亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        多線性分數(shù)次積分算子在廣義Morrey空間上的精確估計

        2018-10-08 05:50:36喜,
        關(guān)鍵詞:積分算子范數(shù)測度

        胡 喜, 周 疆

        (新疆大學 數(shù)學與系統(tǒng)科學學院, 新疆 烏魯木齊 830046)

        1 引言及預備知識

        其中

        其中

        1938年,Morrey[1]在研究二階橢圓型偏微分方程解的局部性質(zhì)時引入了Morrey空間.對Morrey空間的研究在經(jīng)典調(diào)和分析和偏微分方程中扮演著重要角色(見文獻[2-4]等).隨后,許多學者探討了Morrey型空間,并得到一些重要的結(jié)果,例如,Adams[5]研究分數(shù)次積分算子在Morrey空間上的性質(zhì),得到了Hardy-Littlewood-Sobolev定理.文獻[6-7]分別研究了極大算子、分數(shù)次極大算子、分數(shù)次積分算子及其交換子在Morrey型空間上的有界性.

        多線性算子理論也受到許多學者的關(guān)注.最初由Coifman等[8]在20世紀70年代研究多線性Caldern-Zygmund理論.2002年,Grafakos等[9]系統(tǒng)地研究了多線性Caldern-Zygmund理論.最近,有學者對多線性分數(shù)次積分算子理論進行了研究[10-12].

        定義1.2[5]Adams型多線性分數(shù)次積分算子Iα,m定義為

        Iα,m(f1,…,fm)(x)=

        其中,x∈Rn,0<α

        則存在常數(shù)C>0,使得

        Lida等[14]給出如下精確估計:設(shè)0<α

        其中,Q是包含于Rn的方體,Q表示Rn中所有方體構(gòu)成的集族.稱上式右邊為多Morrey范數(shù),并給出具體例子說明多Morrey范數(shù)嚴格小于Morrey范數(shù)的乘積.

        基于文獻[13-14]的已有結(jié)果,進一步探討多線性分數(shù)次積分算子在廣義Morrey空間上的精確估計,得到了本文的主要結(jié)果.文獻[14]運用二進方體的思想,處理起來相當繁瑣,而文獻[13]的證明方法對于本文定理已經(jīng)失效,我們將運用新的方法予以證明.

        定義1.3[15]設(shè)Ψ=Ψ(r)是(0,∞)上的正的增長函數(shù).對任意的r>0,滿足倍測度條件:Ψ(2r)≤DΨ(r),其中D≥1是與r無關(guān)的常數(shù).對于1≤q<∞,廣義Morrey空間Lq,Ψ(Rn)定義為

        其中

        對于1≤q<∞,弱廣義Morrey空間WLq,Ψ(Rn)定義為

        其中

        其中

        弱廣義Morrey空間WLq,Φ(Rn)定義為

        其中

        值得注意的是:Φ與Ψ有相同的性質(zhì),即Φ=Φ(r)是(0,∞)上的正的增長函數(shù).對任意的r>0,滿足倍測度條件:Φ(2r)≤DΦ(r),其中D≥1是與r無關(guān)的常數(shù).

        (1)

        其中f1,f2,…,fm是定義在Rn上的可測函數(shù).

        其中

        注1以上廣義多范數(shù)Morrey空間的定義是文獻[14]中定義4.1多Morrey范數(shù)意義下的推廣.

        進一步對Rn2Q分環(huán),即

        最后分別對以上4部分估計.然而在直接把Rn×Rn分為Ω0和Ω∞,從而有

        f1f2=(f1f2)χΩ0+(f1f2)χΩ∞,

        Ω0:={(y1,y2)∈Rn×Rn:|x0-y1|+

        |x0-y1|<4r},

        Ω∞:={(y1,y2)∈Rn×Rn:|x0-y1|+

        |x0-y1|≥4r},

        Ωk:={(y1,y2)∈Rn×Rn:2kr≤|x0-y1|+

        |x0-y1|<2k+1r}.

        在證明本文定理之前,給出一些必要的記號和說明:aB(a>0)表示與B同中心,邊長伸縮a倍的球體;C表示與主要指標無關(guān)的常數(shù),每次出現(xiàn)時其值可能并不相同;對于Rn中的可測子集E,用χE表示E的特征函數(shù).不失一般性,僅對多線性分數(shù)次積分算子Iα,m在m=2的情形下進行證明.

        2 主要定理及其證明

        當q1=q2=1時,有如下的弱性精確估計.

        定理2.1的證明利用Minkowski不等式

        首先估計I.利用多線性分數(shù)次積分算子的有界性

        再由Φ的倍測度條件,可得

        下面估計II.此時,|x0-y1|+|x0-y2|≥4r.因為x∈B(x0,r),即有2|x-x0|<2r.又由三角不等式,則有:

        |x0-y2|),

        再由Φ的倍測度性,可得

        綜合I和II估計,可知

        對上式左邊關(guān)于x0∈Rn,r>0取上確界即可證得結(jié)論.

        定理2.2的證明

        首先估計I.利用多線性分數(shù)次積分算子的弱有界性

        再由Φ的倍測度性,可得

        下面估計II.利用切比雪夫不等式

        再由Φ的倍測度性,可得

        綜合I和II估計,可知

        對上式左邊x0∈Rn,r>0取上確界即可證得結(jié)論.

        猜你喜歡
        積分算子范數(shù)測度
        三個數(shù)字集生成的自相似測度的乘積譜
        R1上莫朗測度關(guān)于幾何平均誤差的最優(yōu)Vornoi分劃
        齊次核誘導的p進制積分算子及其應(yīng)用
        非等熵Chaplygin氣體測度值解存在性
        Cookie-Cutter集上的Gibbs測度
        一類振蕩積分算子在Wiener共合空間上的有界性
        基于加權(quán)核范數(shù)與范數(shù)的魯棒主成分分析
        矩陣酉不變范數(shù)H?lder不等式及其應(yīng)用
        平均振蕩和相關(guān)于具有非光滑核的奇異積分算子的Toeplitz型算子的有界性
        一類具有準齊次核的Hilbert型奇異重積分算子的范數(shù)及應(yīng)用
        亚洲另类自拍丝袜第五页| 国产欧美va欧美va香蕉在线| 乱码丰满人妻一二三区| 少妇白浆高潮无码免费区| 亚洲中文字幕无码不卡电影| 射死你天天日| 手机看片福利日韩国产| 国产av精品久久一区二区| 国产自拍视频免费在线| 国产片精品av在线观看夜色| 播放灌醉水嫩大学生国内精品| 美女裸体无遮挡免费视频的网站| 日韩精品一区二区三区四区视频| 一区二区三区日本伦理| 亚洲va久久久噜噜噜久久天堂 | 熟妇的荡欲色综合亚洲| japanesehd中国产在线看| 四虎影视久久久免费| 国产一区二区三区av免费观看| 九九久久精品一区二区三区av| 亚洲高清一区二区三区在线播放| 国产无吗一区二区三区在线欢| 国产精品亚韩精品无码a在线| 女的把腿张开男的猛戳出浆 | 国产专区国产精品国产三级| 国产精品永久免费| 亚洲香蕉视频| 一二区视频免费在线观看| 福利利视频在线观看免费| 亚洲精品无码高潮喷水a片软| 秋霞午夜无码鲁丝片午夜精品 | 99成人无码精品视频| 色婷婷一区二区三区久久亚洲 | 亚州中文热码在线视频| 精品香蕉一区二区三区| av天堂久久天堂av色综合| 国产精品女同久久免费观看| 日韩午夜免费视频精品一区| 中文字幕aⅴ人妻一区二区| 国产美女在线精品亚洲二区| 国产精品一区二区av白丝在线|