液換熱功率約為螺母副生熱功率的1.5倍.

        上述現(xiàn)象說明:循環(huán)冷卻液的吸收熱量不僅來源于螺母副的摩擦生熱,也來源于絲杠其他結構.因此在多數(shù)情況下螺母副生熱量不能被冷卻液完全帶走,而有殘余熱量造成自身溫度升高;只有當循環(huán)液換熱功率增大至螺母副生熱功率的1.5倍左右時,螺母副生熱才能被冷卻液完全吸收,其穩(wěn)定溫度值開始低于環(huán)境溫度.

        圖6?滾珠絲杠螺母副熱平衡-溫升特性

        4?滾珠絲杠單元溫度特性模型的試驗驗證

        為了驗證滾珠絲杠單元瞬態(tài)熱平衡-溫升特性仿真模型的正確性,以與仿真相同的熱態(tài)工況條件對精密滾珠絲杠單元進行測試試驗(滾珠螺母與絲杠之間具有9m/min的周期性相對運動;滾珠絲杠循環(huán)冷卻液流量設為7L/min,循環(huán)冷卻液供液溫度分別為12℃、15℃、18℃、21℃,環(huán)境溫度為恒溫21℃),并以圖7所示方法采用熱電阻溫度傳感器對滾珠絲杠螺母副結構進行溫度信息采集.

        如圖8和圖9所示,在上述工況條件下,通過試驗獲得的滾珠絲杠螺母副溫度測試值與仿真值基本一致(存在偏差由仿真建模中所涉及的熱載荷等條件與真實情況的差異性造成).說明本文構建的滾珠絲杠單元瞬態(tài)熱平衡-溫升特性仿真建模方法在滾珠絲杠熱平衡、溫度特性預估方面具有準確性和可靠性,為滾珠絲杠單元的熱平衡優(yōu)化設計奠定了基礎.

        圖7 滾珠絲杠螺母副溫度傳感器溫度試驗方法

        圖8?螺母副溫升特性的試驗與仿真對比(1)

        圖9?螺母副溫升特性的試驗與仿真對比(2)

        5?結?論

        本文構建了一種考慮精密機床運行狀態(tài)下絲杠螺母副往復相對運動的滾珠絲杠瞬態(tài)熱平衡-溫升特性仿真建模方法.結論可概括如下.

        (1)對比試驗結果表明:滾珠絲杠單元螺母副結構溫升與仿真所得溫升數(shù)據(jù)基本一致,說明本文所構建的滾珠絲杠單元瞬態(tài)熱平衡-溫升特性仿真建模方法在滾珠絲杠熱平衡、溫度特性預估方面具有準確性和可靠性,為滾珠絲杠單元的熱平衡優(yōu)化設計奠定了基礎.

        (2)循環(huán)冷卻液換熱量不僅來源于螺母副生熱,也來源于絲杠其他結構;只有當循環(huán)液換熱功率增大至螺母副生熱功率的1.5倍左右時,螺母副生熱才可能被冷卻液完全吸收,其溫度值開始低于環(huán)境溫度.該結論可以為滾珠絲杠單元的熱平衡優(yōu)化設計提供理論依據(jù).

        [1] 李?虎. 數(shù)控機床進給系統(tǒng)關鍵功能部件的熱特性研究[D]. 沈陽:東北大學機械工程與自動化學院,2014.

        Li Hu. Research on Thermal Characteristics for Sorne Key Assembly of CNC Machine Tool Feed Drive System[D]. Shenyang:School of Mechanical Engineering and Automation,Northeastern University,2014(in Chinese).

        [2] Xu Z Z,Liu X J,Kim H K,et al. Thermal error forecast and performance evaluation for an air-cooling ball screw system[J]. International Journal of Machine Tools & Manufacture,2011,51(7):605-611.

        [3] 劉樂平,馬?元,鐘名東. 高速高精數(shù)控車床進給系統(tǒng)熱態(tài)特性研究[J]. 機床與液壓,2012,40(3):36-39.

        Liu Leping,Ma Yuan,Zhong Mingdong. Research on thermal characteristics for feeding system of high-speed & high-precision CNC lathe[J]. Machine Tool & Hydraulics,2012,40(3):36-39(in Chinese).

        [4] 陳群強,梁睿君,葉文華,等. 數(shù)控機床滾珠絲杠的溫度場研究[J]. 系統(tǒng)仿真技術,2013,9(2):175-180.

        Chen Qunqiang,Liang Ruijun,Ye Wenhua,et al. Temperature field research of the ball screw in machine tools[J]. System Simulation Technology,2013,9(2):175-180(in Chinese).

        [5] Li Zihan,F(xiàn)an K,Yang J,et al. Time-varying positioning error modeling and compensation for ball screw systems based on simulation and experimental analysis[J]. International Journal of Advanced Manufacturing Technology,2014,73(5/6/7/8):773-782.

        [6] Abuaniza A, Fletcher S,Mian N,et al. Thermal error modelling of a CNC machine tool feed drive system using FEA method[J]. International Journal of Engineering Research & Technology,2016,5(3):118-126.

        [7] Li T J,Zhao C Y,Zhang Y M. Adaptive real-time model on thermal error of ball screw feed drive systems of CNC machine tools[J]. International Journal of Advanced Manufacturing Technology,2017(2):1-9.

        [8] Dos Santos M O,Batalha1 G F,Bordinassi E C,et al. Numerical and experimental modeling of thermal errors in a five-axis CNC machining center[J]. International Journal of Advanced Manufacturing Technology,2018,96(5/6/7/8):2619-2642.

        [9] Oyanguren A,Larra?aga J,Ulacia I. Thermo-mechanical modelling of ball screw preload force variation in different working conditions[J]. International Journal of Advanced Manufacturing Technology,2018(2):1-17.

        [10] 肖?磊. 中空滾珠絲杠進給系統(tǒng)綜合性能建模仿真研究[D]. 武漢:華中科技大學機械科學與工程學院,2016.

        Xiao Lei. The Modeling and Simulation Research on Comprehensive Performance of Hollow Ball-Screw Feed System[D]. Wuhan:School of Mechanical Science & Engineering,Huazhong University of Science and Technology,2016(in Chinese).

        [11] 王?羽. 基于流-固-熱耦合的機床進給系統(tǒng)熱特性仿真與實驗研究[D]. 天津:天津大學機械工程學院,2014.

        Wang Yu. Research on Simulation and Experiment of Linear Feed system of Machine Based on Fluid-Solid-Heat Coupling[D]. Tianjin:School of Mechanical Engineering,Tianjin University,2014(in Chinese).

        [12] Li R,Lin W,Zhang J,et al. Research on thermal deformation of feed system for high-speed vertical machining center[J]. Procedia Computer Science,2018,131:469-476.

        [13] 紀艷麗. 數(shù)控機床直線進給系統(tǒng)熱特性分析技術研究和工具開發(fā)[D]. 南京:南京理工大學機械工程學院,2014.

        Ji Yanli. Research and Development of Thermal Analysis Technology for Linear Feed System of CNC Machine Tools[D]. Nanjing:School of Mechanical Engineering,Nanjing University of Science and Technology,2014(in Chinese).

        [14] 馬軍旭,周長興,張?俊,等. 環(huán)境溫度對數(shù)控機床直線運動軸位置偏差的影響[J]. 天津大學學報:自然科學與工程技術版,2017,50(6):579-582.

        Ma Junxu,Zhou Changxing,Zhang Jun,et al. Influence of ambient temperature on positional deviation of linear axis of CNC machine tool[J]. Journal of Tianjin University:Science and Technology,2017,50(6):579-582(in Chinese).

        [15] 李程啟,張小棟,張?倩,等. 基于ANSYS的機床電主軸溫度場計算仿真分析[J]. 制造技術與機床,2011(6):148-152.

        Li Chengqi,Zhang Xiaodong,Zhang Qian,et al. Numerical simulation analysis of temperature field for CNC machine tool motorized spindle tool based on ANSYS [J]. Manufacturing Technology & Machine Tool,2011(6):148-152(in Chinese).

        [16] Min X,Jiang S. A thermal model of a ball screw feed drive system for a machine tool[J]. ARCHIVE Proceedings of the Institution of Mechanical Engineers Part C:Journal of Mechanical Engineering Science,2011,1(1):1-8.

        [17] Liu T,Gao W,Tian Y,et al. A differentiated multi-loops bath recirculation system for precision machine tools[J]. Applied Thermal Engineering,2015,76:54-63.

        Simulation Study on Thermal Balance-Temperature Rise Characteristics of a Precision Ball Screw-Nut Pair

        Shang Peng1,Gao Changjian1,Han Zhongjian1,Liu Teng1, 2,Gao Weiguo2,Zhang Jianjun1,Zhang Dawei2

        (1. School of Mechanical Engineering,Hebei University of Technology,Tianjin 300130,China; 2. Equipment Design and Manufacturing Technology Tianjin Key Laboratory, Tianjin University,Tianjin 300350,China)

        The simulation and modeling of the thermal characteristics of ball screw units form the basis of thermal balance optimization design and thermal error suppression for linear feed systems of precision machine tools. In current modeling methods,the relative motion of a ball-nut pair is simplified to various degrees,which is the key reason for the inaccuracy of the existing model simulation. In this study,a finite element simulation model of the transient thermal equilibrium-temperature rise characteristics of a precision ball screw unit was constructed based on the relative movement effect of the screw-nut pair. First,the displacement-time relation between the ball nut and screw was defined using theANSYS parametric design language(APDL)to realize the reciprocating linear relative motion effect of the ball nut-screw structure in the transient simulation modeling. Second,the friction heat generation factors between ball nut and screw,contact heat resistance between ball nut and screw,and fluid-solid coupling heat transfer effect of hollow circulating liquid-screw nut pair were considered to construct a simulation model of the thermal balance temperature rise characteristics of a precision ball screw-nut pair. Based on this model,the balance matching characteristics between the heat transfer power of the recirculating coolant and heat generation power of a nut pair in a precision ball screw unit under different heat transfer conditions were studied. The influence of matching characteristics on temperature rise characteristics of a ball screw-nut pair was also studied. Finally,the accuracy of the simulation modeling method was verified via comparative experiments. Results show that the heat transfer of the circulating coolant not only results from the heat generated by the nut pair,but also from other structures of screw. Further,the generated heat of nut pair can be fully absorbed by the coolant only when the heat transfer power of circulating fluid increases to 1.5 times of the heat generation power of nuts,thereby decreasing the nut pair temperature below the ambient temperature. This study can provide a theoretical basis for the optimum design of thermal balance of a ball screw unit.

        ball screw;nut pair;thermal contact resistance;fluid-solid coupling

        10.11784/tdxbz201808008

        TB611;TH132.1

        A

        0493-2137(2019)07-0725-08

        2018-08-02;

        2018-12-03.

        商?鵬(1980—??),女,博士,副教授,shangpeng0828@126.com.

        劉?騰,wuqiu-liu@163.com.

        國家自然科學基金資助項目(51775375);天津市自然科學基金重點項目(18JCZDJC38700);國家科技重大專項項目(2018ZX04031002).

        the National Natural Science Foundation of China(No.51775375),the Key Program of the Natural Science Foundation of Tianjin,China(No.18JCZDJC38700),the National Science and Technology Major Projects(No.2018ZX04031002)

        (責任編輯:金順愛)

        一本到亚洲av日韩av在线天堂| 国产一精品一av一免费爽爽| 日产亚洲一区二区三区| 国产精品亚洲一区二区三区在线| 色欲av亚洲一区无码少妇| y111111少妇影院无码| 国产偷国产偷高清精品 | 久久se精品一区二区国产| 国产伦理一区二区久久精品 | 女同在线视频一区二区| 精品熟人妻一区二区三区四区不卡 | 国产视频最新| 国产自拍精品在线视频| 国产tv不卡免费在线观看| 亚洲2022国产成人精品无码区| 亚洲精品久久区二区三区蜜桃臀| 久久精品国产亚洲av蜜臀| 中文字幕在线久热精品| 好看午夜一鲁一鲁一鲁| 国产极品大奶在线视频| 日韩av无码精品一二三区| 天堂一区人妻无码| 五月婷婷激情小说| 性无码国产一区在线观看| 在线观看播放免费视频| 99re66在线观看精品免费| 猫咪av成人永久网站在线观看| 国产精品视频一区国模私拍| 色婷婷狠狠97成为人免费| 骚货人妻视频中文字幕| 少妇人妻综合久久中文字幕| 国产精选污视频在线观看| 久久国产精品不只是精品 | 三年片免费观看大全有| jizz国产精品免费麻豆| 亚洲A∨日韩Av最新在线| 女人18毛片aa毛片免费| 亚洲av中文无码乱人伦在线视色 | 久久aⅴ无码一区二区三区| 亚洲片在线视频| 久久国产亚洲精品一区二区三区|