薛 鋒,趙 蕾,楊麗蓉
(1.西南交通大學a.交通運輸與物流學院,b.綜合交通運輸智能化國家地方聯(lián)合工程實驗室,成都610031;2.深圳市城市交通規(guī)劃設計研究中心有限公司,廣東深圳518021)
編組站作業(yè)計劃與執(zhí)行任務的資源之間存在映射關系,資源的安排使用具有計劃性.不同的資源,其歷史作業(yè)完成情況存在一定差異,在同等情況下,將作業(yè)交由可用度較高的資源執(zhí)行,能夠在較大程度上保障作業(yè)按時完成,縮小車站因單項作業(yè)未完成造成的生產(chǎn)延誤傳播范圍,從而提高作業(yè)計劃的兌現(xiàn)率.
國內(nèi)外對于編組站資源利用及配流優(yōu)化問題的研究比較豐富.在編組站資源利用方面,陳亞男[1]確定編組站固定設施能力協(xié)調(diào)評價指標,并構(gòu)建了編組站固定設施能力協(xié)調(diào)評價模型;康健等[2]提出一種基于資源可用度的集群作業(yè)調(diào)度算法,為編組站資源的利用提供了很好的借鑒;國外在解決編組站列車改編或排序時,通常將各資源視作約束,轉(zhuǎn)化為數(shù)學問題進行求解[3-4].在編組站配流方面,王慈光[5]將編組站配流問題轉(zhuǎn)化為運輸問題,建立了靜態(tài)配流問題的網(wǎng)絡模型并進行求解;薛鋒等[6]在定義配流時間間隔和有效交換配流列車等概念,建立了雙向編組站靜態(tài)配流的雙層多目標決策模型,并用禁忌搜索算法進行求解;趙軍[7]將調(diào)度任務問題轉(zhuǎn)換為運輸指派問題,并在此基礎上設計了新的模型;郭瑞等[8]主要分析了單向的單推單溜配流模型,并構(gòu)建了以各出發(fā)列車獲取最多車流為目標的多階段配流推理算法.
上述關于編組站資源的研究主要從編組站能力查定、設施設備能力評價方面進行分析,很少涉及到編組站資源的可用性度量,而在編組站配流優(yōu)化方面,又缺乏基于資源可用度視角的研究.本文從編組站資源可用性度量入手,以編組站整體資源可用度最大為目標,建立基于資源可用度的配流模型,并進行驗證分析.
編組站實體資源可劃分為到達系統(tǒng)資源、解體系統(tǒng)資源、車流集結(jié)系統(tǒng)資源、編組系統(tǒng)資源和發(fā)車系統(tǒng)資源.資源x在t時段的資源可用度A(x)t計算公式為
式中:A′(x)t為t時間段內(nèi)資源x的可信度[9].
式中:pyw為歷史統(tǒng)計得到的資源x執(zhí)行作業(yè)延誤率;為t時間段內(nèi)資源x由于車站按照施工計劃進行施工被占用的時間;、t表示時段長;為資源x被車站施工所占用的概率;為t時間段內(nèi)資源x由于故障而進行緊急維修施工所占用的時間;Tx為資源x的預計使用年限;εt為t時間段內(nèi)資源使用情況在計算可信度時所占的比重;A′(x)t-1為t-1時間段內(nèi)資源x的可信度.
式(1)與式(2)中αt與εt為時變參數(shù),據(jù)文獻[9]相關研究可知,αt與εt的計算方法為
A″(x)t為資源空閑度,表示資源x在t時間段內(nèi)處于空閑狀態(tài)的時間比例,計算公式為
式中:nt表示在時段t內(nèi)實際執(zhí)行的作業(yè)量;Nt表示時段t內(nèi)資源的理論最大作業(yè)能力.
在編組站資源可用度計算的過程中,據(jù)文獻[10]所述利用率法計算編組站到發(fā)場通過能力、駝峰解體能力和峰尾編組能力.
充分考慮編組站到發(fā)線、駝峰、調(diào)車機車等各種設施設備資源在不同時段的工作強度,得到各設施設備在不同時段的動態(tài)可用度,在此基礎上,確定編組站配流方案.
根據(jù)編組站階段計劃配流問題的實際情況,配流模型的優(yōu)化目標設置為以下3個:
(1)配流成功的自編始發(fā)列車等級權(quán)重之和最大[11];
(2)車流在編組站的平均停留時間最少[12];
(3)優(yōu)先使用可用度較大的資源.
根據(jù)上述思路設置目標函數(shù)為式(6)~式(8).
式中:Aij為系統(tǒng)i內(nèi)并聯(lián)資源j在階段內(nèi)的可用度;nj為階段內(nèi)系統(tǒng)i中可用度最小的一類資源的總量;nQ表示解體系統(tǒng)和編組系統(tǒng).
單個資源j在階段內(nèi)可用度Aj的計算公式為
在編組站配流過程中,需要考慮的約束關系主要包括作業(yè)先后次序、作業(yè)規(guī)定、作業(yè)時間等.
(1)作業(yè)次序約束.
到達列車技術(shù)作業(yè)與解體作業(yè)和解體調(diào)機之間占用關系約束為
出發(fā)列車技術(shù)作業(yè)與編組作業(yè)及編組調(diào)機之前占用關系約束為
(2)作業(yè)時間約束.
列車的出發(fā)時間tfj應晚于出發(fā)技術(shù)作業(yè)結(jié)束時間,約束為
(3)各類資源的約束.
編組站配流屬于資源限制的動態(tài)調(diào)度問題,調(diào)機、技術(shù)作業(yè)人員等為總量已知的固定資源,車流為總量未知的動態(tài)資源,因而存在解體調(diào)機、編組調(diào)機等資源約束.
式(20)表示在任意時間,被作業(yè)占用的作業(yè)系統(tǒng)數(shù)不超過作業(yè)系統(tǒng)的總量,單個作業(yè)系統(tǒng)只能最多被1項作業(yè)占用.
車流存量約束為
(4)其他邏輯約束.
當?shù)竭_列車解體作業(yè)、出發(fā)列車編組作業(yè)實施,且滿足車站編組的車流去向規(guī)定時,才能實現(xiàn)車流的接續(xù),存在約束為
若列車fj可編入車流組號為k的車流資源,取=1;反之,取0.
列車軸重或換長應在《站細》規(guī)定的范圍內(nèi),存在約束為
式中:zfj為列車fj的換長或軸重要求,當列車存在不同軸重或換長情況時,存在區(qū)間,表示軸重或換長的上下限.
綜上所述,基于資源可用度的編組站配流模型的目標函數(shù)為
約束如式(10)~式(26)所示.
首先采用分解模型、分層求解方法來降低求解難度,對模型中的部分困難約束進行處理,然后給出初始車流接續(xù)方案,并使用遺傳算法對模型中的解編作業(yè)次序和調(diào)機安排問題進行求解.具體求解思路如下.
(1)困難約束的處理.
將時間窗約束式(20)轉(zhuǎn)換為
通過轉(zhuǎn)換,γi與γj取值都為1時,Ti與Tj需至少相差Tij;γi與γj取值不都為1時,Ti與Tj之差無要求.
類似地,對變量ζij進行處理,即
當列車di的編組完成時間早于列車fj的編組開始時間時,通過式(31)計算可得ζij=1;反之,ζij=0,符合約束要求.
(2)模型的求解思路.
Step1 分層優(yōu)化,記目標函數(shù)式(27)和式(28)為maxf1,minf2;以maxf1為目標,得到初始配流解X0,記f1(X0)=obj(f0).
Step2 采用帶初始解的迭代算法求解思想,設X0為第2層優(yōu)化初始解,以minf2為目標,增加約束f1(X)≥obj(f0),求解得到X1,更新初始配流方案X0=X1.
Step3 根據(jù)Step2求解得初始配流方案X0,以minf2為適應度函數(shù),調(diào)用遺傳算法求解,確定可行調(diào)機運用方案,記
Step4 如果obj(f0)=obj(f1),初始可行解為[X0,X0′];否則,轉(zhuǎn)Step1求解1個新的配流初始解X0,再重復Step2~Step4,直至得到初始可行解
Step5 鎖定調(diào)機作業(yè)時間,采用枚舉法搜索可行的調(diào)機使用方案,應用分割檢驗法縮減計算時間,得到解區(qū)域X″.
Step6 將X″帶入maxf3,從中選取最優(yōu)解為X?,得到模型最終解.
選用文獻[11]中調(diào)車場存車信息、到達列車車流信息及自編始發(fā)列車車流信息進行計算.某編組站采用雙推雙溜的解體方式,有2臺解體調(diào)機,3臺編組調(diào)機,調(diào)車場最大容車數(shù)為4 000輛,到達技術(shù)作業(yè)時間60 min,解體作業(yè)時間30 min,編組作業(yè)時間60 min,出發(fā)技術(shù)作業(yè)時間30 min.根據(jù)前文所述求解方法,確定各出發(fā)列車的車流來源如表1所示.
表1 出發(fā)列車車流來源Table 1 The traffic flow sources of departure train
設12:00-19:00解編調(diào)機期望維護時間如表2和3所示.
表2 解體調(diào)機維護計劃Table 2 The break-up shunting engine maintenance plan(min)
表3 編組調(diào)機維護計劃Table 3 The marshalling engine maintenance plan(min)
計算得到未考慮資源可用度的列車解體作業(yè)安排,以下簡稱為調(diào)整前解體計劃,如表4所示.同理,可得調(diào)整前列車編組計劃,如表5所示.
表4 調(diào)整前的到達列車解體計劃Table 4 The break-up plan of arrival train before adjustment
表5 調(diào)整前的出發(fā)列車編組計劃Table 5 The marshalling plan of departure train before adjustment
由表4和表5可以看出,未考慮資源可用度指標時,無法滿足解編調(diào)機維護需要,如40281次列車于13:51開始占用2號調(diào)機,于14:21釋放調(diào)機資源.
以車站階段內(nèi)整體資源可用度最大為作業(yè)資源調(diào)整的目標,對各作業(yè)所占用的資源進行調(diào)整.調(diào)整后的解編計劃如表6和表7所示.
調(diào)整前后解體和編組作業(yè)的調(diào)機使用發(fā)生了較大程度的變化,這主要是由于在調(diào)整后,解編調(diào)機的使用考慮了其在不同時段的可用度情況,調(diào)整前后解編系統(tǒng)資源可用度對比如圖1和圖2所示.
通過表6和表7中調(diào)整前后的解編調(diào)機安排與表2和表3所示調(diào)機期望維護時間可知,與調(diào)整前相比,調(diào)整后解編調(diào)機的使用安排在一定程度上考慮了解編調(diào)機的期望維護計劃,能夠在一定程度上提高解編作業(yè)完成的概率.由圖1和圖2可以看出,調(diào)整后解編系統(tǒng)資源可用度增幅均在5%以上;在時段3~8(14:00-20:00)內(nèi),調(diào)整后編組系統(tǒng)的資源可用度與調(diào)整前相比均得到較大增加,該時段內(nèi)編組系統(tǒng)的資源可用度增幅約為18.9%,能夠在一定程度上提高解編計劃完成的概率.
表6 調(diào)整后到達列車解體調(diào)機安排Table 6 The break-up shunting engine plan of arrival train after adjustment
表7 調(diào)整后出發(fā)列車編組調(diào)機安排Table 7 The marshalling engine plan of departure train after adjustment
圖1 調(diào)整前后各時段解體系統(tǒng)資源可用度Fig.1 The resource availability of break-up system of before and after each period
圖2 調(diào)整前后各時段編組系統(tǒng)資源可用度Fig.2 The resource availability of marshalling system of before and after each period
本文考慮編組站資源可用度,并以編組站整體資源可用度最大為目標之一,建立了基于資源可用度的編組站配流模型,通過算例分析驗證,可以得出:
(1)編組站實體資源在不同時段的可用性存在一定的差異,可根據(jù)編組站實體資源的歷史作業(yè)狀態(tài)計算資源的可用度.
(2)將編組站作業(yè)交由可用度較高的資源執(zhí)行,能夠在一定程度上增大作業(yè)按計劃完成的概率.
(3)通過模型的優(yōu)化,能夠在一定程度上根據(jù)資源不同時段的期望維護計劃對作業(yè)占用的資源進行一定的調(diào)整,將編組站作業(yè)交由可用度較高的資源執(zhí)行,提高編組站整體資源的可用度.實例分析表明.調(diào)整后解編系統(tǒng)資源可用度增幅均在5%以上,編組系統(tǒng)資源可用度的改善更加明顯,在一定程度上提高了解編計劃完成的概率.