連增艷,楊仁杰,董桂梅,楊延榮,吳楠,楊帆
?
二維相關譜技術的研究進展及應用
連增艷,楊仁杰通信作者,董桂梅,楊延榮,吳楠,楊帆
(天津農學院 工程技術學院,天津 300384)
二維相關譜技術以高光譜分辨率、高選擇性和高圖譜解析能力等優(yōu)勢在分析科學領域備受關注。本文綜述了該技術近些年的最新發(fā)展,詳細介紹了雜化二維相關譜技術、投影二維相關譜技術、Double二維相關譜技術、二維組分相關譜技術和修正二維相關譜技術,并給出了這些技術的具體算法和應用實例。最后,對該技術的應用前景進行了展望。
二維相關譜;研究進展;應用
二維相關譜技術由Noda在1986年研究聚合物薄膜在小振幅正弦壓力下線性二色紅外譜特性時提出[1],并在1993年破除外擾波形的局限,將其應用到紅外光譜研究領域,隨后又逐漸擴展到拉曼、熒光、紫外、X射線等其他光譜技術中,建立了“廣義二維相關譜”理論[2]。
二維相關譜技術是將傳統(tǒng)的一維光譜信號擴展到兩維平面上,通過同步和異步譜交叉峰正負或有無可提供復雜分析體系中各分子官能團吸收峰之間的關系,不僅可以對其來源進行確認,而且也可明確各官能團振動變化先后次序。同時,二維相關譜技術表征的是隨特定外擾變化的信息,消除了強背景信號對待測組分弱信號的干擾,有助于提取復雜體系中隨外擾變化微弱的特征信息。因此,相對于傳統(tǒng)一維光譜技術,二維相關譜技術具有高的光譜分辨率、高選擇性和高圖譜解析能力,是一種強大靈活的光譜技術[2]。正是由于二維相關譜的上述優(yōu)勢,再加上外擾選擇方式的多樣性,如溫度,濃度、壓力、偏振角等,因此,自廣義二維相關譜理論提出以來,該技術就被廣泛應用于聚合物[3-4]、蛋白質[5]、肽[6]和核酸等其他生物分子,以及納米材料[7]、復合材料[8]、醫(yī)藥[9]、食品和環(huán)境科學[10]等領域。特別是近年來,我國學者也對該技術的理論和應用進行了廣泛、深入地研究,在國內外發(fā)表多篇相關研究論文,取得較好的研究結果[11-20]。隨著二維相關譜技術應用領域的不斷擴展,該技術的相關理論和算法也得到了進一步發(fā)展。為使讀者在研究中更好地應用二維相關譜技術,并推動該技術的發(fā)展,本文在論述廣義二維相關譜基本理論的基礎上,總結了近些年的最新發(fā)展,包括雜化二維相關譜技術、投影二維相關譜技術、Double二維相關譜技術、二維組分相關譜技術和修正二維相關譜技術,對其算法進行了詳細介紹,并對二維相關譜技術的發(fā)展前景進行了展望。
式中為動態(tài)光譜數(shù),為光譜變量數(shù),T表示轉置,為Hilbert-Noda矩陣。
常用的雜化相關分析有:
此時,樣品雜化二維相關譜表征的是溫度和壓力兩個外擾對組分影響變化的相似性。
Wu等[23]采用雜化二維相關譜技術對兩種條件下(A體系無催化劑反應,B體系二甲基亞砜作用下反應)的硝基苯催化加氫化學反應進行研究指出:相對于傳統(tǒng)的樣品二維相關譜,雜化樣品和波數(shù)二維相關能揭示和確認在B體系化學反應過程中,116 min時存在中間產(chǎn)物濃度最大的突變點。Zhang等[24]采用雜化二維相關譜技術研究了純水在溫度和葡萄糖濃度兩種外擾共同作用下所引起光譜信息的變化,指出兩種外擾所引起的光譜變化之間不存在偶然相關性。
雖然二維相關譜具有較強的特征信息提取能力,但對于不同組分的重疊峰有時也顯得無能為力。為了提取復雜體系中被覆蓋的某一組份特征信息,實現(xiàn)其圖譜解析[25-30],Noda發(fā)展了投影二維相關譜技術(Projection 2D correlation analysis)。
對于給定矢量y,定義矢量投影矩陣R為:
p表征的是將投影到單一矢量所張空間的矩陣,該矩陣僅包含了與矢量(某一波數(shù)下吸光度)同步相關的信息。
定義V為A的載荷矩陣:
投影矩陣AP可表示為:
Noda在采集混合溶液[25](聚苯乙烯PS質量濃度為1%,甲基乙基酮MEK和全氘代甲苯D-toluenehe質量濃度比1∶1)蒸發(fā)過程隨時間變化動態(tài)光譜的基礎上,將其零空間正投影到MEK特征峰所張空間,指出投影后所得的新動態(tài)光譜矩陣,表征的主要 PS和D-toluene的特征信息,不包含MEK特性信息,并對其進行同步和異步二維相關譜計算,結果表明:在相關譜中D-toluene的特征信息不再被強的MEK信息所干擾。
為了解決上述同步譜分辨率低的問題,Noda在2010年提出了Double二維相關譜技術,以提高同步譜的光譜分辨率[31-32]。
Double二維相關計算式可表示為:
Noda對苯乙烯和丁二烯的乳液聚合生產(chǎn)丁苯橡膠(SBR)膠乳隨時間變化的同步和同步Double二維拉曼相關譜進行了研究[31],研究結果表明:在原始光譜的同步相關譜中,相互重疊的苯乙烯和丁二烯吸收峰在Double同步二維相關譜得到分辨,并指出:相對于原始光譜的同步相關譜,Double二維相關譜技術提高了光譜分辨率,可實現(xiàn)復雜體系中重疊峰特征信息的提取。
雖然廣義二維相關譜能提供光譜強度變化的次序,但無法提供研究體系在動力學過程中各組分變化的次序。為了解決這個問題,2014年Noda發(fā)展了二維組分相關譜(2D codistribution spectroscopy,2DCDS)技術,其可直接提供待分析體系動力學過程中各組分的分布及濃度變化次序。該技術可以作為補充工具,以彌補傳統(tǒng)二維相關的譜在判別體系中組分變化的不足[33-35]。
Noda以時間為外擾,對聚苯乙烯PS、甲基乙基酮MEK和全氘代甲苯D-toluenehe混合溶液蒸發(fā)過程的動態(tài)紅外光譜進行2DCDS異譜相關計算[20],根據(jù)PS與MEK和D-toluenehe之間存在負交叉峰,指出了PS組分在溶液蒸發(fā)最后階段占主要部分;MEK與D-toluenehe之間存在正交叉峰,指出了在整個蒸發(fā)過程中,與溶劑MEK組分相比,D-toluenehe占主要部分,即MEK蒸發(fā)的速度快于D-toluenehe,并推斷混合溶液蒸發(fā)過程中組分發(fā)生的順序為MEK→D-toluenehe→PS。
眾所周知,將同步和異步二維相關譜相結合,根據(jù)Noda理論,可以簡單地推斷出研究體系中各官能團振動變化的順序。但在實際操作中,特別是對于存在大量交叉峰的研究體系,采用該方法分析不僅效率低下,而且容易出錯。為了解決上述問題,提高分析效率,人們提出了各種改進方法,其中包括2DCDS技術、全相角圖譜技術、修正異步二維相關譜技術和融合二維相關譜技術等方法[36]。
全相角圖譜方法是通過異步譜與同步譜之間的比值進行定義的:
二維相關譜技術以其獨特的優(yōu)勢使其具有廣闊的應用領域和發(fā)展前景。由于二維相關譜技術具有高光譜分辨率,容易受到噪聲、虛假信息的干擾,因此,對其進行合適的數(shù)據(jù)預處理為進一步發(fā)展和應用起到重要的推動作用。目前的數(shù)據(jù)處理方法,如標準化、小波變換、正交信號校正法(OSC)、凈信號等方法基本都是對原始動態(tài)譜進行預處理,可能會濾去一些弱的待測組分信息,因此研究直接對二維相關譜的多維數(shù)據(jù)預處理方法是其發(fā)展的重要方向[40]。二維相關譜與化學計量學結合已被用于摻偽食品檢測中,隨著多維化學計量學的發(fā)展,直接將二維相關譜與計量學結合也將進一步拓展其應用范圍??傊?,隨著二維相關譜技術應用領域的不斷擴大,會不斷出現(xiàn)新理論和相關算法,以及與其他分析技術、光譜預處理技術和化學計量學技術更緊密地結合,使得該技術不斷發(fā)展和完善。二維相關譜技術必將在光譜特征提取、結構表征、化學反應和分子間相互作用等研究領域發(fā)揮更大的作用。
[1] Noda I,Dowrey A E,Marcott C. Dynamic infrared linear dichroism of polymer films under oscillatory deformation[J]. Journal of Polymer Science Part C: Polymer Letters,1983,21(2):99-103.
[2] Noda I,Ozaki Y. Two-dimensional correlation spectroscopy: applications in vibrational and optical spectroscopy[M]. Wiley:Chichester,2004.
[3] Noda I. Advances in two-dimensional correlation spectroscopy[J]. Vib Spectrosc,2004,36(2):143-165.
[4] Noda I. Progress in two-dimensional(2D)correlation spectroscopy[J]. J Mol Struct,2006,799:2-15.
[5] Noda I. Recent advancement in the field of two- dimensional correlation spectroscopy[J]. J Mol Struct,2008,883/884:2-26.
[6] Noda I. Two-dimensional correlation spectroscopy- biannual survey 2007-2009[J]. J Mol Struct,2010,974:3-24.
[7] Noda I. Frontiers of two-dimensional correlation spectroscopy. Part 1. New concepts and noteworthy developments[J]. J Mol Struct,2014,1069:3-22.
[8] Noda I. Frontiers of two-dimensional correlation spectroscopy. Part 2. Perturbation methods,fields of applications,and types of analytical probes[J]. J Mol Struct,2014,1069:23-49.
[9] Park Y,Noda I,Jung Y M. Novel developments and applications of two dimensional correlation spectroscopy[J]. J Mol Struct,2016,1124:11-28.
[10] Park Y,Jin S,Noda I,et al. Recent progress in two-dimensional correlation spectroscopy(2D-COS)[J]. J Mol Struct,2018,1168:1-21.
[11] Sun F S,Polizzotto M L,Guan D X,et al. Exploring the interactions and binding sites between Cd and functional groups in soil using two-dimensional correlation spectroscopy and synchrotron radiation based spectromicroscopies[J]. Journal of Hazardous Materials,2017,326:18-25.
[12] Chen B,Tian P,Lu D L,et al. Feasibility study of discriminating edible vegetable oils by 2D-NIR[J]. Anal Methods,2012,4(12):4310-4315.
[13] Yang R,Dong G,Sun X,et al. Feasibility of the simultaneous determination of polycyclic aromatic hydrocarbons based on two-dimensional fluorescence correlation spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2018,190:342-346.
[14] Jin P,Song J,Wang X C,et al. Two-dimensional correlation spectroscopic analysis on the interaction between humic acids and aluminum coagulant[J]. Journal of Environmental Sciences,2018,64:181-189.
[15] He A,Zeng Y,Kang X,et al. A novel method of constructing two-dimensional correlation spectroscopy without subtractinga reference spectrum[J]. The Journal of Physical Chemistry A,2018,122(3):788-797.
[16] Yang R,Dong G,Sun X,et al. Synchronous-asynchronous two-dimensional correlation spectroscopy for the discrimination of adulterated milk[J]. Anal Methods,2015,7(10):4302-4307.
[17] Chen W,Habibul N,Liu X Y,et al. FTIR and synchronous fluorescence heterospectral two-dimensional correlation analyses on the binding characteristics of copper onto dissolved organic matter[J]. Environ Sci Technol,2015,49(4):2052-2058.
[18] Wu Y,Zhang L,Jung Y M,et al. Two-dimensional correlation spectroscopy in protein science, a summary for past 20 years[J]. Spectrochim Acta Part A:Mol Biomol Spectrosc,2018,189:291-299.
[19] Chen W,Qian C,Liu X Y,et al. Two-dimensional correlation spectroscopic analysis on the interaction between humic acids and TiO2nanoparticles[J]. Environ Sci Technol,2014,48(19):11119-11126.
[20] Yang R,Liu R,Dong G,et al. Two-dimensional hetero-spectral mid-infrared and near-infrared correlation spectroscopy for discrimination adulterated milk[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2016,157:50-54.
[21] Wu Y,Jiang J H,Ozaki Y. A new possibility of generalized two-dimensional correlation spectroscopy: hybrid two- dimensional correlation spectroscopy[J]. The Journal of Physical Chemistry A,2002,106(11):2422-2429.
[22] Wu Y,Meersman F,Ozaki Y. A novel application of hybrid two-dimensional correlation infrared spectroscopy: exploration of the reversibility of the pressure-and temperature-induced phase separation of poly(N-isopro pylacrylamide)and poly(N-isopropylmethacrylamide)in aqueous solution[J]. Macromolecules,2006,39(3):1182-1188.
[23] Wu Y,Yuan B,Zhao J G,et al. Hybrid two-dimensional correlation and parallel factor studies on the switching dynamics of a surface-stabilized ferroelectric liquid crystal[J]. The Journal of Physical Chemistry B,2003,107(31):7706-7715.
[24] Zhang W,Liu R,Zhang W,et al. Discussion on the validity of NIR spectral data in non-invasive blood glucose sensing[J]. Biomedical Optics Express,2013,4(6):789-802.
[25] Noda I. Projection two-dimensional correlation analysis[J]. J Mol Struct,2010,974:116-126.
[26] Shinzawa H,Kanematsu W,Noda I. Rheo-optical near-infrared(NIR)spectroscopy study of low-density polyethylene(LDPE)in conjunction with projection two-dimensional(2D)correlation analysis[J]. Vib Spectrosc,2014,70:53-57.
[27] Zhou T,Zhou T,Zhang A. Separation of the molecular motion from different components or phases using projection moving-window 2D correlation FTIR spectroscopy for multiphase and multicomponent polymers[J]. RSC Advances,2015,5(19):14832-14842.
[28] Shinzawa H,Awa K,Noda I,et al. Pressure-induced variation of cellulose tablet studied by two-dimensional(2D)near-infrared(NIR)correlation spectroscopy in conjunction with projection pretreatment[J]. Vib Spectrosc,2013,65:28-35.
[29] Kim M K,Ryu S R,Noda I,et al. Projection 2D correlation analysis of spin-coated film of biodegradable P(HB-co- HHx)/PEG blend[J]. Vib Spectrosc,2012,60:163-167.
[30] Shinzawa H,Mizukado J. Near-infrared(NIR)monitoring of Nylon 6 during quenching studied by projection two-dimensional(2D)correlation spectroscopy[J]. Journal of Molecular Structure,2016,1124:188-191.
[31] Noda I. Double two-dimensional correlation analysis–2D correlation of 2D spectra[J]. J Mol Struct,2010,974(1/2/3):108-115.
[32] Spegazzini N,Siesler H W,Ozaki Y. Sequential identification of model parameters by derivative double two-dimensional correlation spectroscopy and calibration- free approach for chemical reaction systems[J]. Analytical Chemistry,2012,84(19):8330-8339.
[33] Noda I. Two-dimensional codistribution spectroscopy to determine the sequential order of distributed presence of species[J]. J Mol Struct,2014,1069:50-59.
[34] Noda I. Techniques useful in two-dimensional correlation and codistribution spectroscopy(2DCOS and 2DCDS)analyses[J]. J Mol Struct,2016,1124:29-41.
[35] Noda I. Two-dimensional correlation and codistribution spectroscopy(2DCOS and 2DCDS)analyses of time- dependent ATR IR spectra of d-glucose anomers undergoing mutarotation process in water[J]. Spectrochim Acta Part A:Mol Biomol Spectrosc,2017,197:4-9.
[36] Noda I. Modified two-dimensional correlation spectra for streamlined determination of sequential order of intensity variations[J]. J Mol Struct,2016,1124:197-206.
[37] Czarnecki M A. Two-dimensional correlation analysis of hydrogen-bonded systems: basic molecules[J]. Applied
Spectroscopy Review,2011,46(1):67-103.
[38] Kwasniewicz M,Czarnecki M S. MIR and NIR group spectra of n-alkanes and1-chloroalkanes[J]. Spectrochim Acta Part A:Mol Biomol Spectrosc,2015,143:165-171.
[39] Czarnecki M A,Morisawa Y,F(xiàn)utami Y,et al. Advances in molecular structure and interaction studies using near infrared spectroscopy[J]. Chem Rev,2015,115:9707- 9744.
[40] 楊仁杰,楊延榮,劉海學,等. 二維相關譜在食品品質檢測中的研究進展[J]. 光譜學與光譜分析,2015,35(8):2124-2129.
責任編輯:楊霞
Research progress and application of two-dimensional correlation spectroscopy
LIAN Zeng-yan, YANG Ren-jieCorresponding Author, DONG Gui-mei, YANG Yan-rong, WU Nan, YANG Fan
(College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300384, China)
Two-dimensional(2D)correlation spectroscopy has attracted much attention in the field of analytical science for its advantages of high spectral resolution, high selectivity and high resolution. In this paper, the latest development of the 2D correlation spectroscopy in recent years was reviewed. The technologies of hybrid 2D correlation spectroscopy, the projection 2D correlation spectroscopy, the Double 2D correlation spectroscopy, the 2D codistribution spectroscopy and the modified 2D correlation spectroscopy were introduced in detail. Specific algorithms and application examples of the above-mentioned new technologies of 2D correlation spectroscopy were also discussed. Finally, the application prospect of the technology is forecasted.
two-dimensional correlation spectroscopy; research progress; application
1008-5394(2018)04-0077-06
10.19640/j.cnki.jtau.2018.04.017
O657.3
A
2018-09-25
國家自然科學基金項目(41771357,21607114,81471698);天津市自然科學基金項目(14JCYBJC30400,16JCQNJC08200);天津農學院科學研究基金項目(2017-D-03)
連增艷(1995-),女,碩士在讀,研究方向:光譜檢測。E-mail:920768405@qq.com。
楊仁杰(1978-),男,副教授,博士,研究方向:光譜檢測技術及其應用。E-mail:rjyang1978@163.com。