佘彥超,王啟遠,徐小鳳,鄭維仙
?
半導體三量子點分子中穩(wěn)態(tài)線性光學特性
佘彥超,王啟遠,徐小鳳,鄭維仙
(銅仁學院 大數據學院,貴州 銅仁 554300 )
解析地研究了由三個半導體量子點通過兩個隧穿耦合形成的半導體量子點分子材料的線性光學吸收特性。結果表明,隨著點間隧穿強度的變化,探測光吸收曲線將出現吸收峰,單透明窗口以及雙透明窗口之間的變換。色散曲線中正常色散和反常色散的開關效應也能實現。同時,隨著隧穿耦合強度的增大,探測光群速度將顯著變慢。
半導體量子點; 隧穿誘導透明
半導體量子點(SQD)具有類似超冷原子的分立能級結構、較大的電偶極矩、較長的退相干時間, 同時其相干演化可控、易于集成等優(yōu)勢,在光量子信息通信中具有廣泛的應用潛力,因而引起了研究者的極大關注。不同于傳統(tǒng)光學介質,在SQD系統(tǒng)中,只需要弱光激發(fā)能得到如光學孤子,交叉相位調制,光學雙穩(wěn)等顯著的非線性光學效應[1-6]。Hao等[7]在環(huán)形四能級的量子點中,通過相位調制抑制線性吸收及雙光子吸收的同時實現大的交叉相位調制非線性效應。Yang等[8]研究四能級雙激子-激子級聯型量子點中基于色散效應與非線性效應相平衡從而形成超慢光孤子對。這些研究大都只是單量子點體系,很少涉及其中的點間耦合。而將來應用中,更可能的是多量子點構成的量子點分子或者量子點陣列,其中點間耦合效應將變得不可忽略?;诖耍覀冊诒疚闹袠嫿ㄓ扇齻€量子點分子通過兩隧穿效應耦合形成三量子點分子,探究其中線性光學吸收特性。
圖1 三量子點分子的能級結構
Fig. 1 the energy-level arrangement ofthree quantum dot molecule
系統(tǒng)地分析研究了半導體三量子點分子系統(tǒng)的線性光學吸收特性的有效調控,它是通過調控點間隧穿耦合強度而得以實現。當打開單量子隧穿通道時,在適當條件下,由于點間隧穿耦合驅動量子相消干涉效應,系統(tǒng)會出現一個單隧穿誘導透明窗口。透明窗口的寬度可通過改變點間單隧穿耦合強度來調控。特別地,點間隧穿雙通道同時打開時,由于點間隧穿耦合強度的誘導而產生量子相消干涉效應,使得探測場的吸收曲線中出現雙隧穿誘導透明窗口。此外,從反常色散區(qū)域到正常色散區(qū)域的雙開關可通過改變隧穿強度。本文的結論可為與量子相干及干涉效應相關的光學效應提供一種新穎和有效的措施,這對于指導光電調制器件的實驗的實現可能有重要作用,同時對于推動固態(tài)量子信息及計算方面也有更為實際的應用。
圖2 探測光線性吸收系數Im( K )和相移Re( K )在不同的隧穿耦合強度下隨探測光失諧量的變化關系
[1] BAYER M, HAWRYLAK P, HINZER K, et al. Coupling and entangling of quantum states in quantum dot molecules[J]. Science, 2001, 291(5503): 451-453.
[2] OHTSU M, KOBAYASHI K, KAWAZOE T, et al. Principles of Nanophotonics[M]. Taylor and Francis, 2008.
[3] TATE N, NARUSE M, NOMURA K W, et al. Demonstration of modulatable optical near-field interactions between dispersed resonant quantum dots[J]. Opt. Express., 2011, 19(19): 18260-18271.
[4] YANG W, LEE R. Controllable entanglement and polarization phase gate in coupled double quantum-wellstructures[J]. Opt. Express., 2008, 16(22): 17161-17170.
[5] KOBAYASHI K, SANGU S, KAWAZOE T, et al. Exciton dynamics and logic operations in a near-fieldoptically coupled quantum-dot system[J]. J. Lumin., 2005, 112(1): 117-121.
[6] OHTSU M, KAWAZOE T, YATSUI T, et al. Nanophotonics: application of dressed photons to novel photonic devices and systems[J]. IEEE J. Sel. Top. Quantum Electron., 2008, 14(6): 1404-1417.
[7] HANG C, HUANG G X. Faraday rotation in a resonant five-level system via electromagnetically induced transparency[J]. Chinese Optics Letters, 2007, 5(1):47.
[8] ZHU C J, DENG L, HGALEY E W. Linear and nonlinear Faraday rotations of light polarization in a four-level active-Raman-gain medium[J]. Physical Review A,2013, 88(2): 023854.
[9] SONGMUANG R, KIRABITTAYA S, SCHMIDT O G. Formation of lateral quantum dot molecules around self-assembled nanoholes[J]. Appl. Phys. Lett., 2003, 82(17): 2892-2894.
[10] KRAUSE B, METZGER T H, RASTELLI A, et al. Shape, strain, and ordering of lateral InAs quantum dot molecules[J]. Phys. Rev. B., 2005, 72(8): 085339(1-12).
Steady-state Linear Optical Properties of Three Quantum Dotmolecule
SHE Yanchao, WANG Qiyuan, XU Xiaofeng, ZHENG Weixian
( Big Date Institute, Tongren University, Tongren 554300, Guizhou, China )
The linear optical properties in a GaAs/AlGaAssemiconductor quantum dot molecule are analytically studied with the tuning effect. It is shown that the change among a single tuning induced transparency (TIT) window, a double TIT window and amplify of the probe field in the absorption curves can be controlled by varying strength of tuning effect T.Meanwhile, double switching from the anomalous dispersion regime to the normal dispersion regime can likely be achieved by increasing the strength of tuning effect. Furthermore, we demonstrate that the group velocity of probe field can be practical regulated.
semiconductor quantum dotmolecule, tuning induced transparency
R392
A
1673-9639 (2018) 09-0033-03
2018-07-29
國家自然科學基金項目(11747168);貴州省教育廳科研項目(KY[2015]384);貴州省科技廳聯合基金項目 (LH[2015]7228)。
佘彥超(1983-),男,湖南邵東人,博士,副教授,研究方向:半導體量子材料光學特性研究。
(責任編輯 謝 勇)(責任校對 楊凱旭)