亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        農(nóng)用柔性底盤偏置軸轉(zhuǎn)向機(jī)構(gòu)聯(lián)動(dòng)耦合控制策略及試驗(yàn)

        2019-02-21 00:40:42瞿濟(jì)偉郭康權(quán)宋樹杰TranVanCuong李翊寧
        關(guān)鍵詞:前輪階躍偏置

        瞿濟(jì)偉,郭康權(quán),2,宋樹杰,Tran Van Cuong,李翊寧

        農(nóng)用柔性底盤偏置軸轉(zhuǎn)向機(jī)構(gòu)聯(lián)動(dòng)耦合控制策略及試驗(yàn)

        瞿濟(jì)偉1,郭康權(quán)1,2※,宋樹杰3,Tran Van Cuong4,李翊寧1

        (1. 西北農(nóng)林科技大學(xué)機(jī)械與電子工程學(xué)院,楊凌 712100;2. 陜西省農(nóng)業(yè)裝備工程技術(shù)研究中心,楊凌 712100;3. 陜西師范大學(xué)食品工程與營養(yǎng)科學(xué)學(xué)院,西安 710119;4. 第一越南蘇聯(lián)職業(yè)技術(shù)學(xué)院電子工程學(xué)院,福安 15910)

        針對(duì)農(nóng)用柔性底盤前輪轉(zhuǎn)向時(shí)兩偏置軸轉(zhuǎn)向機(jī)構(gòu)難以保持聯(lián)動(dòng)關(guān)系而影響順利轉(zhuǎn)彎的問題,基于阿克曼轉(zhuǎn)向幾何與交叉耦合控制原理,設(shè)計(jì)了偏置軸轉(zhuǎn)向機(jī)構(gòu)聯(lián)動(dòng)耦合控制策略,采用模糊PID控制算法對(duì)兩轉(zhuǎn)向輪轉(zhuǎn)角聯(lián)動(dòng)輪廓誤差進(jìn)行補(bǔ)償,并依據(jù)方向盤信號(hào)大小和變化率對(duì)電磁摩擦鎖PWM控制信號(hào)占空比進(jìn)行調(diào)節(jié),以匹配偏置電動(dòng)輪轉(zhuǎn)向的角速度,使兩轉(zhuǎn)向機(jī)構(gòu)形成耦合而保持期望聯(lián)動(dòng)關(guān)系;基于MATLAB/Simulink對(duì)控制策略進(jìn)行了仿真,且在硬化路面上實(shí)施了階躍轉(zhuǎn)向、蛇行轉(zhuǎn)向及隨機(jī)轉(zhuǎn)向3種運(yùn)動(dòng)方式的試驗(yàn)驗(yàn)證,并對(duì)比分析了轉(zhuǎn)角分配控制下的前輪轉(zhuǎn)向效果。試驗(yàn)結(jié)果表明:耦合控制方法下柔性底盤前輪階躍轉(zhuǎn)向響應(yīng)均在0.8 s內(nèi),左、右側(cè)轉(zhuǎn)角最大超調(diào)為1.3°;電磁摩擦鎖的開閉可較好匹配電動(dòng)輪的轉(zhuǎn)向;左、右前輪對(duì)于各自目標(biāo)角具有良好的跟蹤性能;3種轉(zhuǎn)向方式下最大與平均跟隨誤差值均小于分配控制方法;兩輪聯(lián)動(dòng)的最大與平均轉(zhuǎn)角輪廓誤差分別為:階躍轉(zhuǎn)向1.2°與0.6°、蛇行轉(zhuǎn)向1.1°與0.6°、隨機(jī)轉(zhuǎn)向1.0°與0.5°;耦合控制下仿真與試驗(yàn)轉(zhuǎn)角的輪廓誤差變化趨勢一致,最大誤差為2.2°,證明仿真模型合理有效。耦合控制下偏置軸轉(zhuǎn)向機(jī)構(gòu)聯(lián)動(dòng)控制效果優(yōu)于轉(zhuǎn)角分配控制,轉(zhuǎn)向效果良好,該文提出的柔性底盤偏置軸轉(zhuǎn)向機(jī)構(gòu)聯(lián)動(dòng)耦合控制策略有效且可行。

        農(nóng)業(yè)機(jī)械;控制;算法;柔性底盤;前輪轉(zhuǎn)向;聯(lián)動(dòng);耦合控制;試驗(yàn)

        0 引 言

        中國設(shè)施農(nóng)業(yè)目前仍是一種勞動(dòng)密集型產(chǎn)業(yè),機(jī)械化水平相對(duì)較低[1-2],隨著勞動(dòng)力愈加缺乏,設(shè)施農(nóng)業(yè)生產(chǎn)機(jī)械化需求越來越強(qiáng)烈[3],目前最常用的農(nóng)業(yè)動(dòng)力及運(yùn)輸裝備仍以拖拉機(jī)、農(nóng)用三輪車等為主,設(shè)施環(huán)境中優(yōu)勢不明顯,目前急需發(fā)展環(huán)保、靈活尤其是兼具機(jī)器人和車輛特征的新型動(dòng)力裝備,其對(duì)于提升設(shè)施農(nóng)業(yè)生產(chǎn)效率及可持續(xù)發(fā)展有重要意義[4]。

        近年來新型農(nóng)業(yè)動(dòng)力裝備研究包電動(dòng)拖拉機(jī)、智能移動(dòng)平臺(tái),以及應(yīng)對(duì)復(fù)雜農(nóng)業(yè)環(huán)境的移動(dòng)機(jī)器人等多個(gè)方面,典型的如用于耕作的溫室微型遙控電動(dòng)拖拉機(jī)、用于播種的智能遙控農(nóng)用車以及用于果園運(yùn)輸?shù)乃妮啓C(jī)器人等[5-11]。新型農(nóng)業(yè)動(dòng)力裝備更加智能化及自動(dòng)化,控制要求更高,諸多學(xué)者進(jìn)行了探討,張京等[12]采用模塊化設(shè)計(jì)與PID控制策略,開發(fā)了農(nóng)用四輪獨(dú)立轉(zhuǎn)向與驅(qū)動(dòng)機(jī)器人控制系統(tǒng),具有較高容錯(cuò)能力及可靠性;張鐵民等[13]基于差速和轉(zhuǎn)矩分配,設(shè)計(jì)了輪式移動(dòng)小車控制系統(tǒng),獲得了較好行駛及負(fù)載性能;Martinez-Garcia等[14]通過加速度測量實(shí)現(xiàn)了四輪驅(qū)動(dòng)機(jī)器人姿態(tài)控制。國外對(duì)于農(nóng)業(yè)機(jī)器人研發(fā)力度更大,農(nóng)業(yè)動(dòng)力機(jī)械智能程度較高,如應(yīng)用加速度傳感器實(shí)時(shí)獲取慣性導(dǎo)航轉(zhuǎn)角的農(nóng)業(yè)機(jī)器人[15],通過車輛與導(dǎo)軌間的感應(yīng)進(jìn)行運(yùn)動(dòng)控制的溫室自動(dòng)駕駛車輛[16]等,且大多有復(fù)雜轉(zhuǎn)向系統(tǒng),如文獻(xiàn)[17]應(yīng)用遺傳算法優(yōu)化了溫室移動(dòng)機(jī)器人控制系統(tǒng)及轉(zhuǎn)向性能,但轉(zhuǎn)向結(jié)構(gòu)仍較復(fù)雜;文獻(xiàn)[18]等基于參數(shù)化設(shè)計(jì)的四輪移動(dòng)機(jī)器人,可快速定制不同機(jī)器人,但沿用了轉(zhuǎn)向電機(jī)結(jié)構(gòu)。在運(yùn)動(dòng)控制算法方面,眾多研究則采用先進(jìn)控制策略,如滑模變結(jié)構(gòu)控制[19]、人工神經(jīng)網(wǎng)絡(luò)控制[20]、非線性動(dòng)力學(xué)控制[21]等,對(duì)提升車輛或機(jī)器人控制性能效果良好。綜上,關(guān)于農(nóng)業(yè)動(dòng)力車輛或機(jī)器人的研究各有所側(cè)重,均較注重智能控制算法[22]的開發(fā),在運(yùn)動(dòng)穩(wěn)定性、轉(zhuǎn)向精度等方面有較大突破,但主要采用內(nèi)燃機(jī)動(dòng)力及傳統(tǒng)機(jī)械液壓轉(zhuǎn)向或機(jī)電液轉(zhuǎn)向系統(tǒng),結(jié)構(gòu)相對(duì)復(fù)雜,環(huán)保性與靈活性等仍需進(jìn)一步提升。

        本文研究的農(nóng)用柔性底盤是一種四輪獨(dú)立驅(qū)動(dòng)與轉(zhuǎn)向電動(dòng)底盤,其采用轉(zhuǎn)向軸與輪胎回轉(zhuǎn)平面偏置的結(jié)構(gòu)[23],由驅(qū)動(dòng)輪提供轉(zhuǎn)向動(dòng)力,無需轉(zhuǎn)向電機(jī),且可實(shí)現(xiàn)多種特殊運(yùn)動(dòng)形式[24],兼具動(dòng)力車輛與機(jī)器人特點(diǎn),在設(shè)施環(huán)境作業(yè)優(yōu)勢明顯。然而,線控系統(tǒng)及偏置軸轉(zhuǎn)向機(jī)構(gòu)使得各驅(qū)動(dòng)輪協(xié)調(diào)運(yùn)動(dòng)較為困難,前輪轉(zhuǎn)向時(shí)若僅基于阿克曼轉(zhuǎn)向幾何直接分配轉(zhuǎn)角指令,則兩偏置軸轉(zhuǎn)向機(jī)構(gòu)難以保持良好的聯(lián)動(dòng)關(guān)系而影響順利轉(zhuǎn)彎,故本文將在前期的柔性底盤控制系統(tǒng)[25]、試驗(yàn)臺(tái)[26]及動(dòng)力學(xué)特性[27]等研究基礎(chǔ)上,探究柔性底盤偏置軸轉(zhuǎn)向機(jī)構(gòu)聯(lián)動(dòng)耦合控制策略,對(duì)柔性底盤轉(zhuǎn)向性能提升及推廣應(yīng)用具有重要意義。

        1 前輪轉(zhuǎn)向系統(tǒng)及模型

        1.1 前輪轉(zhuǎn)向系統(tǒng)

        柔性底盤轉(zhuǎn)向時(shí),通過兩路控制信號(hào)分別控制兩前輪,轉(zhuǎn)向輪角度需遵循阿克曼轉(zhuǎn)向幾何原理,如圖1所示;其中左前輪轉(zhuǎn)角δ與右前輪轉(zhuǎn)角δ之間關(guān)系為

        1.右前輪 2.偏置臂 3.電磁摩擦鎖 4.偏置軸 5.車架

        1.Right front wheel 2.Off-centered arm 3.Electromagnetic friction lock 4.Off-centered shaft 5.Frame of chassis

        注:δ為左前輪轉(zhuǎn)角,(°);δ為右前輪轉(zhuǎn)角,(°);為左右偏置軸距離,m;為前后偏置軸距離,m;為偏置距離,m。

        Note:δis steering angle of left front wheel, (°);δis steering angle of right front wheel, (°);is the distance between the left and the right off-centered shaft,m;is the distance between the front and rear off-centered shaft, m;is the off-centered distance, m.

        圖1 柔性底盤轉(zhuǎn)向示意圖

        Fig.1 Steering schematic of flexible chassis

        柔性底盤前輪轉(zhuǎn)向控制系統(tǒng)結(jié)構(gòu)如圖2所示,3種控制信號(hào)互相配合共同完成轉(zhuǎn)向,第一種為轉(zhuǎn)向信號(hào),通過與油門控制信號(hào)的疊加,控制電動(dòng)輪加速或減速,使電動(dòng)輪繞偏置軸轉(zhuǎn)向;第二種為控制電磁摩擦鎖的PWM信號(hào),使電磁摩擦鎖快速吸合與釋放,調(diào)節(jié)偏置臂轉(zhuǎn)動(dòng)的角速度,以匹配電動(dòng)輪運(yùn)動(dòng);第三種是電動(dòng)輪狀態(tài)反饋信號(hào),使轉(zhuǎn)向過程實(shí)現(xiàn)閉環(huán)控制。通過此3種信號(hào)的配合,實(shí)現(xiàn)柔性底盤的線控轉(zhuǎn)向。

        轉(zhuǎn)向指令發(fā)出后,依據(jù)阿克曼轉(zhuǎn)向幾何關(guān)系對(duì)兩前輪發(fā)出信號(hào),控制電動(dòng)輪運(yùn)動(dòng),并配合電磁摩擦鎖的吸合與釋放,調(diào)節(jié)偏置臂轉(zhuǎn)角;信號(hào)轉(zhuǎn)角δ即為柔性底盤前軸中點(diǎn)處轉(zhuǎn)角[28],其與兩前輪轉(zhuǎn)角關(guān)系為

        1.2 偏置軸轉(zhuǎn)向機(jī)構(gòu)模型

        偏置臂轉(zhuǎn)向角速度,與柔性底盤行駛速度、電動(dòng)輪角速度以及偏置距離等因素有關(guān),偏置轉(zhuǎn)向軸機(jī)構(gòu)轉(zhuǎn)向運(yùn)動(dòng)模型如式(3)所示。

        式中vF為柔性底盤行駛速度,m/s;ωi(i=fl、fr,分別代表左、右前輪,下同)為電動(dòng)輪轉(zhuǎn)動(dòng)角速度,rad/s;α為偏置軸轉(zhuǎn)向機(jī)構(gòu)目標(biāo)角度,(°)。

        轉(zhuǎn)向電橋輸出電壓U作為轉(zhuǎn)向跟蹤的驅(qū)動(dòng)信號(hào),是影響輪轂電機(jī)轉(zhuǎn)速的重要因素,輪轂電機(jī)控制器電壓與電機(jī)轉(zhuǎn)速之間的關(guān)系如式(4)所示。

        式中ω0為輪轂電機(jī)初始速度,r/min;k為轉(zhuǎn)速電壓系數(shù);U為轉(zhuǎn)向電橋的輸出電壓,V。

        1.3 差速轉(zhuǎn)向模型

        柔性底盤轉(zhuǎn)向過程中,對(duì)于起轉(zhuǎn)向作用的兩前輪,二者繞瞬時(shí)旋轉(zhuǎn)中心的角速度相同,但因轉(zhuǎn)向半徑不同,則必然存在差速關(guān)系,設(shè)柔性底盤繞瞬心轉(zhuǎn)動(dòng)的旋轉(zhuǎn)角速度為ω,則兩前輪行駛線速度為

        式中R為柔性底盤瞬時(shí)轉(zhuǎn)向中心半徑,m;為電動(dòng)輪半徑,m。

        從而得兩偏置電動(dòng)輪之間的差速制約關(guān)系為

        前輪轉(zhuǎn)向時(shí),為實(shí)現(xiàn)平穩(wěn)順利轉(zhuǎn)向,兩前輪角速度需保持如式(6)所示差速制約關(guān)系。

        2 偏置軸轉(zhuǎn)向機(jī)構(gòu)聯(lián)動(dòng)耦合控制策略

        2.1 輪廓誤差模糊PID補(bǔ)償

        線控驅(qū)動(dòng)車輛轉(zhuǎn)向輪同步控制方法包括并行控制策略與主從控制策略,但兩輪轉(zhuǎn)角誤差單獨(dú)控制,效果欠佳。本文采用耦合策略對(duì)兩偏置軸驅(qū)動(dòng)輪進(jìn)行協(xié)調(diào)控制,將兩前輪同時(shí)作為控制對(duì)象,形成2個(gè)偏置軸轉(zhuǎn)向機(jī)構(gòu)之間的運(yùn)動(dòng)耦合,其中一個(gè)電動(dòng)輪轉(zhuǎn)角被另一個(gè)電動(dòng)輪實(shí)時(shí)獲取,然后依據(jù)理想轉(zhuǎn)角軌跡實(shí)施閉環(huán)輪廓誤差[29]控制,實(shí)時(shí)補(bǔ)償前輪轉(zhuǎn)角輪廓誤差,實(shí)現(xiàn)兩偏置軸轉(zhuǎn)向機(jī)構(gòu)的耦合控制。

        式中CC為耦合增益。

        圖3 柔性底盤前輪轉(zhuǎn)向輪廓誤差示意圖

        Fig.3 Schematic diagram of contour error for front wheel steering of flexible chassis

        令為前輪理想轉(zhuǎn)角關(guān)系曲線上任一點(diǎn)切線的斜率,則任意一點(diǎn)(δ,δ)處的單位切向量為

        柔性底盤偏置軸轉(zhuǎn)向機(jī)構(gòu)耦合控制系統(tǒng)結(jié)構(gòu)如圖4所示。其中()與()分別為左、右輪轉(zhuǎn)角位置控制的傳遞函數(shù)。()為轉(zhuǎn)角耦合控制器傳遞函數(shù),CC、均為耦合增益系數(shù)。

        圖4 柔性底盤前輪轉(zhuǎn)向耦合控制結(jié)構(gòu)

        未實(shí)施耦合控制時(shí),設(shè)兩輪轉(zhuǎn)角之間的輪廓誤差為0,δδ分別為左、右前輪的期望轉(zhuǎn)角,分別為左、右前輪的實(shí)際轉(zhuǎn)角,則左、右前輪的跟隨誤差ee分別為

        依據(jù)式(7)輪廓誤差原理,可得到柔性底盤未實(shí)施轉(zhuǎn)角補(bǔ)償時(shí)的輪廓誤差為

        設(shè)計(jì)交叉耦合控制器時(shí),需首先計(jì)算補(bǔ)償?shù)妮喞`差,設(shè)控制器給兩轉(zhuǎn)向輪轉(zhuǎn)角的補(bǔ)償值為χ、χ,則

        類似式(12)推導(dǎo),可得到補(bǔ)償后的輪廓誤差τ

        求得

        其中

        因此,柔性底盤前輪轉(zhuǎn)向耦合控制可描述為:輪廓開環(huán)誤差0在不斷變化,設(shè)計(jì)一個(gè)變?cè)鲆婵刂破?),使輪廓閉環(huán)誤差τ盡量降低,以提升系統(tǒng)控制精度。鑒于此,本文設(shè)計(jì)模糊自整定PID控制器,依據(jù)輪廓誤差τ及其變化率τ,進(jìn)行比例系數(shù)K、積分系數(shù)K、微分系數(shù)K的自整定,進(jìn)而實(shí)現(xiàn)輪廓誤差補(bǔ)償,控制器結(jié)構(gòu)如圖5所示。

        注:δf為信號(hào)轉(zhuǎn)角,(°);τs為輪廓誤差,(°);τsc為輪廓誤差變化率,(°)·s-1;Kp為比例系數(shù);Ki為積分系數(shù);Kd為微分系數(shù);χ為補(bǔ)償?shù)妮喞`差,(°);δ'f為實(shí)際轉(zhuǎn)角,(°);PID表示比例-積分-微分算法。

        本文采用以輪廓誤差τ及其變化率τ作為輸入的二維模糊控制器,根據(jù)柔性底盤前輪轉(zhuǎn)向大量轉(zhuǎn)角檢測數(shù)據(jù),輪廓誤差幅值均在0至2.4°之間,其變化率則在0至2.4°/s之間,二者基本論域均為 [0,2.4];同時(shí),基于本文模型,采用PID參數(shù)手動(dòng)調(diào)節(jié)方法進(jìn)行大量仿真測試,并參考相關(guān)文獻(xiàn)[30],得出柔性底盤前輪耦合模糊PID控制中比例、積分、微分系數(shù)范圍分別為[0,6]、[0,3]、[0,0.6]。依據(jù)基本論域進(jìn)行模糊論域轉(zhuǎn)換,輪廓誤差及其變化率模糊論域設(shè)置為[-1.2,1.2],輸出變量KK模糊論域均設(shè)置為[-3,3],K模糊論域?yàn)閇-0.6,0.6]。依據(jù)PID整定中各參數(shù)功能及相互之間關(guān)系,建立表1所示模糊規(guī)則,其中模糊控制的隸屬度函數(shù)如圖6所示。運(yùn)用Mamdani法實(shí)施模糊推理,采用重心法實(shí)現(xiàn)解模糊化,通過對(duì)K、KK的調(diào)節(jié),實(shí)現(xiàn)轉(zhuǎn)角補(bǔ)償。

        表1 Kp,Ki及Kd模糊控制規(guī)則

        圖6 模糊控制隸屬函數(shù)曲線

        2.2 電磁摩擦鎖PWM信號(hào)占空比控制

        由于地面隨機(jī)因素、輪胎非線性等因素存在,難以建立偏置軸轉(zhuǎn)向機(jī)構(gòu)與電磁摩擦鎖之間運(yùn)動(dòng)學(xué)模型,而模糊控制因不依賴于精確數(shù)學(xué)模型,對(duì)處理非線性系統(tǒng)有強(qiáng)大優(yōu)勢[31],故本文基于電磁摩擦鎖PWM控制方法[32],對(duì)電磁摩擦鎖實(shí)施模糊控制,使電磁摩擦鎖的開閉動(dòng)作隨轉(zhuǎn)向信號(hào)變化。當(dāng)轉(zhuǎn)向信號(hào)變化幅度較大且變化較快時(shí),通過模糊規(guī)則使PWM占空比減小,電磁摩擦鎖鎖緊持續(xù)時(shí)間縮短而釋放持續(xù)時(shí)間增長,使偏置轉(zhuǎn)向軸機(jī)構(gòu)轉(zhuǎn)動(dòng)加快;反之,如轉(zhuǎn)向信號(hào)變化幅度較小且變化較慢時(shí),則通過模糊規(guī)則將PWM占空比增大,電磁摩擦鎖鎖緊持續(xù)時(shí)間增長而釋放持續(xù)時(shí)間縮短,從而使偏置轉(zhuǎn)向軸機(jī)構(gòu)轉(zhuǎn)動(dòng)變慢。本文采用二維模糊控制器,轉(zhuǎn)角幅度及變化快慢(即轉(zhuǎn)角變化率),二者皆為輸入量,分別記為和EC;輸出量為電磁摩擦鎖PWM控制信號(hào)占空比。具體如下:

        為增加控制器對(duì)輸入量的靈敏度,將輸入輸出語言變量值均分為7個(gè)模糊子集:{NB,NM,NS,,PS,PM,PB};依據(jù)前期試驗(yàn)檢測數(shù)據(jù),確定的基本論域?yàn)閇3,3],EC的基本論域?yàn)閇0.3,0.3],基本論域?yàn)閇0,1];基于此,模糊論域取[-6,6],EC模糊論域取[-6,6],的模糊論域取[-1,1];以及EC為零時(shí)作為檔,輸入輸出均選三角函數(shù)為隸屬度函數(shù),采用重心法解模糊,模糊控制規(guī)則如表2所示。

        表2 占空比控制規(guī)則

        2.3 仿真及結(jié)果分析

        基于上述轉(zhuǎn)向模型與控制算法,采用MATLAB/ Simulink建立柔性底盤偏置軸轉(zhuǎn)向機(jī)構(gòu)聯(lián)動(dòng)耦合控制仿真模型,如圖7所示,所涉及仿真參數(shù)如表3所示。

        圖7 轉(zhuǎn)向耦合控制仿真模型

        本文采用階躍信號(hào)、正弦信號(hào)及隨機(jī)信號(hào)輸入的轉(zhuǎn)向方式,仿真測試柔性底盤轉(zhuǎn)向響應(yīng)、轉(zhuǎn)向跟隨及轉(zhuǎn)角耦合性能。仿真時(shí)各電動(dòng)輪初始轉(zhuǎn)速設(shè)置為30 r/min。前期柔性底盤轉(zhuǎn)向控制中,采用轉(zhuǎn)角分配控制方法,即將轉(zhuǎn)向信號(hào)按照阿克曼幾何關(guān)系計(jì)算后直接分配給左、右前輪,只進(jìn)行單輪轉(zhuǎn)角反饋,而沒有轉(zhuǎn)向輪間的耦合控制,其簡單易行,但兩轉(zhuǎn)向輪間不能相互關(guān)聯(lián)。因此,本文以分配控制方法為對(duì)比,觀察耦合控制方法的效果。

        仿真結(jié)果中左、右前輪轉(zhuǎn)角變化曲線趨勢一致,僅轉(zhuǎn)角幅度不同,故以左前輪為例說明,其階躍轉(zhuǎn)向、正弦輸入信號(hào)轉(zhuǎn)向以及隨機(jī)轉(zhuǎn)向時(shí)的轉(zhuǎn)角變化分別如圖8所示,階躍轉(zhuǎn)向方式下分配控制的轉(zhuǎn)角超調(diào)更大,穩(wěn)態(tài)響應(yīng)時(shí)間更長,響應(yīng)過程中耦合控制與分配控制的轉(zhuǎn)角超調(diào)為分別為0.44°與0.83°;正弦信號(hào)下耦合控制與分配控制的最大轉(zhuǎn)向跟隨誤差分別為0.16°與0.26°;隨機(jī)轉(zhuǎn)向下2種控制方式最大轉(zhuǎn)向跟隨誤差分別為0.45°與0.71°。

        3種方式下輪廓誤差變化分別如圖9所示,階躍轉(zhuǎn)向方式下耦合控制與分配控制最大輪廓誤差分別為0.16°和0.19°;正弦輸入信號(hào)下最大輪廓誤差分別為0.015°與0.029度,轉(zhuǎn)角幅度越大,輪廓誤差越大;隨機(jī)轉(zhuǎn)向下輪廓誤差分別為0.021°與0.034°??梢?,耦合控制下輪廓誤差及轉(zhuǎn)角跟隨誤差得到了良好補(bǔ)償,輪廓誤差更小,兩轉(zhuǎn)向輪之間形成了較好的耦合。相比于轉(zhuǎn)角分配控制方法,耦合控制下轉(zhuǎn)角曲線與轉(zhuǎn)向信號(hào)曲線的吻合程度更高,總體控制效果更優(yōu)。

        表3 柔性底盤轉(zhuǎn)向仿真參數(shù)表

        a. 階躍信號(hào)仿真b. 正弦信號(hào)仿真c. 隨機(jī)信號(hào)仿真 a. Step signal simulationb. Sinusoidal signal simulationc. Random signal simulation

        圖8 不同轉(zhuǎn)向仿真形式下左前輪轉(zhuǎn)角響應(yīng)曲線

        Fig.8 Angle response curves of left front wheel under different steering simulation modes

        a. 階躍信號(hào)仿真b. 正弦信號(hào)仿真c. 隨機(jī)信號(hào)仿真 a. Step signal simulationb. Sinusoidal signal simulationc. Random signal simulation

        3 轉(zhuǎn)向電子控制系統(tǒng)結(jié)構(gòu)

        3.1 硬件系統(tǒng)

        柔性底盤轉(zhuǎn)向控制硬件系統(tǒng)主要由STM32單片機(jī)模塊(STM32F103ZET6,STMicroelectronics company)、轉(zhuǎn)向電橋步進(jìn)電機(jī)(YH42BYGH47-401A,樂清市新瑪機(jī)電有限公司)及其驅(qū)動(dòng)控制器、電橋模塊以及各種線路組成。將所設(shè)計(jì)的耦合控制算法編寫成C程序,通過Keil uVision4軟件進(jìn)行調(diào)試,轉(zhuǎn)換成為可執(zhí)行文件,利用Mcuisp v0.993下載器將調(diào)試成功的程序加載到STM32芯片中。

        本文通過PWM信號(hào)驅(qū)動(dòng)大功率MOS管方法控制電磁摩擦鎖,力求損耗低、可靠且簡單,且驅(qū)動(dòng)電路提供足夠電流使開關(guān)管接通瞬時(shí)柵源極間電壓快速上升,導(dǎo)通時(shí)柵源極間電壓穩(wěn)定,斷開瞬間則有較低阻抗以使電容電壓快速泄放,設(shè)計(jì)驅(qū)動(dòng)電路如圖10a所示。柔性底盤線控轉(zhuǎn)向系統(tǒng)通信擴(kuò)展模塊主要有無線通信模塊與CAN(controller area network)總線模塊,本文采用PTR2000作為無線遙控的通信模塊,其和主控制器STM32單片機(jī)的USART端口進(jìn)行對(duì)接,使底盤接受操作的控制命令,實(shí)現(xiàn)人機(jī)通信,無線通信模塊電路如圖10b所示。同時(shí),采用STM32微控制器內(nèi)部CAN總線接口與TJA1050型高速CAN總線接受模塊連接,實(shí)現(xiàn)轉(zhuǎn)向系統(tǒng)各個(gè)模塊的信息傳輸,總線接口模塊電路如圖10c所示。柔性底盤前輪轉(zhuǎn)向控制器實(shí)物如圖11所示。

        a. 電磁摩擦鎖功率驅(qū)動(dòng)電路b. 無線通信擴(kuò)展模塊c. CAN總線擴(kuò)展模塊 a. Power driving circuit of electromagnetic friction lockb. Wireless communication extension modulec. CAN bus extension module

        1.主控制器 2.CAN總線模塊 3.MOS管 4.電磁摩擦鎖驅(qū)動(dòng)器 5.步進(jìn)電機(jī) 6.步進(jìn)電機(jī)驅(qū)動(dòng)器 7.電橋電路 8.數(shù)據(jù)采集卡 1.Main controller 2.CAN module 3.Stacked MOS 4.Electromagnetic friction lock driver 5.Stepper motor 6.Stepper motor driver 7.Bridge circuit 8.Data acquisition card

        3.2 控制程序流程

        柔性底盤前輪轉(zhuǎn)向控制程序算法流程如圖12所示。程序主要分為3大模塊:一是控制器接受到轉(zhuǎn)向指令后,控制電磁摩擦鎖開閉動(dòng)作的程序;二是左、右前輪轉(zhuǎn)向位置的PID控制程序,其參數(shù)通過試湊法得到,即首先調(diào)整比例系數(shù)K,使電動(dòng)輪快速到達(dá)目標(biāo)角,然后介入積分控制以控制穩(wěn)態(tài)誤差,其積分時(shí)間常數(shù)K大小以不影響轉(zhuǎn)向時(shí)效為佳,最后介入微分控制,通過微調(diào)微分時(shí)間常數(shù)K方式,使轉(zhuǎn)向超調(diào)盡可能小,確定3個(gè)參數(shù)KK、K分別為4、1.05、0.15;三是耦合控制程序的主要部分,即依據(jù)兩前輪理想轉(zhuǎn)角關(guān)系進(jìn)行轉(zhuǎn)角輪廓誤差補(bǔ)償?shù)哪:齈ID控制程序。

        圖12 柔性底盤轉(zhuǎn)向耦合控制算法主程序流程圖

        4 試驗(yàn)及結(jié)果分析

        4.1 試驗(yàn)條件

        本試驗(yàn)采用轉(zhuǎn)速傳感器(D046,龍戈電子,0~1 000 r/min)測量電動(dòng)輪轉(zhuǎn)速;用精密多圈電位器(22HP-10,日本SAKAE公司,0~5 kΩ)檢測偏置臂轉(zhuǎn)動(dòng)角度,通過數(shù)據(jù)采集系統(tǒng)的時(shí)鐘獲取轉(zhuǎn)向時(shí)間,用筆記本電腦(E40,ThinkPad)及數(shù)據(jù)采集卡(USB7648B,中泰研創(chuàng)科技公司)采集各傳感器數(shù)據(jù)。

        4.2 轉(zhuǎn)向試驗(yàn)方法

        鑒于田間環(huán)境十分復(fù)雜,只有后續(xù)研究中探明土壤因素影響并開發(fā)針對(duì)性控制算法后,才便于田間試驗(yàn),同時(shí),以硬化路面轉(zhuǎn)角耦合控制研究為基礎(chǔ),才便于后期開展轉(zhuǎn)彎半徑、通過性等方面的研究,故本文針對(duì)硬化路面工況進(jìn)行試驗(yàn)。參考傳統(tǒng)車輛轉(zhuǎn)向試驗(yàn)標(biāo)準(zhǔn)[33-34],本研究采用階躍轉(zhuǎn)向試驗(yàn)、蛇行轉(zhuǎn)向試驗(yàn)及隨機(jī)擾動(dòng)試驗(yàn),對(duì)所設(shè)計(jì)的控制策略進(jìn)行驗(yàn)證,階躍轉(zhuǎn)向試驗(yàn)可較好評(píng)價(jià)轉(zhuǎn)向系統(tǒng)響應(yīng)能力以及轉(zhuǎn)向精度,蛇行轉(zhuǎn)向試驗(yàn)是綜合評(píng)價(jià)車輛操縱性和靈敏性的一種試驗(yàn)[33-34],并通過隨機(jī)轉(zhuǎn)向試驗(yàn)綜合觀察轉(zhuǎn)向精度、隨動(dòng)性及靈敏性等。為了證明本文所提控制方法是否具有優(yōu)勢,同時(shí)進(jìn)行了轉(zhuǎn)向分配控制方法下的階躍轉(zhuǎn)向、蛇行轉(zhuǎn)向以及隨機(jī)轉(zhuǎn)向3種試驗(yàn)。

        柔性底盤轉(zhuǎn)向試驗(yàn)場景如圖13所示。具體試驗(yàn)過程如下:首先,檢查柔性底盤的各種機(jī)械連接是否穩(wěn)固,以及各種控制線路和供電線路是否連接正確;其次,啟動(dòng)數(shù)據(jù)采集系統(tǒng),開始數(shù)據(jù)采集,使電動(dòng)輪以30 r/min轉(zhuǎn)速勻速直線行駛,然后分別施加階躍轉(zhuǎn)向信號(hào)、蛇行轉(zhuǎn)向信號(hào)、隨機(jī)擾動(dòng)信號(hào),使柔性底盤執(zhí)行相應(yīng)的轉(zhuǎn)向操作,3種試驗(yàn)方式的軌跡示例分別如圖 13所示。通過精密多圈電位器檢測偏置轉(zhuǎn)向軸機(jī)構(gòu)的轉(zhuǎn)向角度大小,轉(zhuǎn)向運(yùn)動(dòng)完成后,停止數(shù)據(jù)采集,數(shù)據(jù)存盤。

        4.3 結(jié)果分析

        由于左、右前輪轉(zhuǎn)角變化趨勢一致,此處亦以左前輪為例進(jìn)行說明。階躍轉(zhuǎn)向試驗(yàn)結(jié)果如圖14a所示,轉(zhuǎn)向響應(yīng)迅速,均在0.8 s內(nèi)到達(dá)目標(biāo)角位置,響應(yīng)能力較好,轉(zhuǎn)角增大過程平穩(wěn),且分配控制與耦合控制下轉(zhuǎn)角曲線與輸入轉(zhuǎn)角曲線吻合較好,但到達(dá)目標(biāo)角度后,分配控制超調(diào)更大;在實(shí)際試驗(yàn)過程中,受路面隨機(jī)擾動(dòng)及柔性底盤自身制造等因素的影響,誤差數(shù)值更大,分配控制下左、右輪超調(diào)分別為2.4°與2.2°,而耦合控制分別為1.0°與1.3°。蛇行轉(zhuǎn)向試驗(yàn)結(jié)果如圖14b所示,耦合控制下左、右輪實(shí)際轉(zhuǎn)角曲線與轉(zhuǎn)角信號(hào)曲線吻合程度比分配控制高,說明兩轉(zhuǎn)向輪對(duì)于目標(biāo)轉(zhuǎn)角有較好跟隨性能,整個(gè)過程中左前輪最大與平均跟隨誤差分別為1.1°與0.7°,右前輪分別為1.3°與0.7°;分配控制下跟隨誤差則較大,尤其是轉(zhuǎn)向方向切換后不久更大,左前輪最大與平均跟隨誤差分別為2.8°與1.2°,右前輪分別為2.6°與1.4°。隨機(jī)轉(zhuǎn)向試驗(yàn)結(jié)果如圖14c所示,與蛇行轉(zhuǎn)向試驗(yàn)結(jié)果類似,耦合控制下,左、右前輪轉(zhuǎn)角對(duì)于轉(zhuǎn)角信號(hào)的跟蹤性能更好,最大與平均跟隨誤差:左前輪為1.3°與0.8°,右前輪為1.3°與0.6°,而分配控制下左前輪為2.7°與1.4°,右前輪為2.9°與1.1°。對(duì)比圖14中同樣輸入信號(hào)下仿真轉(zhuǎn)角響應(yīng)曲線與耦合控制下的試驗(yàn)轉(zhuǎn)角響應(yīng)曲線可發(fā)現(xiàn),二者吻合程度較高,階躍轉(zhuǎn)向下仿真與試驗(yàn)最大轉(zhuǎn)角誤差為1.7°,蛇行轉(zhuǎn)向下最大轉(zhuǎn)角誤差為2.2°,隨機(jī)轉(zhuǎn)向下最大轉(zhuǎn)角誤差為1.8°。

        a. 階躍轉(zhuǎn)向b. 蛇行轉(zhuǎn)向c. 隨機(jī)轉(zhuǎn)向 a. Step steeringb. Snake steeringc. Random steering

        d. 階躍轉(zhuǎn)向軌跡示例e. 蛇行轉(zhuǎn)向軌跡示例f. 隨機(jī)轉(zhuǎn)向軌跡示例 d. Step steering trajectory examplee. Snake cornering trajectory examplef. Random steering trajectory example

        階躍轉(zhuǎn)向的輪廓誤差變化如圖15a所示,其總體上呈現(xiàn)先增大而后減小的變化趨勢,耦合控制最大及平均輪廓誤差分別為1.2°與0.6°,而分配控制分別為2.0°與0.9°;轉(zhuǎn)角上升階段,分配控制下輪廓誤差出現(xiàn)2次峰值,可能是發(fā)生較大超調(diào)后,輪胎轉(zhuǎn)角反復(fù)擺動(dòng)而引起;雖然分配控制下單輪最終可較為準(zhǔn)確地跟隨到達(dá)目標(biāo)角度,但輪廓誤差卻更大,亦體現(xiàn)出耦合控制的優(yōu)勢。蛇行轉(zhuǎn)向的輪廓誤差變化如圖15b所示,耦合控制最大及平均輪廓誤差為分別為1.1°與0.6°,雖有起伏但波動(dòng)相對(duì)較小,而分配控制分別為1.6°與0.8°,且波動(dòng)較劇烈;轉(zhuǎn)向過程中也觀察到耦合控制下轉(zhuǎn)向更加平順,而分配控制下電動(dòng)輪滑摩次數(shù)較多,損害輪胎,這是由于輪廓誤差較大而使輪間幾何關(guān)系保持較差所致;蛇行轉(zhuǎn)向試驗(yàn)也表明,耦合控制下柔性底盤兩偏置軸轉(zhuǎn)向機(jī)構(gòu)轉(zhuǎn)角耦合控制性能更優(yōu)。隨機(jī)轉(zhuǎn)向的輪廓誤差變化如圖15c所示,耦合控制最大及平均輪廓誤差分別為1.0°與0.5°,而分配控制下分別為1.7°與0.8°;分配控制輪廓誤差波動(dòng)更劇烈,表明阿克曼轉(zhuǎn)角關(guān)系保持較差,不利于平穩(wěn)順利轉(zhuǎn)向,而耦合控制下輪廓誤差則保持在0.3°上下,波動(dòng)起伏較小。由圖15可看出,雖然試驗(yàn)輪廓誤差值大于仿真值,但仍在正常范圍內(nèi),且二者變化趨勢一致,證明所建仿真模型合理有效。

        a. 階躍轉(zhuǎn)向b. 蛇行轉(zhuǎn)向c. 隨機(jī)轉(zhuǎn)向 a. Step steeringb. Snake steeringc. Random steering

        分配控制、耦合控制下兩前輪試驗(yàn)轉(zhuǎn)角關(guān)系與期望阿克曼轉(zhuǎn)角關(guān)系對(duì)比圖如圖16所示,由該圖中試驗(yàn)轉(zhuǎn)角關(guān)系樣點(diǎn)可看出,耦合控制下試驗(yàn)轉(zhuǎn)角關(guān)系與期望阿克曼轉(zhuǎn)角關(guān)系更加吻合,樣點(diǎn)離期望曲線越遠(yuǎn),則表示阿克曼關(guān)系保持程度越差;總體而言,分配控制下兩前輪聯(lián)動(dòng)效果更差,尤其在蛇行轉(zhuǎn)向中最為明顯;分配控制轉(zhuǎn)角關(guān)系曲線與期望轉(zhuǎn)角關(guān)系曲線差別比耦合控制更大,表明耦合控制效果更佳。

        a. 階躍轉(zhuǎn)向b. 蛇行轉(zhuǎn)向c. 隨機(jī)轉(zhuǎn)向 a. Step steeringb. Snake steeringc. Random steering

        綜上可知,在前輪轉(zhuǎn)角耦合控制下,柔性底盤兩前轉(zhuǎn)向輪不僅各自對(duì)于目標(biāo)轉(zhuǎn)角有良好跟隨性能,同時(shí)輪廓誤差波動(dòng)幅度較小且波動(dòng)次數(shù)更少;耦合控制不僅減小了偏置轉(zhuǎn)向軸機(jī)構(gòu)聯(lián)動(dòng)的輪廓誤差,且使各自的轉(zhuǎn)向跟隨性能也到了改善,整體上控制性能良好。

        5 結(jié)論與討論

        1)針對(duì)柔性底盤前輪轉(zhuǎn)向機(jī)構(gòu)聯(lián)動(dòng)控制問題,提出了一種偏置軸轉(zhuǎn)向機(jī)構(gòu)聯(lián)動(dòng)耦合控制方法,設(shè)計(jì)了基于模糊PID耦合控制器對(duì)柔性底盤前輪轉(zhuǎn)向時(shí)兩轉(zhuǎn)向輪聯(lián)動(dòng)的輪廓誤差進(jìn)行補(bǔ)償;同時(shí)采用模糊邏輯方法,使電磁摩擦鎖PWM控制信號(hào)占空比依據(jù)轉(zhuǎn)向信號(hào)大小與變化率進(jìn)行調(diào)節(jié),實(shí)現(xiàn)了轉(zhuǎn)向信號(hào)與電磁摩擦鎖動(dòng)作的匹配控制,以協(xié)調(diào)兩轉(zhuǎn)向輪的轉(zhuǎn)向運(yùn)動(dòng),構(gòu)建了柔性底盤偏置軸轉(zhuǎn)向機(jī)構(gòu)聯(lián)動(dòng)控制策略。

        2)通過仿真以及硬化路面試驗(yàn),對(duì)耦合控制策略進(jìn)行了驗(yàn)證,仿真及試驗(yàn)結(jié)果均表明,在耦合控制下柔性底盤前輪轉(zhuǎn)向響應(yīng)迅速,左、右前輪轉(zhuǎn)角對(duì)于各自目標(biāo)角具有良好跟蹤性能,電磁摩擦鎖與驅(qū)動(dòng)輪的轉(zhuǎn)向配合良好,偏置軸轉(zhuǎn)向機(jī)構(gòu)的最大與平均跟隨誤差值均小于分配控制方法;試驗(yàn)中兩輪聯(lián)動(dòng)的最大與平均轉(zhuǎn)角輪廓誤差分別為:階躍轉(zhuǎn)向1.2°與0.6°、蛇行轉(zhuǎn)向1.1°與0.6°、隨機(jī)轉(zhuǎn)向1.0°與0.5°;耦合控制下兩偏置軸轉(zhuǎn)向機(jī)構(gòu)聯(lián)動(dòng)控制效果優(yōu)于分配控制,轉(zhuǎn)向效果良好,本文提出的柔性底盤偏置軸轉(zhuǎn)向機(jī)構(gòu)聯(lián)動(dòng)耦合控制策略有效且可行。

        本文針對(duì)硬化路面應(yīng)用場合進(jìn)行了柔性底盤轉(zhuǎn)向機(jī)構(gòu)聯(lián)動(dòng)耦合控制試驗(yàn)研究,田間工況作為另一種應(yīng)用場合,情況復(fù)雜,所開發(fā)控制算法難以適應(yīng),課題組將依據(jù)田間特點(diǎn)進(jìn)行模型分析及控制算法優(yōu)化,進(jìn)一步開展田間轉(zhuǎn)向試驗(yàn)研究;此外,保持良好轉(zhuǎn)角關(guān)系是轉(zhuǎn)向機(jī)構(gòu)聯(lián)動(dòng)控制的主要問題,故本文重點(diǎn)研究了轉(zhuǎn)角輪廓誤差控制算法,對(duì)試驗(yàn)條件有一定限定,基于后續(xù)算法優(yōu)化,還需對(duì)轉(zhuǎn)向過程中轉(zhuǎn)彎半徑、作業(yè)車速影響特性及通過性等問題進(jìn)行深入研究。

        [1]肖體瓊,何春霞,陳巧敏,等. 基于機(jī)械化生產(chǎn)視角的中國蔬菜成本收益分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(5):75-82. Xiao Tiqiong, He Chunxia, Chen Qiaomin, et al. Cost-benefit analysis of vegetable production based on agricultural mechanized production[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(5): 75-82. (in Chinese with English abstract)

        [2]李中華,張躍峰,丁小明. 全國設(shè)施農(nóng)業(yè)裝備發(fā)展重點(diǎn)研究[J]. 中國農(nóng)機(jī)化學(xué)報(bào),2016,37(11):47-52. Li Zhonghua, Zhang Yuefeng, Ding Xiaoming. Research on the development emphases of equipment in facility agriculture[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(11): 47-52. (in Chinese with English abstract)

        [3]齊飛,魏曉明,張躍峰. 中國設(shè)施園藝裝備技術(shù)發(fā)展現(xiàn)狀與未來研究方向[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(24):1-9. Qi Fei, Wei Xiaoming, Zhang Yuefeng. Development status and future research emphase on greenhouse horticultural equipment and its relative technology in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(24): 1-9. (in Chinese with English abstract)

        [4]羅錫文,廖娟,胡煉,等. 提高農(nóng)業(yè)機(jī)械化水平促進(jìn)農(nóng)業(yè)可持續(xù)發(fā)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(1):1-11. Luo Xiwen, Liao Juan, Hu lian, et al. Improving agricultural mechanization level to promote agricultural sustainable development[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(1): 1-11. (in Chinese with English abstract)

        [5]謝斌,張超,陳碩,等. 雙輪驅(qū)動(dòng)電動(dòng)拖拉機(jī)傳動(dòng)性能研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(6):8-13. Xie Bin, Zhang Chao, Chen Shuo, et al. Transmission performance of two-wheel drive electric tractor[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(6): 8-13. (in Chinese with English abstract)

        [6]管春松,胡檜,陳永生,等. 溫室用小型電動(dòng)拖拉機(jī)研究[J].中國農(nóng)機(jī)化學(xué)報(bào),2015,36(2):67-69,76. Guan Chunsong, Hu Hui, Chen Yongsheng, et al. Study on small electric tractors for greenhouse[J]. Journal of Chinese Agricultural Mechanization, 2015, 36(2): 67-69, 76. (in Chinese with English abstract)

        [7]羅錫文,區(qū)穎剛,趙祚喜,等. 農(nóng)用智能移動(dòng)作業(yè)平臺(tái)模型的研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2005,21(2):83-85. Luo Xiwen, Qu Yinggang, Zhao Zuoxi, et al. Research and development of intelligent flexible chassis for precision farming[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(2): 83-85. (in Chinese with English abstract)

        [8]Tabile R A, Godoy E P, Pereira R R D, et al. Design of the mechatronic architecture of an agricultural mobile robot[J]. IFAC Proceedings Volumes, 2010, 43(18): 717-724.

        [9]王元杰,劉永成,楊福增,等. 溫室微型遙控電動(dòng)拖拉機(jī)的研制與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(22):23-29. Wang Yuanjie, Liu Yongcheng, Yang Fuzeng, et al. Development and test of tiny remotely controlled electric tractor for greenhouses[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(22): 23-29. (in Chinese with English abstract)

        [10]Kannan P, Natarajan S K, Dash S S. Design and implementation of fuzzy logic controller for online computer controlled steering system for navigation of a teleoperated agricultural vehicle[J/OL]. Mathematical Problems in Engineering, 2013: 590861.

        [11]Ye Yunxiang, He Long, Zhang Qin. Steering control strategies for a four-wheel-independent-steering bin managing robot[J]. IFAC-PapersOnLine, 2016, 49(16): 39-44.

        [12]張京,陳度,王書茂,等. 農(nóng)用輪式機(jī)器人四輪獨(dú)立轉(zhuǎn)向驅(qū)動(dòng)控制系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(18):63-70. Zhang Jing, Chen Du, Wang Shumao, et al. Design and experiment of four-wheel independent steering driving and control system for agricultural wheeled robot[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(18): 63-70. (in Chinese with English abstract)

        [13]張鐵民,黃翰,黃鵬煥. 輪轂電機(jī)式移動(dòng)小車控制系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(19):11-18. Zhang Tiemin, Huang Han, Huang Penghuan. Design and test of drive and control system for electric wheeled mobile car[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(19): 11-18. (in Chinese with English abstract)

        [14]Martinez-Garcia E A, Lerin-Garcia E, Torres-Cordoba R A. A multi-configuration kinematic model for active drive/steer four-wheel robot structures[J]. Robotica, 2016, 34(10): 2309-2329.

        [15]Zhao Shuailing, Zhang Zhibin, Xiao Deqin, et al. A turning model of agricultural robot based on acceleration sensor[J]. IFAC-PapersOnLine, 2016, 49(16): 445-450.

        [16]Gat G, Gan-Mor S, Degani A. Stable and robust vehicle steering control using an overhead guide in greenhouse tasks[J]. Computers & Electronics in Agriculture, 2016, 121: 234-244.

        [17]Ko M H, Ryuh B S, Kim K C, et al. Autonomous greenhouse mobile robot driving strategies from system integration perspective: review and application[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(4): 1705-1716.

        [18]Grimstad L, From P J. Thorvald II-a modular and re-configurable agricultural robot[J]. IFAC-PapersOnLine, 2017, 50(1): 4588-4593.

        [19]Chen Te, Xu Xing, Li Yong, et al. Speed-dependent coordinated control of differential and assisted steering for in-wheel motor driven electric vehicles[J]. Proceedings of the Institution of Mechanical Engineers Part D: Journal of Automobile Engineering, 2018, 232(9): 1206-1220.

        [20]Wang Chunyan, Zhao Wanzhong, Luan Zhongkai, et al. Decoupling control of vehicle chassis system based on neural network inverse system[J]. Mechanical Systems and Signal Processing, 2018, 106: 176-197.

        [21]Zhang Han, Zhao Wanzhong. Decoupling control of steering and driving system for in-wheel-motor-drive electric vehicle[J]. Mechanical Systems & Signal Processing, 2018, 101: 389-404.

        [22]Bechar A, Vigneault C. Agricultural robots for field operations: concepts and components[J]. Biosystem Engineering, 2016, 149: 94-111.

        [23]西北農(nóng)林科技大學(xué). 一種車輛輔助轉(zhuǎn)向裝置[P]. 中國專利:2007100176441,2007-09-05.

        [24]路敵. 溫室作業(yè)機(jī)的柔性底盤及其控制系統(tǒng)的研究與開發(fā)[D].楊凌:西北農(nóng)林科技大學(xué),2011. Lu Di. Research and Development for Flexible Chassis and Its Control System of Conservatory Work Machines[D]. Yangling: Northwest A & F University, 2011. (in Chinese with English abstract)

        [25]楊露,郭康權(quán),丁新民. 基于電橋電路的溫室作業(yè)柔性底盤轉(zhuǎn)向控制系統(tǒng)的設(shè)計(jì)[J]. 農(nóng)機(jī)化研究,2013,35(9):151-155. Yang Lu, Guo Kangquan, Ding Xinmin. The steering control system design of flexible chassis for conservatory work based on bridge circuit[J]. Journal of Agricultural Mechanization Research, 2013, 35(9): 151-155. (in Chinese with English abstract)

        [26]宋樹杰,李翊寧,瞿濟(jì)偉,等. 柔性底盤性能檢測試驗(yàn)臺(tái)設(shè)計(jì)與應(yīng)用[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(2):77-83. Song Shujie, Li Yining, Qu Jiwei, et al. Development and application of test bench for flexible chassis[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(2): 77-83. (in Chinese with English abstract)

        [27]Song Shujie, Li Yining, Qu Jiwei, et al. Design and test of flexible chassis automatic tracking steering system[J]. International Journal of Agricultural & Biological Engineering, 2017, 10(5): 45-54.

        [28]宗長富,孫浩,陳國迎. 分布式獨(dú)立轉(zhuǎn)向車輛的轉(zhuǎn)角分配方法[J]. 華南理工大學(xué)學(xué)報(bào):自然科學(xué)版,2017,45(2):16-22. Zong Changfu, Sun Hao, Chen Guoying. Steering angle allocation method for distributed independent steering vehicles[J]. Journal of South China University of Technology, 2017, 45(2): 16-22. (in Chinese with English abstract)

        [29]張萬軍,張峰,張景軒,等. 多軸聯(lián)動(dòng)的機(jī)床交叉耦合輪廓誤差補(bǔ)償技術(shù)[J]. 制造技術(shù)與機(jī)床,2018(6):154-159. Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Research on cross-coupled contour error compensation technology of CNC machine tool with multi axis linkage[J]. Machine Tool & Hydraulics, 2018(6): 154-159. (in Chinese with English abstract)

        [30]陳文科,高艷雯,陳志,等. 模糊 PID 控制在萬向電動(dòng)底盤上的應(yīng)用[J]. 機(jī)械工程學(xué)報(bào),2014,50(6):129-134. Chen Wenke, Gao Yanwen, Chen Zhi, et al. Application of fuzzy-PID controller in electic chassis featured by mecanum wheel[J]. Journal of Mechanical Engineering, 2014, 50(6): 129-134. (in Chinese with English abstract)

        [31]范軍芳,王偉,許曉飛,等. 模糊控制[M]. 北京:國防工業(yè)出版社,2017.

        [32]瞿濟(jì)偉,郭康權(quán),高華,等. 基于PWM 信號(hào)的農(nóng)用柔性底盤驅(qū)動(dòng)與轉(zhuǎn)向協(xié)同控制特性試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(7):75-81. Qu Jiwei, Guo Kangquan, Gao Hua, et al. Experiments on collaborative characteristics of driving and steering for agricultural flexible chassis based on PWM signal[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(7): 75-81. (in Chinese with English abstract)

        [33]中國汽車工業(yè)總公司. GB/T 6323. 2—1994,汽車操縱穩(wěn)定性試驗(yàn)方法. 轉(zhuǎn)向瞬態(tài)響應(yīng)試驗(yàn)(轉(zhuǎn)向盤轉(zhuǎn)角階躍輸入)[S].北京:中國標(biāo)準(zhǔn)出版社,1994.

        [34]中國汽車工業(yè)總公司. GB/T6323. 1—1994,汽車操縱穩(wěn)定性試驗(yàn)方法. 蛇行試驗(yàn)[S]. 北京:中國標(biāo)準(zhǔn)出版社,1994.

        Coupling control strategy and test for off-centered shaft steering mechanisms of agricultural flexible chassis

        Qu Jiwei1, Guo Kangquan1,2※, Song Shujie3, Tran Van Cuong4, Li Yining1

        (1,,712100,; 2,712100,; 3.,,710119,; 4.,,,15910,)

        Agricultural flexible chassis (FC) is a kind of in-wheel motor driving electric vehicle applied for greenhouse. The FC is composed of 4 identical off-centered shaft mechanisms, which can be controlled independently. Through this kind of mechanism, the FC can achieve various motion types. However, it is difficult to maintain the linkage relationship between the 2 front off-centered shaft mechanisms when the FC is in front wheel steering motion, and hard to accomplish smoothly turning. In order to solve this problem, a coupling control strategy for linkage motion was proposed in this study. Firstly, the contour error of the 2 wheel steering angle was deduced based on the Ackermann steering geometry and the cross-coupling control principle. To reduce the contour error during steering, a fuzzy PID control algorithm was designed, which could realize parameters self-tuning. As the electromagnetic friction lock was controlled by pulse width modulation (PWM) signal, the duty cycle of the PWM signal had to be adjusted according to turning situation. Thus, a fuzzy logic method was then introduced to regulate the duty cycle. Namely, the PWM signal duty cycle can be in line with the steering wheel signal size and its change rate, and the motion of the electromagnetic friction lock can match the steering speed of the off-center shaft mechanism. In this way, the coupling control of the 2 front off-centered shaft mechanisms can be achieved. The control strategy was then verified through simulation based on MATLAB/Simulink. To further verify the effectiveness of the control strategy, the control program was loaded into the steering system hardware, and tests were carried out on hard surface road. According to the traditional vehicle steering test methods, step steering test, snake steering test and random steering test were conducted. The effects of front wheel steering under the steering angle allocation control method were compared with coupling control strategy. The simulation results demonstrated that the proposed control strategy was effective and feasible. The test results on hard surface road showed that the FC had a fast steering response in step steering test. The response time of step steering was 0.8s and overshoot was 1.3° under coupling control method during front wheel steering of the FC. The overshoot under allocation control was larger than coupling control and its fluctuation was notable. From the results of the snake steering and random steering, it was obviously that the steering angles of the left and the right front wheels had good tracking performance for their target angles, respectively. The opening and closing of electromagnetic friction lock can match the steering motion of the electric wheel well. The maximum and average following errors of 3 steering modes were less than those under the allocation control method. The maximum and average contour errors of the linkage motion were 1.2° and 0.6° for step steering, 1.1° and 0.6° for snake steering, as well as 1.0° and 0.5° for random steering, respectively. All these errors were also smaller than the allocation control. Under the coupling control, the maximum steering error between simulation and test was 2.2°, and the contour error trend of them was consistent. The simulation model was reasonable and effective. The contour errors of the allocation control in these 3 kinds of tests had more fluctuations and larger range of fluctuations than coupling control. The steering performance under coupling control strategy was obviously better than the allocation control method. The steering angles of the 2 front wheels had maintained Ackerman steering geometry well. The coupling linkage control strategy proposed in this paper has good effectiveness and feasibility. This research can provide references for steering control or other applications of the FC.

        agricultural machinery; control; algorithm; flexible chassis; front wheel steering; linkage motion; coupling control; test

        瞿濟(jì)偉,郭康權(quán),宋樹杰,Tran Van Cuong,李翊寧. 農(nóng)用柔性底盤偏置軸轉(zhuǎn)向機(jī)構(gòu)聯(lián)動(dòng)耦合控制策略及試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(23):55-65. doi:10.11975/j.issn.1002-6819.2019.23.007 http://www.tcsae.org

        Qu Jiwei, Guo Kangquan, Song Shujie, Tran Van Cuong, Li Yining. Coupling control strategy and test for off-centered shaft steering mechanisms of agricultural flexible chassis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(23): 55-65. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.23.007 http://www.tcsae.org

        2019-05-30

        2019-10-28

        國家自然科學(xué)基金資助項(xiàng)目(51375401)

        瞿濟(jì)偉,博士生,主要從事智能農(nóng)業(yè)裝備技術(shù)研究。Email:qujiwei_mail@foxmail.com

        郭康權(quán),教授,博士生導(dǎo)師,主要從事智能農(nóng)業(yè)裝備技術(shù)研究。Email:jdgkq@nwsuaf.edu.cn

        10.11975/j.issn.1002-6819.2019.23.007

        S229+.1; U463.1

        A

        1002-6819(2019)-23-0055-11

        猜你喜歡
        前輪階躍偏置
        基于40%正面偏置碰撞的某車型仿真及結(jié)構(gòu)優(yōu)化
        基于雙向線性插值的車道輔助系統(tǒng)障礙避讓研究
        中國信息化(2022年5期)2022-06-13 11:12:49
        基于階躍雙包層光纖的螺旋型光纖傳感器
        基于ANSYS分析的前輪油缸銷軸改進(jìn)
        探討單位階躍信號(hào)的教學(xué)
        一級(jí)旋流偏置對(duì)雙旋流杯下游流場的影響
        前輪和后輪
        農(nóng)用運(yùn)輸車前輪“擺頭”故障排除方法
        拆前輪不蹭碟
        面向TIA和緩沖器應(yīng)用的毫微微安偏置電流運(yùn)放可實(shí)現(xiàn)500MHz增益帶寬
        国产精品亚洲av国产| 免费无码毛片一区二区三区a片| 99噜噜噜在线播放| 国产乱码精品一区二区三区四川人| 无遮挡亲胸捏胸免费视频| 亚洲AV成人无码国产一区二区 | 国产精品熟女视频一区二区三区| 国产精品99精品久久免费| 免费观看又污又黄的网站| www.91久久| 极品少妇一区二区三区四区| 日韩五码一区二区三区地址| 日日日日做夜夜夜夜做无码| 欧美极品jizzhd欧美| 成人激情四射网| 男女啪啪免费视频网址| 在线人成视频播放午夜| 在线综合亚洲欧洲综合网站| 猫咪www免费人成网最新网站| 丝袜人妻无码中文字幕综合网| 五十路一区二区中文字幕| 无码专区一ⅴa亚洲v天堂| 国产精品亚洲二区在线观看| 亚洲国产成人精品激情资源9| 国产精品麻豆一区二区三区| 国产精品一区二区性色| 俄罗斯老熟妇色xxxx| 国产成人精品麻豆| 国产精品国产三级国产专区50| 久久狠狠爱亚洲综合影院| 波多野结衣aⅴ在线| 极品美女销魂一区二区三| 国产精品毛片极品久久| 熟女少妇内射日韩亚洲| 精品性高朝久久久久久久| 久久中文字幕日韩精品| 一区二区三区日本视频| 亚洲日韩激情无码一区| 亚洲欧美日韩在线观看一区二区三区 | 国产激情视频高清在线免费观看| 日韩网红少妇无码视频香港|