王煌平,張 青,章贊德,羅 濤,翁伯琦,鐘少杰
?
不同熱解溫度限氧制備的畜禽糞便生物炭養(yǎng)分特征
王煌平1,2,張青1,2,章贊德3,羅濤4※,翁伯琦4,鐘少杰1,2
(1. 福建省農(nóng)業(yè)科學(xué)院土壤肥料研究所,福州,350013;2. 福建省地力培育工程技術(shù)研究中心,福州,350013;3. 福建省大田縣農(nóng)田建設(shè)與土肥技術(shù)推廣站,大田,366100;4. 福建省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)生態(tài)研究所,福州 350013)
為了分析畜禽糞便生物炭中的養(yǎng)分特征變化,以雞糞、豬糞渣和牛糞為原料,采用限氧控溫法制備生物炭,研究了不同熱解溫度(350、450、550、650和750 ℃)的畜禽糞便生物炭灰分含量,C含量、大量和中微量元素養(yǎng)分含量及其殘留率的變化,并分析了C/N比值,原材料與炭化產(chǎn)品養(yǎng)分含量、及熱解溫度和生物炭養(yǎng)分特征的相關(guān)性。結(jié)果表明,隨著熱解溫度的升高,畜禽糞便生物炭C、N含量逐漸下降,灰分含量和P、K、Ca、Mg、Fe、Mn養(yǎng)分含量逐漸增加。高溫?zé)峤怆m增加畜禽糞便生物炭的養(yǎng)分總量和C/N比值,但也降低了各養(yǎng)分殘留率。綜合分析表明,畜禽糞便生物炭養(yǎng)分含量及其殘留率與原材料中的養(yǎng)分含量、熱解溫度密切相關(guān),其中與熱解溫度相關(guān)性顯著。因此,選擇高C和高養(yǎng)分含量的畜禽糞便原材料是提升生物炭養(yǎng)分含量的基礎(chǔ),而適宜溫度是保留生物炭較高養(yǎng)分殘留率的關(guān)鍵。該研究中畜禽糞便適宜熱解溫度為450 ℃,該溫度下各生物炭的養(yǎng)分殘留率整體表現(xiàn)為牛糞>豬糞渣>雞糞。
熱解;溫度;養(yǎng)分;限氧;畜禽糞便;生物炭
中國是世界上最大的畜禽養(yǎng)殖國,隨著畜禽養(yǎng)殖業(yè)規(guī)?;l(fā)展,畜禽糞便總量持續(xù)增加且更趨集中。據(jù)農(nóng)業(yè)部數(shù)據(jù),當(dāng)前中國每年畜禽糞污產(chǎn)生量約3.8×109t,但由于長期以來的種養(yǎng)分離,使得畜禽糞污綜合利用率不足60%,養(yǎng)殖產(chǎn)業(yè)的環(huán)境問題愈發(fā)凸顯[1]。近年來,隨著畜禽糞便資源化利用模式研究的發(fā)展,畜禽糞便生物炭的制備和應(yīng)用也日益受到關(guān)注[2]。與當(dāng)前主流的堆肥化處理相比,生物炭制備可快速實(shí)現(xiàn)畜禽糞便的減量化、無害化和資源化利用,減少糞便堆積等帶來的環(huán)境問題,而且產(chǎn)生的生物炭具有較高的經(jīng)濟(jì)效益[3-4]。
與秸稈和木質(zhì)生物炭相比,畜禽糞便生物炭含有較高的pH值和礦質(zhì)養(yǎng)分,可有效改良酸性土壤并補(bǔ)充養(yǎng)分給貧瘠土壤[5]。Spokas等[6]研究認(rèn)為,部分生物炭施用導(dǎo)致作物減產(chǎn)的主要原因是由于其礦質(zhì)養(yǎng)分含量低,使單位體積土壤直接供給作物根系的養(yǎng)分減少。而畜禽糞便生物炭制備可鈍化自身重金屬的有效性,其施用還可增加土壤中礦質(zhì)養(yǎng)分含量,不同程度上提升土壤養(yǎng)分的生物有效性[7-9]。Meta分析表明,家禽糞便制備的生物炭可使作物增產(chǎn)28%,增產(chǎn)潛力最為顯著[10]。因此,選擇適宜的炭化方法以提升生物炭碳和礦質(zhì)養(yǎng)分保留量是畜禽糞便生物炭制備和應(yīng)用的關(guān)鍵。
生物炭可由熱解炭化或水熱炭化2種方法制得,其中限氧下熱解炭化是當(dāng)前工業(yè)生物炭生產(chǎn)的主流方向[7,11]。與水熱炭化技術(shù)相比,熱解炭化制備的秸稈和木質(zhì)生物炭pH值、C含量、養(yǎng)分含量均較高[12]。Duman等[13]認(rèn)為,熱解炭化制備的葡萄渣生物炭穩(wěn)定性、C含量高于水熱炭,且生物炭的水溶性含氮化合物主要以硝態(tài)氮和銨態(tài)氮的形式存在。模型分析表明,熱解炭化制備的芒草生物炭在土壤中的降解半衰期為水熱炭的20多倍[14]。Gascó[15]等研究表明,熱解炭化制備的畜禽糞便生物炭具有更多的芳香族結(jié)構(gòu)和更高的熱穩(wěn)定性??梢?,水熱炭化和熱解炭化技術(shù)雖各有利弊,但熱解生物炭的pH值、養(yǎng)分含量和穩(wěn)定性等方面優(yōu)于水熱炭。在熱解炭化條件的探索中,熱解溫度、加熱速率、停留時(shí)間等對(duì)生物炭理化性質(zhì)均有影響,其中以熱解溫度的影響最大[16-17]。
鑒于此,本文以大中型養(yǎng)殖場雞糞、固液分離后的豬糞渣和牛糞制備的生物炭為研究對(duì)象,在前期研究的基礎(chǔ)上,進(jìn)一步研究限氧熱解進(jìn)程中溫度對(duì)畜禽糞便灰分、C含量、大量和中微量元素養(yǎng)分含量及其殘留率的變化,并分析原料來源與生物炭養(yǎng)分含量、及熱解溫度和生物炭養(yǎng)分特征的相關(guān)性,以期為資源化利用畜禽糞便提供數(shù)據(jù)補(bǔ)充和技術(shù)支撐。
供試的雞糞、豬糞渣和牛糞均采自福建省福州市近郊養(yǎng)殖場,原材料自然風(fēng)干粉碎,過10目篩置于干燥器。采用限氧控溫炭化法[18],先將原材料在烘箱中80 ℃烘干至含水率<0.5%,然后將烘干的雞糞、豬糞渣和牛糞(分別標(biāo)記為CM、PR、DM),分別塞滿本課題組自行設(shè)計(jì)的具篩石英瓶中[3],該設(shè)計(jì)可使外面空氣不易進(jìn)入石英瓶內(nèi),且畜禽糞便熱解過程中產(chǎn)生的氣體能夠排出,使得石英瓶處于限氧狀態(tài)。旋緊磨砂外蓋密封,稱質(zhì)量后在馬弗爐內(nèi)升溫至不同溫度(350、450、550、650和750 ℃),維持1 h,馬弗爐自然冷卻至室溫,石英瓶內(nèi)殘留的固態(tài)物質(zhì)即為畜禽糞便生物炭。每個(gè)樣品重復(fù)3次,馬弗爐內(nèi)隨機(jī)排列,制備好的生物炭裝于自封袋中并作好標(biāo)記置于干燥器內(nèi)。
1.2.1 灰分和C含量測定
灰分含量測定參照農(nóng)業(yè)行業(yè)標(biāo)準(zhǔn)NY/T 1881.5-2010[19],C含量采用碳氮元素分析儀(Vario EL III,德國Elementar公司)測定。
1.2.2 大量元素NPK含量測定
N、P、K全量分析分別采用凱氏定氮法、釩鉬黃吸收光度法和火焰光度法[20-21]。
1.2.3 中量元素Ca、Mg和微量元素Fe、Mn含量測定
Ca、Mg全量用干灰化-稀鹽酸溶解法制備待測液[21]。Fe、Mn全量待測液制備步驟為:稱取約0.3000 g烘干的畜禽糞便原材料或0.1000 g的生物炭于30 mL 聚四氟乙烯消解管,先后加入6 mL HNO3(體積分?jǐn)?shù)65%)和3 mL HF(體積分?jǐn)?shù)40%),搖勻密封后置于微波消解儀(BHW-09C,上海博通化學(xué)科技有限公司),160 ℃消解5 min,升溫速度20 ℃/min。用于分析中微量元素的消煮液均用超純水定容至50 mL,再取樣稀釋成適宜的倍數(shù),用火焰原子吸收分光光度計(jì)(SP3801 AAS,上海光譜儀器有限公司)測定。同時(shí)以土壤標(biāo)準(zhǔn)物質(zhì)(GBW07405,北京艾科盈創(chuàng)生物技術(shù)有限公司)作樣品分析的參照樣品。所用試劑均為優(yōu)級(jí)純。依據(jù)公式(1)計(jì)算中微量元素含量。
式中為中微量元素含量,g/kg;為儀器測定的待測液中微量元素(Ca,Mg,F(xiàn)e,Mn)濃度,mg/L;為測試液體積,本文取值為50 mL;s為分取倍數(shù);為稱取樣品質(zhì)量,g。
1.2.4 養(yǎng)分殘留率
養(yǎng)分殘留率(nutrient remaining rate,NR)可用于確定各元素在生物炭熱解制備過程中的殘留程度,以表征各養(yǎng)分在生物炭中的揮發(fā)損失情況。NR<100%則表示生物炭中該元素的揮發(fā)損失大于整個(gè)畜禽糞便樣品中的揮發(fā)量,而NR≈100%表明該養(yǎng)分保留在生物炭中。依據(jù)公式(2)計(jì)算養(yǎng)分殘留率。
式中biochar為不同熱解溫度下畜禽糞便生物炭各元素含量,g/kg;manure為畜禽糞便原材料各元素含量,g/kg;biochar為生物炭質(zhì)量,g;manure為原材料質(zhì)量,g。
試驗(yàn)結(jié)果為3次重復(fù)的平均值,采用Microsoft Excel 2007對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行整理和作圖。通過DPS 16.05軟件分析文中各指標(biāo)的差異性和相關(guān)性,多重比較采用Least Significant Difference(LSD)法進(jìn)行差異顯著性檢驗(yàn),顯著性水平為<0.05。
生物炭的灰分主要由P、K、Ca、Mg、Fe的氧化物或鹽類的形式存在[22-23]。由圖1可看出,畜禽糞便生物炭工業(yè)分析中的灰分含量隨著熱解溫度的升高而呈遞增的趨勢,當(dāng)溫度從350 ℃升高至750 ℃,雞糞(CM)、豬糞渣(PR)和牛糞(DM)生物炭灰分含量分別顯著增加了49.25%、57.65%和43.28%(<0.05)。相同溫度下畜禽糞便生物炭灰分含量大小均依次表現(xiàn)為CM>PR>DM,其中450~750 ℃三者間的灰分含量差異達(dá)顯著水平(<0.05)。350 ℃升溫到750 ℃,畜禽糞便生物炭揮發(fā)分含量顯著降低了35.34%~50.69%(<0.05),而固定碳含量差異不明顯[3]。因此,生物炭灰分含量的增大,可能是因?yàn)樯镔|(zhì)熱解炭化過程中有機(jī)質(zhì)和可揮發(fā)性物質(zhì)逐漸減少,氧化物及硅酸鹽等不可揮發(fā)性物質(zhì)大量殘存于生物炭中,造成灰分相對(duì)含量上升[24]。
注:柱上不同小寫字母表示5%水平顯著差異,下同。
圖2顯示,隨著熱解溫度的升高,CM、PR、DM生物炭的C含量整體呈遞減趨勢,三者C含量分別從原材料的28.43%、27.65%和23.02%,顯著降低到750 ℃的24.33%、22.16%和21.12%(<0.05),降幅分別為14.42%、19.86%和8.25%,以PR生物炭C含量降幅為最大。相同溫度下,350 ℃的畜禽糞便生物炭C含量大小表現(xiàn)為PR>CM>DM,其余溫度段均依次表現(xiàn)為CM>PR>DM。與秸稈生物炭C含量隨溫度升高而增加的趨勢相反[25],本研究畜禽糞便生物炭C含量總體表現(xiàn)為隨溫度升高而降低,這與Cantrell等[26]在畜禽糞便源生物炭制備上的研究結(jié)果相似。
圖2 不同熱解溫度下的畜禽糞便生物炭C含量變化
表1表明,隨著熱解溫度的升高,生物炭N含量逐漸降低,P、K、Ca、Mg、Fe、Mn含量逐漸增加,且養(yǎng)分總量也呈遞增的趨勢。從原材料升溫至750 ℃,CM、PR和DM的大量元素N含量分別降低了70.71%、59.62%、64.18%,而P和K含量分別增加了128.54%、85.84%、88.91%和85.03%、123.26%、89.51%;中量元素Ca和Mg含量分別增加了140.84%、169.03%、68.66%和110.97%、123.30%、33.02%;微量元素Fe和Mn含量分別增加了76.16%、103.62%、63.92%和56.92%、66.67%、75.19%,各養(yǎng)分含量的差異均達(dá)顯著水平(<0.05)。對(duì)畜禽糞便大量和中微量養(yǎng)分總量分析表明,與原材料總養(yǎng)分相比,750 ℃下的CM、PR和DM養(yǎng)分總量顯著增加了100.85%、79.62%和64.02%(<0.05)。相同溫度下畜禽糞便生物炭中,大量元素N含量高低分別依次為CM>PR≈DM,P含量表現(xiàn)為DM>PR>CM,K含量為CM>PR>DM;中量元素Ca含量高低為CM>PR≈DM,Mg含量350~550 ℃為CM>PR≈DM,650~750 ℃為PR>CM>DM;微量元素Fe含量高低為DM>PR>CM,Mn含量為DM>CM≈PR。本研究畜禽糞便生物炭養(yǎng)分含量的變化趨勢與多數(shù)研究結(jié)果一致[26-27]。
表2對(duì)養(yǎng)分殘留率的分析表明,溫度越高,畜禽糞便生物炭C和各養(yǎng)分殘留率均顯著降低(<0.05)。當(dāng)溫度從350 ℃增加到750 ℃,CM、PR和DM處理的C殘留率分別降低了58.25%、78.40%、76.07%,大量元素N、P、K殘留率分別降低了85.01%、86.13%、88.23%,33.31%、69.54%、68.78%和40.27%、54.83%、71.29%;中量元素Ca和Mg殘留率降低了45.18%、64.44%、71.21%和47.22%、56.94%、73.52%;微量元素Fe和Mn殘留率降低了40.84%、64.32%、70.91%和39.19%、68.11%、67.64%。從表2還可看出,當(dāng)溫度從450 ℃升高到550 ℃,C和各養(yǎng)分損失量最大,差異也均達(dá)顯著水平(<0.05)。相同溫度下畜禽糞便生物炭中,350~450 ℃溫度段,C殘留率表現(xiàn)為DM≈PR>CM;N殘留率350 ℃為CM≈PR≈DM(CM>DM),450 ℃為DM>PR≈CM;P殘留率350 ℃為PR>DM≈CM,450 ℃為DM>PR≈CM;K殘留率為DM>CM≈PR;Ca殘留率為PR>CM>DM;Mg殘留率為CM>PR>DM;Fe殘留率為PR≈DM>CM;Mn殘留率350 ℃為PR≈DM>CM,450 ℃為DM>PR>CM。550~750 ℃溫度段,除N殘留率差異不明顯外,C和其他養(yǎng)分殘留率均表現(xiàn)為CM>PR>DM。
表1 不同熱解溫度下的畜禽糞便生物炭養(yǎng)分含量變化
注:表中同一養(yǎng)分含量的不同小寫字母表示5%水平顯著差異,下同。
Note: Different small letters in the same nutrient content above the table mean significant difference at 5% level, the same below.
表2 不同熱解溫度下的畜禽糞便生物炭養(yǎng)分殘留率變化
生物炭施用可提高土壤C/N比值[23]。由圖3可知,畜禽糞便原材料的C/N比值均小于25∶1,隨著熱解溫度的升高,CM、PR、DM生物炭C/N比值呈遞增的趨勢。從原材料升溫至750 ℃,CM、PR和DM生物炭的C/N比值分別顯著提高了217.73%、97.32%、173.76%(<0.05)。相同溫度下畜禽糞便及其生物炭的C/N比值差異均不明顯。研究表明,低礦質(zhì)養(yǎng)分,高C/N比值的木質(zhì)和秸稈生物炭反而降低土壤N素利用率[28],而對(duì)于高礦質(zhì)養(yǎng)分的畜禽糞便生物炭C/N比值變化對(duì)土壤養(yǎng)分吸收的影響目前尚不清楚。
圖3 不同熱解溫度下的畜禽糞便生物炭C/N變化
對(duì)同一原材料及其炭化養(yǎng)分特征的相關(guān)分析表明,除N和Mg外,畜禽糞便生物炭C含量和其他養(yǎng)分含量均與原材料相應(yīng)的養(yǎng)分含量呈正相關(guān)(表3)。其中C含量在350、650 ℃顯著相關(guān)(<0.05),450 ℃極顯著相關(guān)(<0.01),而所有溫度段的P、K、Ca、Fe、Mn含量間的相關(guān)性均達(dá)顯著或極顯著水平(<0.05)。N含量在350 ℃極顯著正相關(guān)(<0.01),隨著溫度的升高,相關(guān)性逐漸變?nèi)?,?50 ℃顯著正相關(guān)(<0.05)發(fā)展到550 和650 ℃的負(fù)相關(guān)。Mg含量在所有溫度段均為負(fù)相關(guān),其中450、550 ℃相關(guān)性分別達(dá)顯著(<0.05)和極顯著水平(<0.01)。
表3 同一原材料及其炭化產(chǎn)品養(yǎng)分含量的相關(guān)性
注:*代表顯著相關(guān)<0.05,**代表極顯著相關(guān)<0.01,下同。
Note: * means significant difference at 5% level, ** means extremely significant difference at 1% level, the same below.
熱解溫度和生物炭灰分和養(yǎng)分特征變化的相關(guān)性分析表明,熱解溫度與CM、PR 和DM生物炭的灰分、養(yǎng)分總量、P、K、Ca、Mg、Fe、Mn含量呈顯著(<0.05)或極顯著(<0.01)正相關(guān),與N含量呈極顯著(<0.01)負(fù)相關(guān),與C含量相關(guān)性不強(qiáng)(表4)。
表4 熱解溫度和生物炭養(yǎng)分含量的相關(guān)性
與原材料相比,溫度對(duì)生物炭的N和Mg含量的影響更為明顯。表5表明,溫度與畜禽糞便各養(yǎng)分殘留率有著顯著(<0.05)或極顯著(<0.01)的負(fù)相關(guān)關(guān)系,表明熱解炭化雖提升了限氧制備畜禽糞便生物炭養(yǎng)分含量,但也加大了生物炭養(yǎng)分的揮發(fā)損失。
表5 熱解溫度和生物炭養(yǎng)分殘留率的相關(guān)性
多數(shù)研究表明,無氧和限氧熱解制備的秸稈、木質(zhì)生物炭的C含量均隨溫度升高而增加[25,29-30]。對(duì)于畜禽糞便生物炭的C含量變化,Cantrell等[26]研究表明,當(dāng)熱解溫度從350 ℃升高到750 ℃,無氧制備的畜禽糞便生物炭C含量降低了9.15%~14.46%,本研究從350 ℃到750 ℃,限氧制備的畜禽糞便生物炭C含量也降低了0.66%~19.89%(圖2)。畜禽糞便生物炭的C含量為何會(huì)降低,當(dāng)前仍需要進(jìn)一步研究給予證實(shí)。對(duì)于畜禽糞便生物炭的C殘留率變化,不論是秸稈生物炭,還是畜禽糞便生物炭,均表現(xiàn)為隨溫度升高而降低[29, 31],本研究結(jié)論與之一致(表2)。不論是限氧制備的核桃殼生物炭,還是本研究的畜禽糞便生物炭,其C殘留率與熱解溫度之間均具有顯著負(fù)相關(guān)關(guān)系(<0.05)[23,29]。前期研究表明,溫度與畜禽糞便生物炭固定碳產(chǎn)率也呈顯著負(fù)相關(guān)(<0.05)[3]。因此,選擇適宜溫度是提升畜禽糞便制備生物炭的C含量和C殘留率的關(guān)鍵,從本研究看,450 ℃為最佳的熱解溫度,該溫度下各生物炭的C殘留率大小依次為牛糞>豬糞渣>雞糞。
與木質(zhì)和秸稈生物炭相比,畜禽糞便生物炭灰分含有較高的礦質(zhì)養(yǎng)分,可補(bǔ)充貧瘠土壤的養(yǎng)分供應(yīng)[23]。相關(guān)分析表明,本研究畜禽糞便生物炭灰分含量與養(yǎng)分總量具有顯著的相關(guān)性(<0.05),相關(guān)系數(shù)為0.52。從養(yǎng)分組成看,本研究畜禽糞便生物炭養(yǎng)分含量整體以P、K含量為主,N、Ca、Mg和Fe含量次之,Mn含量為最低(表1),這與多數(shù)研究結(jié)果類似[26,32]。就養(yǎng)分殘留率而言,Ro等[31]的研究表明,當(dāng)熱解溫度升高至620 ℃時(shí),無氧制備的雞糞和豬糞生物炭N、P、K殘留率分別為39%、129%、113%和32%、137%、137%,700 ℃無氧制備的污泥生物炭Ca、Mg、Fe殘留率仍保留在90%、90%和95%[33]。對(duì)Spokas等[6]的研究結(jié)果進(jìn)行養(yǎng)分殘留率分析表明,700 ℃無氧制備的不同畜禽糞便生物炭C,N,P,K,Ca,Mg,F(xiàn)e,Mn殘留率分別為33.82%~44.16%,20.70%~23.12%,80.16%~105.44%,78.27%~120.67%,80.50%~98.00%,83.15%~103.89%,71.67%~102.00%,69.80%~99.49%。本研究限氧制備的畜禽糞便生物炭所有養(yǎng)分殘留率均隨著溫度升高而降低。熱解溫度為350~450 ℃時(shí),部分畜禽糞便生物炭養(yǎng)分殘留率也大于100%,我們的研究也發(fā)現(xiàn),畜禽糞便熱解過程中重金屬富集也存在類似現(xiàn)象[34],畜禽糞便生物炭養(yǎng)分特征變化是否也與其堿性特征相關(guān),這些研究養(yǎng)分殘留率大于100%可能是由測量誤差引起的。當(dāng)溫度從450 ℃增加到550 ℃,畜禽糞便生物炭養(yǎng)分殘留率均低于100%,但降低最為明顯,養(yǎng)分損失率達(dá)20.12%~71.23%(表2)。當(dāng)溫度進(jìn)一步上升至750 ℃時(shí),本研究限氧制備的生物炭養(yǎng)分含量遠(yuǎn)低于無氧制備的生物炭相應(yīng)養(yǎng)分含量[6,31,33]。相關(guān)分析表明,畜禽糞便生物炭所有養(yǎng)分含量和養(yǎng)分殘留率均與熱解溫度之間具有顯著相關(guān)關(guān)系(<0.05)。除N和Mg含量外,其余畜禽糞便生物炭養(yǎng)分含量與原材料相應(yīng)的含量也呈顯著的相關(guān)關(guān)系(<0.05)。由此可見,選擇高養(yǎng)分含量的原料來源是提升畜禽糞便生物炭養(yǎng)分含量的基礎(chǔ),而適宜溫度是限氧制備保留生物炭較高養(yǎng)分殘留率的關(guān)鍵。綜合分析本研究畜禽糞便生物炭養(yǎng)分含量和養(yǎng)分殘留率,450 ℃應(yīng)為畜禽糞便制備生物炭的最佳熱解溫度,該溫度下各生物炭的養(yǎng)分殘留率整體表現(xiàn)為牛糞>豬糞渣>雞糞。為進(jìn)一步提升限氧制備的畜禽糞便生物炭養(yǎng)分含量及其殘留率,應(yīng)深入研究熱解時(shí)間、制備方式等參數(shù)對(duì)生物炭養(yǎng)分特征變化的影響。
隨著熱解溫度的升高,本研究限氧制備的畜禽糞便生物炭C、N含量逐漸下降,P、K、Ca、Mg、Fe、Mn養(yǎng)分含量、灰分含量、總養(yǎng)分含量、C/N比值逐漸增加。當(dāng)溫度從350 ℃增加到750 ℃,畜禽糞便生物炭C、N、P、K養(yǎng)分殘留率分別顯著降低了58.25%~76.07%,85.01%~88.23%,33.31%~69.54%和40.27%~71.29%(<0.05),中微量元素Ca,Mg,F(xiàn)e,Mn殘留率也顯著降低了45.18%~71.21%,47.22%~73.52%,40.84%~70.91%和39.19%~68.11%(<0.05)。畜禽糞便生物炭養(yǎng)分含量及其殘留率與原材料中的養(yǎng)分含量、熱解溫度密切相關(guān),其中與熱解溫度具有顯著的相關(guān)性(<0.05)。因此,選擇高C和高養(yǎng)分含量的畜禽糞便原材料是提升生物炭養(yǎng)分含量的基礎(chǔ),而適宜熱解溫度是保留生物炭較高養(yǎng)分殘留率的關(guān)鍵。本研究中畜禽糞便適宜熱解溫度為450℃,該溫度下各生物炭的C和養(yǎng)分殘留率表現(xiàn)為牛糞>豬糞渣>雞糞。
[1] 賈偉,臧建軍,張強(qiáng),等. 畜禽養(yǎng)殖廢棄物還田利用模式發(fā)展戰(zhàn)略[J]. 中國工程科學(xué),2017,19(4):130-137.
Jia Wei, Zang Jianjun, Zhang Qiang,et al. Development strategies for utilization models for returning livestock and poultry manure to the land [J]. Engineering Sciences, 2017, 19(4): 130-137. (in Chinese with English abstract)
[2] Zhang X K, Luo Y, Müller K, et al. Research and application of biochar in China[C]//Guo M, He Z, Uchimiya S M (Ed.). Agricultural and Environmental Applications of Biochar: Advances and Barriers. USA: SSSA Special Publication, 2016: 377-408.
[3] 王煌平,張青,李昱,等. 熱解溫度對(duì)畜禽糞便生物炭產(chǎn)率及理化特性的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2015,34(11):2208-2214.
Wang Huangping, Zhang Qing, Li Yu, et al. Effects of pyrolysis temperature on yield and physicochemical characteristics of biochar from animal manures[J]. Journal of Agro-Environment Science, 2015, 34(11): 2208-2214. (in Chinese with English abstract)
[4] 孫雪,劉琪琪,郭虎,等. 豬糞生物質(zhì)炭對(duì)土壤肥效及小白菜生長的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2016,35(9):1756-1763.
Sun Xue, Liu Qiqi, Guo Hu, et al. Effects of swine manure biochar on soil fertility and cabbage () growth[J]. Journal of Agro-Environment Science, 2016, 35(9): 1756-1763. (in Chinese with English abstract)
[5] 謝祖彬,劉琦,許燕萍,等. 生物炭研究進(jìn)展及其研究方向[J]. 土壤,2011,43(6):857-861.
Xie Zubin, Liu Qi, Xu Yanping, et al. Advances and perspectives of biochar research[J]. Soils, 2011, 43(6): 857-861. (in Chinese with English abstract)
[6] Spokas K A, Cantrell K B, Novak J M, et al. Biochar: A synthesis of its agronomic impact beyond carbon sequestration[J]. J Environ Qual, 2011, 41(4): 973-989.
[7] 何緒生,耿增超,佘雕,等. 生物炭生產(chǎn)與農(nóng)用的意義及國內(nèi)外動(dòng)態(tài)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(2):1-7.
He Xusheng, Geng Zengchao, She Diao, et al. Implications of production and agricultural utilization of biochar and its international dynamics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(2): 1-7. (in Chinese with English abstract)
[8] 王欣,尹帶霞,張鳳,等. 生物炭對(duì)土壤肥力與環(huán)境質(zhì)量的影響機(jī)制與風(fēng)險(xiǎn)解析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(4):248-257.
Wang Xin, Yin Daixia, Zhang Feng, et al. Analysis of effect mechanism and risk of biochar on soil fertility and environmental quality[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(4): 248-257. (in Chinese with English abstract)
[9] Meng J, Wang L, Zhong L B, et al. Contrasting effects of composting and pyrolysis on bioavailability and speciation of Cu and Zn in pig manure[J]. Chemosphere, 2017, 180: 93-99.
[10] Jeffery S, Verheijen F G A, van der Velde M, et al. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis[J]. Agr Ecosyst Environ, 2011, 144: 175-187.
[11] 李音,單勝道,楊瑞芹,等. 低溫水熱法制備竹生物炭及其對(duì)有機(jī)物的吸附性能[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(24):240-247.
Li Yin, Shan Shengdao, Yang Ruiqin, et al. Preparation of bamboo biochars by low-temperature hydrothermal method and its adsorption of organics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(24): 240-247. (in Chinese with English abstract)
[12] Sun Y N, Gao B, Yao Y, et al. Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties[J]. Chem Eng J, 2014, 240: 574-578.
[13] Duman G, Tag A T, Ucar S, et al. Comparative evaluation of dry and wet carbonization of agro industrial wastes for the production of soil improver[J]. J Environ Chem Eng, 2018, 6(2): 3366-3375.
[14] Bai M, Wilske B, Buegger F, et al. Degradation kinetics of biochar from pyrolysis and hydrothermal carbonization in temperate soils[J]. Plant Soil, 2013, 372(1/2): 375-387.
[15] Gascó G, Paz-Ferreiro J, álvarez M L, et al. Biochars and hydrochars prepared by pyrolysis and hydrothermal carbonisation of pig manure[J]. Waste Manage, 2018, 79: 395-403.
[16] 張進(jìn)紅,林啟美,趙小蓉,等. 水熱炭化溫度和時(shí)間對(duì)雞糞生物質(zhì)炭性質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(24):239-244.
Zhang Jinhong, Lin Qimei, Zhao Xiaorong, et al. Effect of hydrothermal carbonization temperature and time on characteristics of biochars from chicken manure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(24): 239-244. (in Chinese with English abstract)
[17] Zhao B, O'Connor D, Zhang J L, et al. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar[J]. J Clean Prod, 2018, 174: 977-987.
[18] Glaser B, Lehmann J, Zech W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-a review[J]. Biol Fert Soils, 2002, 35(4): 219-230.
[19] 中華人民共和國農(nóng)業(yè)部. 生物質(zhì)固體成型燃料試驗(yàn)方法第5部分:灰分:NY/T 1881.5-2010 [S]. 北京:中國標(biāo)準(zhǔn)出版社,2010.
[20] 中華人民共和國農(nóng)業(yè)部. 有機(jī)肥料:NY 525-2012[S]. 北京:中國標(biāo)準(zhǔn)出版社,2012.
[21] 魯如坤. 土壤農(nóng)業(yè)化學(xué)分析方法[M]. 北京:中國農(nóng)業(yè)科技出版社,2000:147-149.
[22] 肖瑞瑞,陳雪莉,王輔臣,等. 不同生物質(zhì)灰的理化特性[J]. 太陽能學(xué)報(bào),2011,32(3):364-369.
Xiao Ruirui, Chen Xueli, Wang Fuchen, et al. The physicochemical properties of different biomass ash[J]. Acta Energiae Solaris Sinca, 2011, 32(3): 364-369. (in Chinese with English abstract)
[23] 袁帥,趙立欣,孟海波,等. 生物炭主要類型、理化性質(zhì)及其研究展望[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2016,22(5):1402-1417.
Yuan Shuai, Zhao Lixin, Meng Haibo, et al. The main types of biochar and their properties and expectative researches[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(5): 1402-1417. (in Chinese with English abstract)
[24] Song W P, Guo M X. Quality variations of poultry litter biochar generated at different pyrolysis temperatures[J]. J Anal Appl Pyrol, 2012, 94: 138-145.
[25] 簡敏菲,高凱芳,余厚平. 不同裂解溫度對(duì)水稻秸稈制備生物炭及其特性的影響[J]. 環(huán)境科學(xué)學(xué)報(bào),2016,36(5):1757-1765.
Jian Minfei, Gao Kaifang, Yu Houping. Effects of different pyrolysis temperatures on the preparation and characteristics of bio-char from rice straw[J]. Acta Scientiae Circumstantiae, 2016, 36(5): 1757-1765. (in Chinese with English abstract)
[26] Cantrell K B, Hunt P G, Uchimiya M, et al. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar[J]. Bioresource Technol, 2012, 107: 419-428.
[27] Zornoza R, Moreno-Barriga F, Acosta J A, et al. Stability, nutrient availability and hydrophobicity of biochars derived from manure, cropresidues, and municipal solid waste for their use as soil amendments[J]. Chemosphere, 2016, 144: 122-130.
[28] 武玉,徐剛,呂迎春,等. 生物炭對(duì)土壤理化性質(zhì)影響的研究進(jìn)展[J]. 地球科學(xué)進(jìn)展,2014,29(1):68-79.
Wu Yu, Xu Gang, Lü Yingchun, et al. Effects of biochar amendment on soil physical and chemical properties: Current status and knowledge gaps[J]. Advances in Earth Science, 2014, 29(1): 68-79. (in Chinese with English abstract)
[29] 李飛躍,汪建飛,謝越,等. 熱解溫度對(duì)生物質(zhì)炭碳保留量及穩(wěn)定性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(4):266-271.
Li Feiyue, Wang Jianfei, Xie Yue, et al. Effects of pyrolysis temperature on carbon retention and stability of biochar[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(4): 266-271. (in Chinese with English abstract)
[30] 趙世翔,于小玲,李忠徽,等. 不同溫度制備的生物質(zhì)炭對(duì)土壤有機(jī)碳及其組分的影響:對(duì)土壤活性有機(jī)碳的影響[J]. 環(huán)境科學(xué),2017,38(1):333-342.
Zhao Shixiang, Yu Xiaoling, Li Zhonghui, et al. Effects of biochar pyrolyzed at varying temperatures on soil organic carbon and its components: Influence on the soil active organic carbon[J]. Environmental Science, 2017, 38(1): 333-342. (in Chinese with English abstract)
[31] Ro K S, Cantrell K B, Hunt P G. High-temperature pyrolysis of blended animal manures for producing renewable energy and value-added biochar[J]. Ind Eng Chem Res, 2010, 49: 10125-10131.
[32] Meng J, Wang L L, Liu X M, et al. Physicochemical properties of biochar produced from aerobically composted swine manure and its potential use as an environmental amendment[J]. Bioresource Technol, 2013, 142: 641-646.
[33] Hossain M K, Strezov V, Chan K Y, et al. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar[J]. J Environ Manage, 2011, 92: 223-228.
[34] 王煌平,張青,栗方亮,等. 熱解溫度對(duì)畜禽糞便生物炭重金屬特征變化的影響[J]. 環(huán)境科學(xué)學(xué)報(bào),2018,38(4):1598-1605.
Wang Huangping, Zhang Qing, Li Fangliang, et al. Effect of pyrolysis temperature on the characteristics change of heavy metals in biochar derived from animal manure[J]. Acta Scientiae Circumstantiae, 2018,38(4): 1598-1605. (in Chinese with English abstract)
Nutrient characteristics of biochar prepared from animal manures at different temperature with limited oxygen
Wang Huangping1,2, Zhang Qing1,2, Zhang Zande3, Luo Tao4※, Weng Boqi4, Zhong Shaojie1,2
(1.350013; 2.350013; 3.,366100,; 4.350013)
Compared with traditional manure composting, the pyrolysis of livestock manures is one of the thermochemical technologies for converting biomass into nutrient-rich biochars with potential agronomic uses, and reduces the environmental problems caused by fecal accumulation. Studies are needed to clarify biochar nutrients properties across manure varieties under similar controlled conditions. Of all parameters affected the biomass pyrolysis process, temperature is one of the most important factors. In this study, three types of biochars derived from chicken manure (CM), solid-liquid separated pig manure (PR) and dairy manure (DM), were prepared by pyrolyzing at different temperatures (350, 450, 550, 650 and 750 ℃), under an oxygen-limited condition in muffle furnace. The effects of temperature on the ash content, total carbon content, macro to micro nutrients contents and their remaining rate of biochars were analyzed. Meanwhile, the C/N ratio, the correlation of nutrient contents between raw materials and carbonized products, and the relationship between pyrolysis temperature and nutrient characteristics of biochars were also discussed. The results showed, as pyrolysis temperature increased, the biochar carbon (C) and nitrogen (N) contents decreased, while the contents of ash, phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn) in biochars gradually increased. When pyrolysis temperature reached 750 ℃, the C and N contents decreased by 8.25%-19.86% and 59.62%-70.71%, respectively. Due to the decrease of volatile matter contents, the increased ash contents ranged from 43.28% to 57.65% at this temperature. The contents of P, K, Ca, Mg, Fe, Mn in biochars increased by 85.84%-128.54%, 85.03%-123.26%, 68.66%-169.03%, 33.02%-123.30%, 63.92%-103.62% and 56.92%-75.19% at 750 ℃, respectively. All nutrient differences reached a significant level (<0.05). Although high temperature pyrolysis increased the total nutrient content and C/N ratio of manure-derived biochars, it also reduced the remaining rate of nutrients. Whenthe pyrolysis temperature increased from 350 to 750 ℃, the residue rates of C, N, P and K in biochars decreased significantly by 58.25%-76.07%, 85.01%-88.23%, 33.31%-69.54% and 40.27%-71.29% (<0.05), respectively. Those of Ca, Mg, Fe and Mn also reduced significantly by 45.18%-71.21%, 47.22%-73.52%, 40.84%-70.91% and 39.19%-68.11% (<0.05). In general, the nutrient contents and their remaining rates in biochars were closely related to material source and pyrolysis temperature, and the correlation between nutrient characteristics and pyrolysis temperature was significant (<0.05). Therefore,the selection of high C and high nutrient contents of animal manure, was the basis for improving the biochar nutrient contents, and suitable temperature was the key to retain the high nutrient residue rates of biochars. When the temperature increased from 450 to 550 ℃, the nutrients loss rates ranged from 20.12% to 71.23%, and the decrease was most obvious, indicating that the suitable temperature for manure pyrolysis was 450 ℃. Overall characteristics of biochar nutrients at this temperature, the selection of livestock manures for nutrient-rich biochars production was in order of DM > PR > CM in this study. Future studies focusing on other factors and the persistence of biochar fertility in the field must explicitly take into account additional factors to transfer this technology.
pyrolysis;temperature; nutrients; limited oxygen; animal manure; biochar
10.11975/j.issn.1002-6819.2018.20.030
S141
A
1002-6819(2018)-20-0233-07
2018-05-02
2018-08-23
福建省自然科學(xué)基金(No.2016J01180);福建省重大專項(xiàng)(No.2017NZ0001-4);福建省農(nóng)業(yè)科學(xué)院科技創(chuàng)新團(tuán)隊(duì)(STIT2017-2-10)共同資助。
王煌平,助理研究員。研究方向?yàn)橥寥?、肥料與植物營養(yǎng)。Email:huangping-5539@163.com
羅濤,研究員。研究方向?yàn)橥寥拉h(huán)境、肥料與植物營養(yǎng)。Email:luotaofjfz@188. Com
王煌平,張青,章贊德,羅濤,翁伯琦,鐘少杰. 不同熱解溫度限氧制備的畜禽糞便生物炭養(yǎng)分特征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(20):233-239. doi:10.11975/j.issn.1002-6819.2018.20.030 http://www.tcsae.org
Wang Huangping, Zhang Qing, Zhang Zande, Luo Tao, Weng Boqi, Zhong Shaojie. Nutrient characteristics of biochar prepared from animal manures at different temperature with limited oxygen[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(20): 233-239. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.20.030 http://www.tcsae.org