亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        噴霧助劑類(lèi)型及濃度對(duì)噴頭霧化效果影響

        2018-10-19 01:13:22張瑞瑞陳立平AndrewHewitt

        張瑞瑞,張 真,徐 剛,陳立平,Andrew J Hewitt

        ?

        噴霧助劑類(lèi)型及濃度對(duì)噴頭霧化效果影響

        張瑞瑞1,2,3,張 真2,3,4,徐 剛1,2,3,陳立平1,2,3※,Andrew J Hewitt5

        (1.北京農(nóng)業(yè)智能裝備技術(shù)研究中心,北京 100097; 2. 國(guó)家農(nóng)業(yè)智能裝備工程技術(shù)研究中心,北京 100097; 3. 國(guó)家農(nóng)業(yè)航空應(yīng)用技術(shù)國(guó)際聯(lián)合研究中心,北京 100097; 4. 山東農(nóng)業(yè)大學(xué)信息科學(xué)與工程學(xué)院,泰安 271018; 5. 昆士蘭大學(xué)施藥技術(shù)與安全研究中心,昆士蘭 4072)

        為達(dá)到農(nóng)藥減施增效的目的,助劑逐漸成為農(nóng)藥噴灑過(guò)程中必不可少的部分,其效果及濃度直接影響著施藥過(guò)程中農(nóng)藥利用率。為探索不同助劑及濃度對(duì)噴頭霧化效果的影響,該文利用激光粒度儀比較分析了IDK120-025型和LU120-015型噴頭噴施不同濃度典型增效劑意歐、減量增產(chǎn)助劑激健、尿素時(shí),其霧滴體積中徑及霧滴分布相對(duì)跨度差異。兩款噴頭應(yīng)用廣泛,噴霧角度相同、噴腔霧化結(jié)構(gòu)相異。結(jié)果表明:3種助劑溶液對(duì)IDK120-025型噴頭的影響效果相比于LU120-015型噴頭更為顯著,但是LU120-015噴頭噴霧霧滴均勻性較優(yōu)于IDK120-025。激健溶液配比為1:3 000時(shí),在0.4 MPa噴霧壓力條件下,與水相比可將IDK噴頭霧滴體積中徑增加20.43%,粒徑分布相對(duì)跨度減小1.74%;意歐溶液配比為1:2 000時(shí),在0.4 MPa噴霧壓力條件下,與水相比可將IDK噴頭霧滴體積中徑增加11.10%,粒徑分布相對(duì)跨度減小8.86%;意歐溶液配比1:3 000時(shí),在0.2 MPa噴霧壓力條件下,與水相比可將LU噴頭霧滴體積中徑減小5.99%,粒徑分布相對(duì)跨度增大1.56%;尿素溶液在配比1:2 000時(shí),在0.4 MPa噴霧壓力條件下,與水相比可將IDK噴頭霧滴體積中徑增加16.92%,粒徑分布相對(duì)跨度減小6.92%。該試驗(yàn)可為田間農(nóng)藥施用中助劑及噴頭的選擇提供依據(jù),為進(jìn)一步研究噴頭及助劑提供數(shù)據(jù)基礎(chǔ)。

        噴霧;農(nóng)藥;噴頭;助劑;霧化;霧滴粒徑

        0 引 言

        農(nóng)藥?kù)F化是農(nóng)藥以霧滴的形式分散到大氣中,形成霧狀分散體系的過(guò)程,其實(shí)質(zhì)是噴霧液滴在外力作用下實(shí)現(xiàn)比表面積的大幅度擴(kuò)增[1-4]。將農(nóng)藥輸送至靶標(biāo)植物的過(guò)程依靠噴頭實(shí)現(xiàn)[5]。農(nóng)藥?kù)F化程度直接影響農(nóng)藥飄移距離及沉積有效利用率。噴霧霧滴粒徑分布是農(nóng)藥?kù)F化程度的主要檢測(cè)指標(biāo)[6-8]。較大霧滴能夠在較長(zhǎng)時(shí)間內(nèi)保持動(dòng)量,到達(dá)靶標(biāo)時(shí)間短,飄移較小,但霧滴過(guò)大又易造成藥液覆蓋率降低、靶標(biāo)附著性差和藥液流失[9]。較小的霧滴由于其質(zhì)量小,受空氣阻力影響大,通常會(huì)由于動(dòng)量不足而無(wú)法到達(dá)靶標(biāo)[10-11],但小霧滴有助于增大藥液覆蓋率、提升霧滴覆蓋的均勻性和增大藥液作物冠層的穿透性。

        為達(dá)到減施增效目的,除通過(guò)改善施藥器械和施藥方式來(lái)盡可能降低農(nóng)藥飄移外[12-13],也廣泛運(yùn)用噴霧助劑改善藥液性質(zhì),優(yōu)化藥液霧化效果[14]。噴霧助劑是在農(nóng)藥噴灑時(shí)添加的用于改善藥液物理性質(zhì)的物質(zhì),其一般能夠改善霧滴表面張力,改變霧滴粒徑分布,增加藥液在葉片的滯留量,提高農(nóng)藥利用率[15-16]。

        王瀟楠等[17-18]利用飄移潛在指數(shù)及霧滴體積中徑2個(gè)參數(shù)分析比較了抗蒸發(fā)助劑、防飄移助劑不同濃度對(duì)不同噴頭霧滴飄移的影響。何玲等[19]利用表面張力儀等設(shè)備測(cè)定了噴霧助劑不同配比濃度對(duì)溶液性質(zhì)的影響,同時(shí)分析了噴霧助劑及施液量對(duì)水稻冠層不同位置有效沉積率等參數(shù)的影響。朱金文等[20]研究了有機(jī)硅噴霧助劑對(duì)草甘膦生物活性及在空心蓮子草上的沉積量的影響,分析得出噴霧助劑在促進(jìn)草甘膦向下傳導(dǎo)、提高草甘膦耐沖刷性的同時(shí)降低了在葉面上的最大穩(wěn)定持留量。張文君等[15]利用2種噴頭試驗(yàn)分析了助劑S240對(duì)水分散性粒劑、乳油及2種藥劑霧化性能的影響,分析得出在不同劑型農(nóng)藥條件下隨助劑濃度增大,液膜長(zhǎng)度變化與霧滴體積中徑變化呈負(fù)相關(guān)性。霧滴特性不僅對(duì)其在靶標(biāo)沉積有顯著影響,與植物對(duì)藥液的吸收及傳導(dǎo)也密不可分。雖然小霧滴容易飄失,但大霧滴容易在葉片表面發(fā)生破碎與流失,從而影響植物對(duì)藥液的吸收[21]。噴頭結(jié)構(gòu)、噴霧壓力、藥液性質(zhì)等因素直接影響霧滴粒徑分布,藥物有效成分利用率很大程度上取決于霧滴大小[22-23]。謝晨等[24]利用霧滴粒徑分析儀對(duì)標(biāo)準(zhǔn)扇形噴頭(ST)與防飄噴頭(IDK)的霧化過(guò)程進(jìn)行試驗(yàn)研究與可視化圖形分析,結(jié)果表明IDK噴頭液膜區(qū)面積相較于ST噴頭小,無(wú)波紋區(qū),但是具有氣泡狀結(jié)構(gòu)。唐青等[25]為了探究LU120-03及IDK120-03在高速氣流下的霧化特性,利用IEA-I型風(fēng)洞對(duì)其進(jìn)行了測(cè)試,結(jié)果表明,管道壓力變化對(duì)LU120-03噴頭霧滴體積中徑影響較大,對(duì)IDK120-03影響較小。趙輝等[26]為研究噴霧動(dòng)態(tài)表面張力與霧滴粒徑間的關(guān)系,重點(diǎn)分析了噴頭尺寸、噴霧壓力對(duì)Dv0.5的影響,結(jié)果表明噴頭尺寸相同條件下,隨噴霧壓力增大,噴霧動(dòng)態(tài)表面張力的改變對(duì)霧滴粒徑的影響減小。楊希娃等[27]利用LU120-02、AD120-02及IDK120-02研究了霧滴尺寸對(duì)藥液沉積和麥蚜防效的影響,結(jié)果表明LU噴頭的施藥平均覆蓋率顯著好于AD和IDK,但同時(shí)其地面損失最大。

        為探究不同助劑及濃度對(duì)藥液霧化效果的影響,本文選用陰-非離子增效劑意歐、減量增產(chǎn)助劑激健和尿素3種定型常用助劑,在可控試驗(yàn)室條件下利用空氣誘導(dǎo)噴頭IDK120-025和多量程平面噴頭LU120-015對(duì)不同濃度助劑溶液的霧滴體積中徑及分布均勻度進(jìn)行量化分析,以期為其濃度配比及噴頭選擇提供參考數(shù)據(jù)。

        1 理論模型

        噴頭霧化是噴頭內(nèi)液體在噴頭內(nèi)、外力作用下的碎裂過(guò)程。該過(guò)程是在噴頭液體表面張力、黏性力與噴頭外部空氣徑向速度分量、液體表面空氣動(dòng)力的相互作用下發(fā)生的。當(dāng)外部作用力超過(guò)液體自身表面張力和黏性力后,噴頭噴出的液柱或液膜會(huì)初級(jí)碎裂成液片、液線及大顆粒液滴。在空氣湍流動(dòng)能、液滴重力及空氣阻力共同作用下,液滴二次碎裂、霧化,形成細(xì)小液滴。二次碎裂對(duì)噴霧粒徑、噴霧霧滴均勻性起決定性影響。

        對(duì)于低黏度液體,當(dāng)液滴處在穩(wěn)定氣流場(chǎng)中,其變形取決于空氣動(dòng)力(0.5gd2,g是氣體密度,kg/m3;d是氣液流速差,m/s)和表面張力系數(shù)與液滴直徑比(1/)。

        量綱一參數(shù)韋伯?dāng)?shù)W可表示為

        當(dāng)空氣動(dòng)力大于表面張力時(shí),韋伯?dāng)?shù)較大。受空氣動(dòng)力與表面張力作用,液滴碎裂條件為

        式中C是取決于碎裂條件的常數(shù)。

        在某一氣液相對(duì)速度d下,最大的穩(wěn)定液滴直徑可表示為

        可見(jiàn),在穩(wěn)定相對(duì)速度下,霧滴碎裂后可保持的最大穩(wěn)定液滴直徑與液滴表面張力系數(shù)正相關(guān),與氣體密度、氣流差成反相關(guān)。另外,液滴黏度對(duì)碎裂過(guò)程產(chǎn)生的影響可以用Brodkey[28]經(jīng)驗(yàn)公式表示如下

        式中ρ為液滴密度,μ為液滴的動(dòng)力學(xué)黏度系數(shù),Pa·s。故液滴密度、液滴的動(dòng)力學(xué)黏度系數(shù)對(duì)液滴碎裂有影響。

        噴霧助劑通過(guò)改變藥液表面張力、密度及其動(dòng)力學(xué)黏度系數(shù)實(shí)現(xiàn)對(duì)噴霧二次碎裂過(guò)程的干預(yù),改變噴霧霧化特性。

        2 材料和方法

        試驗(yàn)于2017年6月在國(guó)家農(nóng)業(yè)智能裝備工程技術(shù)研究中心航空施藥噴霧檢測(cè)試驗(yàn)室完成。

        2.1 試驗(yàn)材料

        噴霧樣本分別是陰-非離子農(nóng)用增效劑意歐、減量增產(chǎn)助劑激健和尿素3種農(nóng)藥助劑分別與自來(lái)水以一定比例的混合物,同時(shí)與市政自來(lái)水及蒸餾水進(jìn)行對(duì)比試驗(yàn)。意歐助劑為陰-非離子表面活性劑,在稀釋2 000~3 000倍后與農(nóng)藥混用,作用功能是減少藥液表面張力,增加藥液附著力。激健助劑主要成分為增效酮梨,是一種由吐溫類(lèi)表面活性劑和N-R-2-吡咯烷酮所組成的食品級(jí)多元醇型非離子表面活性劑。一般3 000倍后與農(nóng)藥混用,作用功能是減少農(nóng)藥表面蒸發(fā)和分解[29]。尿素是目前使用量較大的一種化學(xué)氮肥,屬于無(wú)機(jī)鹽類(lèi),溶于水后液體變渾濁,一般應(yīng)用于航空施藥溶液中改變藥液密度、增加霧滴沉降。由于尿素不屬于標(biāo)準(zhǔn)助劑,其對(duì)藥液霧化的影響,目前尚不明確,這也是本試驗(yàn)的試驗(yàn)?zāi)康闹?。意歐與尿素為粉末狀,激健為液體狀。

        試驗(yàn)噴頭為德國(guó)LECHLER公司生產(chǎn)的空氣誘導(dǎo)噴頭IDK120-025和多量程平面噴頭LU120-015,其結(jié)構(gòu)及尺寸如圖1和圖2所示。

        圖1 IDK120-025噴頭實(shí)物及結(jié)構(gòu)示意圖

        IDK系列噴頭的設(shè)計(jì)原理與LU系列扇形噴頭之間存在差異。IDK系列噴頭內(nèi)部結(jié)構(gòu)設(shè)計(jì)利用文丘里原理,在噴頭內(nèi)部將噴霧液體與空氣進(jìn)行混合,使噴出的霧滴成為小氣泡,從而達(dá)到增大霧滴粒徑、減小霧滴飄移、降低霧滴入射靶標(biāo)后二次反彈流失的效果[25]。經(jīng)測(cè)定,噴霧壓力為0.2 MPa時(shí),IDK120-025及LU120-015的噴量速率均為0.48 L/min;噴霧壓力為0.4 MPa時(shí),IDK120-025的噴量速率為0.68 L/min[30-31]。

        圖2 LU120-015噴頭實(shí)物及結(jié)構(gòu)示意圖

        2.2 試驗(yàn)裝置

        試驗(yàn)測(cè)試裝置如圖3所示。該裝置由激光粒度儀、噴霧系統(tǒng)及藥液回收裝置等部分組成。激光粒度儀是德國(guó)新帕泰克廠商生產(chǎn)的HELOS-VARIO/KR型號(hào)實(shí)時(shí)噴霧激光粒度儀,發(fā)射器與接收器間距可調(diào),范圍為123~1 400 mm,本試驗(yàn)中發(fā)射器與接收器間距1 200 mm,噴霧被測(cè)樣本置于發(fā)射器與接收器中心位置。其粒徑測(cè)量范圍為0.1~3 500m,分為7個(gè)不同量程,對(duì)應(yīng)2.2、13、26 mm 3種光束直徑。設(shè)備安裝時(shí),激光發(fā)射器與探測(cè)器保持中心在同一軸線,噴頭位置調(diào)整至激光束上方約20 cm處,可垂直于測(cè)量激光束水平移動(dòng)約10 cm。IDK120-025及LU120-015均為平面扇形噴頭,測(cè)試時(shí)保持噴霧面與激光束相互垂直。

        1.激光粒度儀 2.壓力表 3.二維電控位移臺(tái) 4.噴頭 5.噴霧收集裝置

        1.Laser diffraction system 2.Pressure gauge 3.Motor driving two dimensional arm 4.Nozzle 5.Droplets collection device

        a. 霧滴粒徑測(cè)試裝置

        a. Droplet size testing device

        1.壓力表2.流量表 3.穩(wěn)壓閥 4.電動(dòng)隔膜泵 5.激光粒度儀

        1.Pressure gauge 2.Flow meter 3.Pressure stabilizer valve 4.Electrical diaphragm pump 5.Laser diffraction system

        b. 噴霧系統(tǒng)示意圖

        b. Diagram of spraying system

        圖3 霧滴粒徑測(cè)試試驗(yàn)臺(tái)

        Fig.3 Schematic diagram of droplet size testing platform

        2.3 試驗(yàn)方法

        在室溫26 ℃、空氣相對(duì)濕度60%的環(huán)境下,測(cè)量IDK120-025、LU120-015噴頭在0.2、0.4 MPa噴霧壓力條件下噴施不同濃度助劑藥液時(shí)的霧滴體積中值粒徑和霧滴譜寬度。每次試驗(yàn)噴霧時(shí)間均為10 s,各重復(fù)5次,結(jié)果數(shù)據(jù)為試驗(yàn)數(shù)據(jù)平均值。

        由粒度儀激光光源形成的激光束照射在霧滴上,因粒子大小不同形成不同角度折射,而后光束通過(guò)傅里葉透鏡形成散射光與未散射光。探測(cè)器內(nèi)部使用不同探測(cè)器對(duì)2種光強(qiáng)進(jìn)行測(cè)量得到散射圖像。噴霧霧滴粒徑通常用霧滴直徑分布曲線上的特征點(diǎn)進(jìn)行分析,一般又稱為霧滴的特征直徑,它代表某一直徑以下的所有液滴的體積占全部液滴總體積的百分比,并將此比值以符號(hào)下標(biāo)的形式標(biāo)出,特征直徑下標(biāo)數(shù)值均小于1。典型特征直徑包括0.1、0.5、0.632、0.9、0.999及Dv(占有體積最大的液滴直徑)。根據(jù)美國(guó)農(nóng)業(yè)與生物工程學(xué)會(huì)(ASABE)和美國(guó)國(guó)家標(biāo)準(zhǔn)局(ANSI)572.1標(biāo)準(zhǔn)[30],農(nóng)業(yè)噴霧選擇0.5作為噴霧霧滴霧化指標(biāo),表示噴霧霧滴粒徑小于0.5所有霧滴體積總和占噴霧總液體體積的50%。0.5又被稱為霧滴體積中徑(volume median diameter,VMD)。

        霧滴尺寸的發(fā)散性也是描述霧滴尺寸的重要指標(biāo)[31],一般用均勻度、相對(duì)尺寸范圍、發(fā)散度及發(fā)散邊界等指標(biāo)來(lái)評(píng)價(jià)。根據(jù)美國(guó)農(nóng)業(yè)與生物工程學(xué)會(huì)(ASABE)和美國(guó)國(guó)家標(biāo)準(zhǔn)局(ANSI)572.1標(biāo)準(zhǔn),農(nóng)業(yè)噴霧霧滴尺寸發(fā)散性選用相對(duì)尺寸范圍Δ來(lái)評(píng)價(jià),其定義如式(6),表示霧滴直徑相對(duì)于體積中徑的范圍。一般而言,Δ值越大,代表霧滴粒徑范圍越大,發(fā)散性越大。

        本文即以霧滴體積中徑0.5及霧滴分布相對(duì)跨度Δ作為評(píng)價(jià)噴霧霧化程度的評(píng)價(jià)參數(shù)。

        3 試驗(yàn)結(jié)果與分析

        3.1 自來(lái)水與蒸餾水霧滴體積中徑分析

        試驗(yàn)結(jié)果如圖4。各試驗(yàn)條件下,自來(lái)水與蒸餾水霧滴體積中徑無(wú)明顯顯著性差異。因?qū)嶋H施藥作業(yè)時(shí),一般采用自來(lái)水飲用水源作為農(nóng)藥稀釋液,因此,本試驗(yàn)中均采用北京市政自來(lái)水作為稀釋液。

        圖4 不同試驗(yàn)條件下自來(lái)水與蒸餾水霧滴體積中徑

        3.2 LU120-015型噴頭0.2 MPa壓力條件試驗(yàn)結(jié)果分析

        該試驗(yàn)條件下霧滴體積中徑試驗(yàn)結(jié)果如表1所示。由表1可知,與自來(lái)水相比,激健與意歐均使霧滴粒徑減小,而尿素溶液呈增大霧滴粒徑的趨勢(shì)。

        表1 LU120-015型噴頭0.2 MPa壓力條件VMD平均值

        注:數(shù)字后不同字母表示同1行不同溶液間差異顯著(<0.05),括號(hào)內(nèi)字母表示同1列數(shù)值顯著性差異(<0.05)。VMD:霧滴體積中徑。下同。

        Note: Different letters after the number indicated significantly different at the<0.05 level among different concentrations in the same row. Different letters in parentheses indicated significantly different at the< 0.05 level among different concentrations in the same column. VMD: Volume median diameter. The same below.

        同種助劑不同稀釋比例條件下,霧滴體積中徑無(wú)顯著性差異,說(shuō)明3種助劑與水混合后霧化效果均比較穩(wěn)定。不同稀釋比例下,激健溶液與水相比霧滴體積中徑減小5%左右,意歐溶液與水相比霧滴體積中徑減小6%左右。3種助劑均呈現(xiàn)隨溶液濃度降低霧滴體積中徑減小趨勢(shì)。

        同一配比濃度下,3種助劑溶液霧滴體積中徑存在顯著性差異。總體而言,尿素溶液的VMD最大,其次為激健溶液。1:2 000配比條件下,意歐溶液VMD相比于水減小5.99%,尿素溶液VMD相比于水增大4.43%,更有利于產(chǎn)生大霧滴降低飄移可能性。1:3 000配比條件下,尿素溶液VMD相比于水增加3.26%。

        該試驗(yàn)條件下霧滴體積中徑值在120~135m范圍內(nèi),根據(jù)ASABE S572.1標(biāo)準(zhǔn),噴霧品質(zhì)屬于Fine等級(jí),在濕潤(rùn)葉片表面滯留能力好,藥液二次流失可能性降低。

        該試驗(yàn)條件下霧滴體積中徑相對(duì)分布如圖5所示,從圖中可以看出:加入助劑后,溶液的霧滴體積中徑均高于自來(lái)水,同時(shí)3種助劑溶液霧滴粒徑相對(duì)分布跨度Δs受溶液配比因素影響程度不同。該條件下自來(lái)水的粒徑分布相對(duì)跨度為1.344。激健溶液受影響程度最顯著,1:2 000配比條件下激健溶液粒徑分布相對(duì)跨度最大,粒徑分布相對(duì)跨度為1.469,相比于水增加9.29%,1:3 000配比條件下粒徑分布相對(duì)跨度為1.408,相比于水增大4.73%,相差近5%。意歐溶液受影響程度最小,1:3 000配比條件下意歐溶液粒徑分布相對(duì)跨度為1.365,相比水僅增加1.56%,1:4 000配比條件下相比于水增大2.31%,相差不足1%。尿素溶液在1:3 000配比條件下,粒徑分布相對(duì)跨度為1.429,相比于水增加6.33%,霧滴粒徑一致性減弱。

        圖5 LU120-015不同助劑霧滴粒徑相對(duì)分布

        3.3 IDK120-025型噴頭0.2 MPa壓力條件試驗(yàn)結(jié)果分析

        霧滴體積中徑試驗(yàn)結(jié)果如表2所示,從表中可以看出:與水相比,3種助劑溶液均呈增大霧滴體積中徑的趨勢(shì)。意歐助劑在不同稀釋比例下霧滴體積中徑無(wú)顯著性差異,說(shuō)明該助劑與水混合后霧化效果穩(wěn)定。與水相比,意歐溶液可將霧滴體積中徑增大5%左右。激健助劑在1:3 000稀釋比例下,與水相比霧滴體積中徑增大16.73%,對(duì)霧滴體積中徑增大效果明顯。尿素溶液整體呈現(xiàn)增大霧滴體積中徑趨勢(shì),隨溶液濃度降低,與水相比,霧滴體積中徑增大比例不斷減小,差值5%左右。配比1:2 000時(shí)霧滴體積中徑相比于自來(lái)水增加5.90%。說(shuō)明尿素對(duì)霧滴體積中徑增大效果受濃度因素影響顯著。

        表2 IDK120-025型噴頭0.2 MPa壓力條件VMD平均值

        同一配比濃度下,3種助劑溶液與水之間均存在顯著性差異??傮w而言,除1:3 000激健溶液VMD達(dá)453.92m外,3種助劑溶液VMD相差不大,均保持在(400±10)m,與水相比增大1%~6%。

        該試驗(yàn)條件下霧滴體積中徑在390~455m范圍內(nèi),根據(jù)ASABE S572.1標(biāo)準(zhǔn),噴霧品質(zhì)屬于中等偏下的Coarse、Very Coarse等級(jí),在濕潤(rùn)葉片表面滯留能力較弱。霧滴粒徑相對(duì)分布如圖6所示,結(jié)果表明,助劑的加入使霧滴粒徑相對(duì)分布跨度與水相比均有不同程度減小。

        圖6 IDK120-025 0.2 MPa不同助劑霧滴粒徑相對(duì)分布

        此試驗(yàn)條件下自來(lái)水的粒徑相對(duì)分布跨度為1.544。3種助劑溶液霧滴粒徑相對(duì)分布跨度Δ受溶液配比因素影響程度不同。激健溶液1:3 000配比條件下對(duì)霧滴粒徑相對(duì)分布跨度影響最為顯著,為1.320,與水相比減小14.50%,明顯優(yōu)于該條件下其他各組數(shù)據(jù)。與尿素相比,意歐助劑在各濃度比例下對(duì)霧滴粒徑相對(duì)分布影響保持在降低8%左右,改善效果更優(yōu),且受濃度變化影響小。

        3.4 IDK120-025型噴頭0.4 MPa壓力條件試驗(yàn)結(jié)果分析

        分析IDK120-025型噴頭0.2 MPa壓力條件試驗(yàn)結(jié)果可知,該試驗(yàn)條件下并未獲得較好噴霧質(zhì)量。因此調(diào)整試驗(yàn)壓力至0.4 MPa繼續(xù)進(jìn)行試驗(yàn)。

        表3為霧滴體積中徑試驗(yàn)結(jié)果,結(jié)果顯示,與水相比,3種助劑均呈現(xiàn)增大霧滴體積中徑趨勢(shì)。激健助劑在1:2 000稀釋比例下溶液與其余2種配比溶液之間存在顯著性差異。尿素與意歐助劑在1:4 000稀釋比例下溶液與其余2種配比溶液之間對(duì)應(yīng)存在顯著性差異。此結(jié)果說(shuō)明,3種助劑在與水混合后霧化效果相對(duì)穩(wěn)定。不同稀釋比例下,激健溶液與水相比霧滴體積中徑增大17%~20%,尿素溶液增大13%~17%,意歐溶液增大7%~11%。尿素與意歐溶液對(duì)霧滴體積中徑影響均呈現(xiàn)隨溶液濃度降低影響效果減弱趨勢(shì)。

        表3 IDK120-025型噴頭0.4 MPa壓力條件VMD平均值

        同一配比濃度下3種助劑溶液相比,激健溶液VMD最大,其次是尿素溶液。1:3 000配比時(shí)激健溶液相比于水將霧滴體積中徑增大20.43%,意歐溶液僅增大10.44%。尿素與意歐溶液在配比1:2 000時(shí)分別將粒徑增大16.92%、11.10%。

        該試驗(yàn)條件下,添加助劑后霧滴體積中徑均有一定程度增大。霧滴體積中徑值在307~346m范圍內(nèi),根據(jù)ASABE S572.1標(biāo)準(zhǔn),大部分霧滴的噴霧品質(zhì)屬于中等Mediun等級(jí),在濕潤(rùn)葉片表面滯留能力較好。

        由圖7可知助劑的加入使霧滴粒徑相對(duì)分布跨度與水相比均有不同程度減小。3種助劑溶液霧滴粒徑相對(duì)分布跨度Δ受溶液配比因素影響程度不同。意歐溶液隨濃度降低,粒徑相對(duì)分布跨度逐漸增大,激健與意歐溶液未表現(xiàn)出明顯變化趨勢(shì)。

        此試驗(yàn)條件下自來(lái)水的粒徑相對(duì)分布跨度為1.684。1:3 000配比濃度下,激健溶液霧滴粒徑相對(duì)分布跨度為1.654,相比于自來(lái)水減小1.74%,其余2種濃度條件下分別減小0.04%、0.90%;尿素溶液在配比1:2 000條件下粒徑相對(duì)分布跨度為1.567,相比于自來(lái)水減小6.92%,其余2種條件下分別減小4.25%、4.76%;意歐溶液在配比1:2 000條件粒徑相對(duì)分布跨度為1.534,相比于自來(lái)水減小8.86%,其余2種條件下分別減小7.81%、6.04%。相較而言,意歐助劑對(duì)霧滴粒徑分布相對(duì)跨度影響效果最顯著,激健助劑影響效果最弱。

        圖7 IDK120-025 0.4 MPa不同助劑霧滴粒徑相對(duì)分布

        4 結(jié) 論

        本文綜合比較了添加不同類(lèi)型及濃度助劑對(duì)空氣誘導(dǎo)噴頭IDK120-025和多量程平面噴頭LU120-015的霧滴體積中徑及粒徑相對(duì)分布跨度的影響,所得結(jié)論如下:

        1)LU120-015型噴頭,0.2 MPa壓力下。尿素在配比1:3 000條件下,相比于自來(lái)水霧滴體積中徑增大3.26%,霧滴粒徑相對(duì)分布跨度增大6.33%,霧滴粒徑一致性減弱,霧滴飄移不可控性增大。激健、意歐均使霧滴體積中徑減小,量值在4%~6%,粒徑相對(duì)分布跨度增大。相較而言,該條件下尿素改善噴霧質(zhì)量效果更顯著。

        2)IDK120-025型噴頭,0.2 MPa壓力下。激健在配比1:3 000條件下,相比于自來(lái)水霧滴體積中徑增大16.73%,霧滴粒徑相對(duì)分布跨度減小14.50%,說(shuō)明該制劑能夠在增大霧滴體積中徑的同時(shí)有效提高霧滴粒徑一致性,提高霧滴飄移可控性。尿素溶液和意歐溶液在配比1:2 000和1:4 000條件下,相比于自來(lái)水霧滴體積中徑均增大,最大可達(dá)5.94%,霧滴粒徑相對(duì)分布跨度減小約8%,改善噴霧效果較好。

        3)IDK120-025型噴頭,0.4 MPa壓力下。激健在配比1:3 000條件下,相比于自來(lái)水霧滴體積中徑增大20.43%,霧滴粒徑相對(duì)分布跨度減小1.74%。尿素與意歐溶液在配比1:2 000條件下,相比于自來(lái)水霧滴體積中徑分別增大16.92%、11.10%,霧滴粒徑相對(duì)分布跨度分別減小6.92%、8.86%,在增大霧滴體積中徑的同時(shí)有效改善霧滴分布質(zhì)量,增大霧滴飄移可控性。

        添加助劑類(lèi)型及濃度均可對(duì)霧滴粒徑產(chǎn)生較大影響,對(duì)于文中選用的3種助劑,不同濃度下激健助劑的霧滴體積中徑和粒徑分布跨度表現(xiàn)不一,建議添加濃度為1:3 000;意歐助劑可改善霧滴粒徑分布跨度,提高噴霧均勻性;尿素可有效增大霧滴體積中徑,體積中徑隨濃度呈正相關(guān),一定程度上減少小霧滴引起的飄移。不同類(lèi)型及濃度的助劑對(duì)不同噴頭效果不同,因此,在田間作業(yè)時(shí),應(yīng)根據(jù)所用噴頭選擇合適的助劑及配比濃度,降低農(nóng)藥?kù)F滴飄移,提高在靶標(biāo)作物上的沉積。

        [1] 張東彥,蘭玉彬,陳立平,等. 中國(guó)農(nóng)業(yè)航空施藥技術(shù)研究進(jìn)展與展望[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(10):53-59.

        Zhang Dongyan, Lan Yubin, Chen Liping, et al. Current status and future trends of agricultural aerial spraying technology in China[J].Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(10): 53-59. (in Chinese with English abstract)

        [2] 王雙雙. 霧化過(guò)程與棉花冠層結(jié)構(gòu)對(duì)霧滴沉積的影響[D].北京:中國(guó)農(nóng)業(yè)大學(xué),2015.

        Wang Shuangshuang. Studying the Influence of Spray Atomization Process and Cotton Canopy Structure on the Droplet Deposition[D]. Beijing: China Agricultural University, 2015. (in Chinese with English abstract)

        [3] 吳亞壘,祁力鈞,張亞,等. 基于駐波與ZigBee實(shí)時(shí)監(jiān)測(cè)霧滴蒸發(fā)系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(17):128-135.

        Wu Yalei, Qi Lijun, Zhang Ya, et al. Design and test of real-time monitoring of droplet evaporation system based on standing wave and ZigBee[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(17): 128-135. (in Chinese with English abstract)

        [4] 王沛,祁力鈞,李慧,等. 植物葉片表面結(jié)構(gòu)對(duì)霧滴沉積的影響分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(10):75-79.

        Wang Pei, Qi Lijun, Li Hui, et al. Influence of plant leaf surface structures on droplet deposition[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(10): 75-79. (in Chinese with English abstract)

        [5] 蘭玉彬,張海艷,文晟,等. 靜電噴嘴霧化特性與沉積效果試驗(yàn)分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(4):130-139.

        Lan Yubin, Zhang Haiyan, Wen Sheng, et al. Analysis and experiment on atomization characteristics and spray deposition of electrostatic nozzle[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(4): 130-139. (in Chinese with English abstract)

        [6] 張慧春,Dorr Gary,鄭加強(qiáng),等. 扇形噴頭霧滴粒徑分布風(fēng)洞試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(6):53-57.

        Zhang Huichun, Dorr Gary, Zheng Jiaqiang, et al. Wind Tunnel experiment of influence on droplet size distribution of flat fan nozzles[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(6): 53-57. (in Chinese with English abstract)

        [7] 張京,宋堅(jiān)利,何雄奎,等. 扇形霧噴頭霧化過(guò)程中霧滴運(yùn)動(dòng)特性[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(4):66-69.

        Zhang Jing, Song Jianli, He Xiongkui, et al. Droplets movement characteristics in atomization process of flat fan nozzle[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(4): 66-69. (in Chinese with English abstract)

        [8] 姚偉祥,蘭玉彬,王娟,等. AS350B3e直升機(jī)航空噴施霧滴飄移分布特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(22):75-83.

        Yao Weixiang, Lan Yubin, Wang Juan, et al. Droplet drift characteristics of aerial spraying of AS350B3e helicopter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(22): 75-83. (in Chinese with English abstract)

        [9] 張慧春,鄭加強(qiáng),周宏平,等. 農(nóng)藥噴施過(guò)程中霧滴沉積分布與脫靶飄移研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(8):114-122.

        Zhang Huichun, Zheng Jiaqiang, Zhou Hongping, et al. Droplet deposition distribution and off-target drift during pesticide spraying operation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(8): 114-122. (in Chinese with English abstract)

        [10] 文晟,蘭玉彬,張建桃,等. 農(nóng)用無(wú)人機(jī)超低容量旋流噴嘴的霧化特性分析與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(20):85-93.

        Wen Sheng, Lan Yubin, Zhang Jiantao, et al. Analysis and experiment on atomization characteristics of ultra-low-volume swirl nozzle for agricultural unmanned aviation vehicle[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(20): 85-93. (in Chinese with English abstract)

        [11] 宋堅(jiān)利,劉亞佳,張京,等. 扇形霧噴頭霧滴飄失機(jī)理[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(6):63-69. Song Jianli, Liu Yajia, Zhang Jing, et al. Drift mechanism of flat fan nozzle[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(6): 63-69. (in Chinese with English abstract)

        [12] 張文君. 農(nóng)藥?kù)F滴霧化與在玉米植株上的沉積特性研究[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2014.

        Zhang Wenjun. The Study of Pesticide Droplets Atomization and Deposit Characteristics in Corn Leaves[D]. Beijing: China Agricultural University, 2014. (in Chinese with English abstract)

        [13] 袁會(huì)珠,王忠群,孫瑞紅,等. 噴灑部件及噴霧助劑對(duì)擔(dān)架式噴霧機(jī)在桃園噴霧中的霧滴沉積分布的影響[J]. 植物保護(hù),2010,36(1):106-109.

        Yuan Huizhu, Wang Zhongqun, Sun Ruihong, et al. Influences of nozzle type and spray adjuvant on the distribution of spray droplets with stretcher mounted sprayer in peach orchards[J]. Plant Protection, 2010, 36(1): 106-109. (in Chinese with English abstract)

        [14] 肖麗萍,劉木華,Zhu Heping,等. 噴嘴噴施不同生物農(nóng)藥?kù)F滴特性研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(2):100-106.

        Xiao Liping, Liu Muhua, Zhu Heping, et al. Spray droplet size characteristics of different biological pesticides with different hydraulic nozzles[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(2): 100-106. (in Chinese with English abstract)

        [15] 張文君,何雄奎,宋堅(jiān)利,等. 助劑S240對(duì)水分散性粒劑及乳油藥液霧化的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(11):61-67.

        Zhang Wenjun, He Xiongkui, Song Jianli, et al. Effect of adjuvant S240 on atomization of water dispersible granule and emulsion solution[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(11): 61-67. (in Chinese with English abstract)

        [16] 石伶俐,陳福良,鄭斐能,等. 噴霧助劑對(duì)三唑磷在水稻葉片上沉積量的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),2009,42(12):4228-4233.

        Shi Lingli, Chen Fuliang, Zheng Feineng, et al. The influence of triazophos deposition on rice leaves by adding spray adjuvants[J]. Scientia Agricultura Sinica, 2009, 42(12): 4228-4233. (in Chinese with English abstract)

        [17] 王瀟楠. 農(nóng)藥?kù)F滴飄移及減飄方法研究[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2017.

        Wang Xiaonan. Study on Spray Drift and Anti-drift Method[D]. Beijing: China Agricultural University, 2017. (in Chinese with English abstract)

        [18] 王瀟楠,何雄奎,宋堅(jiān)利,等. 助劑類(lèi)型及濃度對(duì)不同噴頭霧滴飄移的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(22):49-55.

        Wang Xiaonan, He Xiongkui, Song Jianli, et al. Effect of adjuvant types and concentration on spray drift potential of different nozzles[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(22): 49-55. (in Chinese with English abstract)

        [19] 何玲,王國(guó)賓,胡韜,等. 噴霧助劑及施液量對(duì)植保無(wú)人機(jī)噴霧霧滴在水稻冠層沉積分布的影響[J]. 植物保護(hù)學(xué)報(bào),2017,44(6):1046-1052.

        He Ling, Wang Guobin, Hu Tao, et al. Influences of spray adjuvants and spray volume on the droplet deposition distribution with unmanned aerial vehicle (UAV) spraying on rice[J]. Journal of Plant Protection, 2017, 44(6): 1046-1052. (in Chinese with English abstract)

        [20] 朱金文,李潔,吳志毅,等. 有機(jī)硅噴霧助劑對(duì)草甘膦在空心蓮子草上的沉積和生物活性的影響[J]. 農(nóng)藥學(xué)學(xué)報(bào),2011,13(2):192-196.

        Zhu Jinwen, Li Jie, Wu Zhiyi, et al. Influence of organosilicone adjuvant on deposition and phytotoxicity of glyphosate against Alternanthera philoxeroides[J]. Chinese Journal of Pesticide Science, 2011, 13(2): 192-196. (in Chinese with English abstract)

        [21] 張春華,張宗儉,劉寧,等. 農(nóng)藥噴霧助劑的作用及植物油類(lèi)噴霧助劑的研究進(jìn)展[J]. 農(nóng)藥科學(xué)與管理,2012,33(11):16-18.

        Zhang Chunhua, Zhang Zongjian, Liu Ning, et al. The role of pesticide spray additives and research development of vegetable oil spray additives[J]. Pesticide Science and Administration, 2012, 33(11): 16-18. (in Chinese with English abstract)

        [22] 袁會(huì)珠, 王國(guó)賓. 霧滴大小和覆蓋密度與農(nóng)藥防治效果的關(guān)系[J]. 植物保護(hù),2015(6):9-16. Yuan Huizhu, Wang Guobin. Effects of droplet size and deposition density on field efficacy of pesticides[J]. Plant Protection, 2015(6): 9-16. (in Chinese with English abstract)

        [23] 吳亞壘,祁力鈞,張亞,等. 基于駐波與ZigBee實(shí)時(shí)監(jiān)測(cè)霧滴蒸發(fā)系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(17):128-135.

        Wu Yalei, Qi Lijun, Zhang Ya, et al. Design and test of real-time monitoring of droplet evaporation system based on standing wave and ZigBee[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(17): 128-135. (in Chinese with English abstract)

        [24] 謝晨,何雄奎,宋堅(jiān)利,等. 兩類(lèi)扇形霧噴頭霧化過(guò)程比較研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(5):25-30.

        Xie Chen, He Xiongkui, Song Jianli, et al. Comparative research of two kinds of flat fan nozzle atomization process[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(5): 25-30. (in Chinese with English abstract)

        [25] 唐青,陳立平,張瑞瑞,等. 高速氣流條件下標(biāo)準(zhǔn)扇形噴頭和空氣誘導(dǎo)噴頭霧化特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(22):121-128.

        Tang Qing, Chen Liping, Zhang Ruirui, et al. Atomization characteristics of normal flat fan nozzle and air induction nozzle under high speed airflow conditions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(22): 121-128. (in Chinese with English abstract)

        [26] 趙輝,宋堅(jiān)利,曾愛(ài)軍,等. 噴霧液動(dòng)態(tài)表面張力與霧滴粒徑關(guān)系[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2009,40(8):74-79.

        Zhao Hui, Song Jianli, Zeng Aijun, et al. Correlations between dynamic surface tension and droplet diameter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(8): 74-79. (in Chinese with English abstract)

        [27] 楊希娃,周繼中,何雄奎,等. 噴頭類(lèi)型對(duì)藥液沉積和麥蚜防效的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(7):46-50.

        Yang Xiwa, Zhou Jizhong, He Xiongkui, et al. Influences of nozzle types on pesticide deposition and insecticidal effect to wheat aphids[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(7): 46-50. (in Chinese with English abstract)

        [28] Brodkey R S, Talbot L. The phenomena of fluid motions[J]. Physics Today, 1969, 22(9): 85-85.

        [29] 張偉,鄭仕軍,萬(wàn)宣伍,等. 表面活性劑激健對(duì)殺蟲(chóng)(螨)劑的增效作用研究[J]. 中國(guó)果樹(shù),2016(1):39-41.

        Zhang Wei, Zheng Shijun, Wan Xuanwu, et al. Synergistic effect of surfactant stimulation on insecticides[J]. China Fruits, 2016(1): 39-41. (in Chinese with English abstract)

        [30] ANSI/ASAE S572.1 W/.Spray Nozzle Classification by Droplet Spectra: Corr. 1 MAR2009[S]. Joseph: American Society of Agricultural and Biological Engineers Copyright Office, 2013.

        [31] 曹建明.液體噴霧學(xué)[M]. 北京:北京大學(xué)出版社,2013:204-205.

        Effect of spray adjuvant types and concentration on nozzle atomization

        Zhang Ruirui1,2,3, Zhang Zhen2,3,4, Xu Gang1,2,3, Chen Liping1,2,3※, Andrew J Hewitt5

        (1.100097,;2.100097,; 3.100097,;4.271018,; 5.4072,)

        In order to achieve the purpose of reducing pesticide application while increasing efficacy, adjuvant has become an essential part of pesticide application process. The application amount of adjuvant directly affects the pesticide utilization. In order to study the effects of adjuvant on volume median diameter (VMD) of spray droplet and relative span of droplet size, a laser diffraction system was used to investigate the spray droplet characteristics of different adjuvants with different hydraulic nozzles. Three different adjuvants were tested with 2 typesofnozzles, IDK120-025 and LU120-015, under laboratory conditions. The 3 adjuvants used in the experiment were Italy, Jijian and Urea. Italy and Jijian are standard adjuvants. Urea is a kind of chemical nitrogen fertilizer, and when it is dissolved in water the liquid becomes cloudy. Generally it is applied to aerial spraying solution to increase droplet settlement. As Urea does not belong to the standard adjuvants, its effect on the atomization of the liquid is not yet clear, and solving this problem is also one of the experimental purposes of this experiment. Italy and Urea are powdery and Jijian is liquid form. IDK nozzle and LU nozzle are widely used in the spraying, and the nozzle size and spray angle are the same, but the spay chamber atomization structure is different. The internal structure design of the IDK nozzle utilizes the Venturi principle to mix the spray liquid with the air inside the nozzle to make the ejected droplets become small bubbles. Studies have shown that changes in the physical and chemical properties of the spray liquid system play a decisive role in the correlation between the liquid film length and droplet size. Because the difference in physical and chemical properties of tap water and distilled water may affect the particle size of droplets, the experiment also uses tap water and distilled water as the experimental control groups. The results show that the 3 adjuvants have a more significant effect on IDK120-025. However, the spray mist droplet uniformity of LU120-015 nozzle is better than IDK120-025 nozzle. When the concentration ratio of Jijian solution is 1:3000, the VMD of droplets sprayed by IDK nozzle can be increased by 20.43% compared to water at a pressure of 0.4 MPa, and the relative span of droplet size can be reduced by 1.74%. When the concentration ratio of Italy solution is 1:2000, the VMD of droplets sprayed by IDK nozzle can be increased by 11.10% compared to water at a pressure of 0.4 MPa, and the relative span of droplet size can be reduced by 8.86%. When the concentration ratio of Italy solution is 1:3000, the VMD of droplets sprayed by LU nozzle can be reduced by 5.99% compared to water at a pressure of 0.2 MPa, and the relative span of droplets size can be increased by 1.56%. When the concentration ratio of Urea solution is 1:2 000, the VMD of droplets sprayed by IDK nozzle can be increased by 16.92% compared to water at a pressure of 0.4 MPa, and the relative span of droplet size can be reduced by 6.92%. According to the ASABE S572.1 standard to evaluate the result of the experiment, the spray quality of IDK nozzle is focused on medium and coarse grades, the VMD of droplets is large and the difficulty of retention on wet leave surface is moderate, and the drift potential is at medium level. The spray quality of LU nozzle is focused on fine grade, the VMD of droplets is small and the retention ability on wet leave surface is good, but the drift potential is high. This experiment can provide foundation for the selection of adjuvants and nozzles in field pesticide application, and provide the data basis for further research on new nozzles and adjuvants.

        spraying; pesticides; nozzles; adjuvant; atomization; spray droplet size

        10.11975/j.issn.1002-6819.2018.20.005

        TQ450.4+5

        A

        1002-6819(2018)-20-0036-08

        2018-04-15

        2018-07-30

        國(guó)家自然科學(xué)基金項(xiàng)目(31601228);北京市科技新星計(jì)劃項(xiàng)目(Z181100006218029);北京市農(nóng)林科學(xué)院2018創(chuàng)新能力建設(shè)專項(xiàng)(KJCX20180424)

        張瑞瑞,博士,副研究員,主要從事農(nóng)業(yè)航空精準(zhǔn)施藥技術(shù)研究。Email:zhangrr@nercita.org.cn

        陳立平,研究員,主要從事農(nóng)業(yè)智能裝備技術(shù)及應(yīng)用研究。Email:chenlp@nercita.org.cn。中國(guó)農(nóng)業(yè)工程學(xué)會(huì)會(huì)員:陳立平(E041200669S)

        張瑞瑞,張 真,徐 剛,陳立平,Andrew J Hewitt. 噴霧助劑類(lèi)型及濃度對(duì)噴頭霧化效果影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(20):36-43. doi:10.11975/j.issn.1002-6819.2018.20.005 http://www.tcsae.org

        Zhang Ruirui, Zhang Zhen, Xu Gang, Chen Liping, Andrew J Hewitt. Effect of spray adjuvant types and concentration on nozzle atomization[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(20): 36-43. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.20.005 http://www.tcsae.org

        AV成人午夜无码一区二区| 午夜免费啪视频| 亚洲男人第一无码av网站| 夜夜爽无码一区二区三区 | 久久精品丝袜高跟鞋| 好屌草这里只有精品| 日韩欧美在线播放视频| 中文字幕日本五十路熟女| 无码人妻丰满熟妇区免费| 风间由美性色一区二区三区| 99在线视频精品费观看视| av大片网站在线观看| 亚洲乱码国产乱码精华| 把插八插露脸对白内射| 久久99久久99精品免观看女同| 久久精品国产亚洲av网站| 亚洲欧美国产精品久久| 欧美色aⅴ欧美综合色| 亚洲美女av一区二区| 中文字幕隔壁人妻欲求不满| 亚洲精品无amm毛片| 久久久久欧洲AV成人无码国产| 亚洲国产一区二区精品| 久久久久亚洲精品无码系列| 精品国内自产拍在线观看| 久久久国产不卡一区二区| 日本人妻97中文字幕| 日本真人做人试看60分钟| 国产精品jizz观看| 亚洲素人av在线观看| 精品卡一卡二乱码新区| 丁香五香天堂网| 国产成人综合久久精品推荐免费| 麻豆国产av在线观看| 国模无码一区二区三区不卡| 国产成人一区二区三中文| 国产一区二区三区不卡在线播放 | 内地老熟女老少配视频| 亚洲视频1区| 日韩精品自拍一区二区| 久久国产成人精品国产成人亚洲|