徐 波,李百俠,趙 娜,閆清偉
阿爾茨海默癥(Alzheimer’s disease,AD)是一種與年齡有關(guān)的神經(jīng)退行性疾病,該病多發(fā)于中老年時期,其病理改變主要表現(xiàn)為細(xì)胞外β-淀粉樣蛋白(β-amyloid,Aβ)沉積形成的老年斑、過度磷酸化tau蛋白積聚形成的神經(jīng)纖維纏結(jié)及神經(jīng)元進(jìn)行性減少,其臨床表現(xiàn)為學(xué)習(xí)記憶和認(rèn)知能力下降[6]。早期研究認(rèn)為,AD腦神經(jīng)元突觸受損的“肇事者”是細(xì)胞外的Aβ沉積,近期研究發(fā)現(xiàn)[9],Aβ不僅聚積在細(xì)胞外,而且也可進(jìn)入線粒體,造成線粒體功能障礙。
腦內(nèi)神經(jīng)元作為高耗能細(xì)胞,需要大量的ATP維持細(xì)胞膜內(nèi)外離子濃度及神經(jīng)遞質(zhì)的釋放,一旦線粒體功能發(fā)生障礙便可累及神經(jīng)元。研究發(fā)現(xiàn),線粒體內(nèi)Aβ沉積直接介導(dǎo)腦神經(jīng)元線粒體的損傷,引發(fā)線粒體氧化應(yīng)激增加[54],減弱線粒體生物發(fā)生[14],誘發(fā)線粒體介導(dǎo)的細(xì)胞過度凋亡[48],導(dǎo)致線粒體分裂融合失衡[57],降低線粒體自噬活性[59]等一系列線粒體功能障礙,加重AD的病理性進(jìn)程。
近年來,研究表明,運(yùn)動鍛煉可減少AD腦內(nèi)Aβ沉積[1,26,40]和過度磷酸化tau蛋白的積聚[27,43],促進(jìn)大腦的神經(jīng)元發(fā)生[15,34],提高認(rèn)知功能[12,16],以腦線粒體為靶點,研究發(fā)現(xiàn)運(yùn)動可改善AD腦線粒體功能障礙,起到預(yù)防和緩解AD的作用。
Aβ可通過線粒體外膜轉(zhuǎn)運(yùn)蛋白40((Translocase of the Outer mitochondrial Membrane 40,TOM40)、線粒體內(nèi)膜轉(zhuǎn)運(yùn)蛋白23( translocase of the inner mitochondrial membrane 23,TIM23)直接轉(zhuǎn)運(yùn)至線粒體基質(zhì),與Aβ乙醇脫氫酶(amyloid β-binding alcohol dehydrogenase,ABAD)結(jié)合,削弱Complex IV中的氧氣傳遞,減少細(xì)胞色素C的釋放,增加ROS產(chǎn)生,致使線粒體內(nèi)的脂質(zhì)過氧化產(chǎn)物丙二醛(Malonaldehyde,MDA)、4-羥基壬烯酸(4-hydroxynonenal,4-HNE)、8-羥基-2’-脫氧鳥苷(8-hydroxy-2’-deoxyguanosine,8-OHdG)及氧化型谷胱甘肽(oxidized glutathione,GSSG)等氧化產(chǎn)物水平增高[4,9]。
在正常生理條件下,當(dāng)線粒體產(chǎn)生ROS時,線粒體內(nèi)的抗氧化酶體系會發(fā)揮作用,以預(yù)防ROS過度增加致使脂質(zhì)、蛋白質(zhì)及DNA受損。然而,研究發(fā)現(xiàn)[47,50],伴隨著Aβ的沉積增加,AD小鼠腦內(nèi)MDA、4-HNE等氧化產(chǎn)物增加,超氧化物歧化酶(superoxide dismutase,SOD)、過氧化氫酶(catalase,CAT)等抗氧化酶的活性降低。研究還發(fā)現(xiàn)[39],缺乏依賴錳超氧化物歧化酶(manganese-dependent superoxide dismutase,Mn-SOD)等抗氧化酶也可反向加重Aβ沉積和tau蛋白的磷酸化水平,從而形成“惡性循環(huán)”,加重AD的病理變化。綜上所述,Aβ沉積可誘發(fā)線粒體ROS產(chǎn)生增多,致使腦神經(jīng)元內(nèi)脂質(zhì)、蛋白質(zhì)、DNA的氧化產(chǎn)物增多,抗氧化酶活性下降,導(dǎo)致AD腦內(nèi)氧化應(yīng)激水平升高。
當(dāng)細(xì)胞能量需求超過線粒體的ATP產(chǎn)生時,便會誘發(fā)線粒體生物發(fā)生。一旦線粒體生物發(fā)生被啟動,線粒體調(diào)節(jié)因子便會進(jìn)入線粒體內(nèi)啟動線粒體DNA(mitochondrial DNA,mtDNA)復(fù)制和轉(zhuǎn)錄,引發(fā)線粒體網(wǎng)絡(luò)擴(kuò)張,以滿足機(jī)體的能量代謝需求。mtDNA是獨(dú)立于細(xì)胞核外的唯一遺傳物質(zhì),能進(jìn)行獨(dú)立的復(fù)制、轉(zhuǎn)錄及蛋白質(zhì)的合成,對維持線粒體生物發(fā)生發(fā)揮了重要作用。Podlesniy等[45]采用定量聚合酶鏈反應(yīng)技術(shù)對AD患者的大腦額顳葉進(jìn)行檢測發(fā)現(xiàn),mtDNA突變數(shù)量增多,對患者的腦脊液進(jìn)行檢測發(fā)現(xiàn)Aβ 42和磷酸化的tau蛋白增加,這一現(xiàn)象同樣在APP/PS1小鼠腦脊液和皮層中得到了印證,這說明AD腦內(nèi)突變及受損的mtDNA數(shù)量增加與Aβ沉積相關(guān)。在正常生理條件下,當(dāng)mtDNA受損時,線粒體8-羥基鳥嘌呤DNA糖苷酶1(OGG1)便會和其他修復(fù)基因共同維護(hù)DNA的穩(wěn)定性。然而研究發(fā)現(xiàn)[51],AD患者腦內(nèi)mtDNA受損的標(biāo)志物8-OHdG表達(dá)增加,OGG1活性下降,mtDNA突變受損數(shù)量增加,提示AD腦內(nèi)Aβ沉積、tau蛋白過度磷酸化誘發(fā)線粒體氧化應(yīng)激水平增加和降低mtDNA修復(fù)酶活性,最終導(dǎo)致AD腦內(nèi)mtDNA受損及突變數(shù)量增多。
過氧化體增殖物激活型受體γ輔激活因子1 α(peroxisome proliferator-activated receptor γ coactivator1 α,PGC1 α)是線粒體生物發(fā)生的主要調(diào)控因子,它可激活不同的轉(zhuǎn)錄因子,使線粒體生物發(fā)生順利進(jìn)行[44]。PGC1a主要通過核呼吸因子1和2(nuclear respiratory factor 1 and 2,NRF1、NRF 2)及線粒體轉(zhuǎn)錄調(diào)控因子A(mitochondrial transcription factor A,TFAM)對線粒體蛋白進(jìn)行編碼、翻譯和轉(zhuǎn)錄。研究發(fā)現(xiàn)[52],在轉(zhuǎn)染有APP基因的細(xì)胞中發(fā)現(xiàn)PGC1 α、NRF1、NRF2、TFAM表達(dá)下降,Aβ沉積增多,并發(fā)現(xiàn)PGC1α表達(dá)與Aβ沉積水平呈負(fù)相關(guān),這表明Aβ沉積可導(dǎo)致線粒體生物發(fā)生減弱。在體外培養(yǎng)Tg2576小鼠海馬神經(jīng)元中,提高PGC1α表達(dá)可抑制Aβ的產(chǎn)生[46]。PGC1α可通過沉默信息調(diào)節(jié)因子1(Silent Information Regulator 1,SIRT1)去乙?;{(diào)節(jié)線粒體生物發(fā)生,SIRT1-PGC1a信號通路在線粒體生物發(fā)生中起著重要的作用[18]。APP/PS1轉(zhuǎn)基因AD小鼠在3~5個月時特異性敲除SIRT1,可導(dǎo)致小鼠死亡率增加,SIRT1去乙?;富钚越档?,Aβ生成增多[60]。研究表明[8],SIRT1-PGC1a信號通路主要依賴于AMP依賴性蛋白激酶(Adenosine Monophosphate Activated Protein Kinase,AMPK)的磷酸化發(fā)生作用。AD患者腦內(nèi)AMPK、SIRT1、PGC1α的活性均下降,且線粒體數(shù)量減少[53]。綜上所述,AD腦內(nèi)Aβ、過度磷酸化tau蛋白可誘發(fā)的線粒體DNA受損,降低AMPK、SIRT1、PGC1α等線粒體生物發(fā)生調(diào)控因子的表達(dá),最終導(dǎo)致線粒體生物發(fā)生減弱,加重線粒體功能障礙。
細(xì)胞凋亡通路一般分為外源性凋亡通路和內(nèi)源性凋亡通路。線粒體在細(xì)胞內(nèi)源性凋亡通路中起了重要作用。內(nèi)源性線粒體凋亡通路主要是以線粒體滲透轉(zhuǎn)移通路為中心環(huán)節(jié)的細(xì)胞凋亡通路,主要途徑為:線粒體受損-細(xì)胞色素C釋放-Caspase9-Caspase3。研究發(fā)現(xiàn)[49],當(dāng)Aβ誘發(fā)線粒體損傷后,線粒體將細(xì)胞色素C釋放至細(xì)胞質(zhì)中,細(xì)胞色素C釋放引起凋亡蛋白復(fù)合體的形成和Caspase9的激活,并通過一系列級聯(lián)放大反應(yīng)來活化下游的Caspase家族蛋白,啟動細(xì)胞的凋亡過程。Aβ可通過caspase依賴途徑引起細(xì)胞凋亡,其可直接和間接的與膜蛋白或受體結(jié)合激活caspase3介導(dǎo)的內(nèi)在凋亡途徑引起細(xì)胞凋亡。另外,Caspase家族也可直接參與Aβ、tau蛋白的切割,被caspase3剪切后的Aβ對細(xì)胞可產(chǎn)生毒性作用。細(xì)胞內(nèi)的Bcl-2/Bax是抑制線粒體介導(dǎo)細(xì)胞凋亡的重要途徑[2]。研究發(fā)現(xiàn),AD腦內(nèi)的Aβ沉積可提高Bax的表達(dá),下調(diào)Bcl-2,促使細(xì)胞色素C溢出胞質(zhì),活化Caspase級聯(lián)反應(yīng)引起細(xì)胞過度凋亡,造成神經(jīng)元丟失[42]。
熱休克蛋白70(HSP70)是一種高度保守的蛋白質(zhì),此蛋白主要對蛋白的折疊、合成具有保護(hù)作用,其表達(dá)可降低細(xì)胞色素C的釋放和caspase9的活性,可保護(hù)細(xì)胞抵御毒性和氧化損傷[21]。研究發(fā)現(xiàn)[24],在AD轉(zhuǎn)基因小鼠腦內(nèi)HSP70的表達(dá)下降,細(xì)胞凋亡加重,增加腦內(nèi)HSP70的表達(dá),可以抑制腦線粒體介導(dǎo)細(xì)胞的過度凋亡,改善AD癥狀。綜上所述,AD腦內(nèi)的Aβ沉積可減弱HSP70對線粒體的保護(hù)作用,促使受損線粒體內(nèi)的細(xì)胞色素C釋放增加,繼而通過Caspase9、Caspase3啟動線粒體介導(dǎo)的細(xì)胞凋亡途徑,引發(fā)神經(jīng)元的內(nèi)源性凋亡途徑過度激活,造成神經(jīng)元丟失。
生理狀態(tài)下,線粒體可通過分裂融合及線粒體自噬等自身修復(fù)機(jī)制維持線粒體各項生理功能的正常進(jìn)行,這些機(jī)制被稱為“線粒體質(zhì)量控制”(mitochondrial quality control,MQC)。線粒體質(zhì)量控制是細(xì)胞防御線粒體受損的重要機(jī)制。線粒體是高度動態(tài)變化的細(xì)胞器,線粒體可通過分裂產(chǎn)生兩個不同膜電位的子線粒體,正常膜電位的線粒體可與線粒體網(wǎng)絡(luò)融合,維持線粒體的正常功能;而膜電位較低的線粒體可通過線粒體自噬被清除,以減少受損線粒體在細(xì)胞內(nèi)的聚集,因此,線粒體的分裂融合平衡及線粒體自噬的正常進(jìn)行是維持線粒體數(shù)量和質(zhì)量的重要保證[10]。在AD患者腦神經(jīng)元中存在著大量的片段化線粒體,腦神經(jīng)元的分裂相關(guān)蛋白(Dynamin-related protein 1,Drp1)和分裂蛋白1(Fission1,Fis1)表達(dá)上調(diào),線粒體融合蛋白1/2(mitofusin 1/2,Mfn1/2)和視神經(jīng)萎縮蛋白(Optic atrophy1,OPA1)下降,提示,AD腦神經(jīng)元內(nèi)線粒體的高分裂低融合是造成線粒體片段聚集的主要原因[25]。另外,在AD轉(zhuǎn)基因小鼠的腦中可見Aβ與Drp1免疫共沉淀,兩者之間相互作用也可引起線粒體片段增加[32]。綜上說明,AD腦神經(jīng)元內(nèi)的線粒體分裂融合失衡,造成大量線粒體片段堆積在神經(jīng)元中,影響神經(jīng)元功能。
當(dāng)線粒體出現(xiàn)分裂融合障礙,受損腦區(qū)便會出現(xiàn)大量的線粒體片段。此時,受損的線粒體可被特異性的包裹進(jìn)自噬體內(nèi),并與溶酶體融合,最終被溶酶體內(nèi)的降解酶降解,這便是“線粒體自噬”[17]。線粒體分裂與融合是線粒體自噬的前提,線粒體自噬是保證線粒體數(shù)量和質(zhì)量的關(guān)鍵。絲氨酸/蘇氨酸激酶PTEN誘導(dǎo)激酶1(PTEN-induced putativekinase 1,PINK1)與E3泛素連接酶Parkin是目前公認(rèn)的介導(dǎo)線粒體自噬的主要途徑[22]。在受損線粒體中,PINK1定位于線粒體外膜,從細(xì)胞質(zhì)中募集Parkin至受損線粒體外膜以標(biāo)記受損線粒體,進(jìn)而引發(fā)線粒體自噬。研究表明,AD小鼠腦內(nèi)的Aβ沉積可誘發(fā)線粒體內(nèi)PINK1、parkin表達(dá)增加,導(dǎo)致神經(jīng)元內(nèi)含有線粒體自噬囊泡增多[58]。同樣,在AD患者椎體神經(jīng)元中,含有線粒體的自噬囊泡增加,且受損mtDNA和線粒體自噬降解底物出現(xiàn)聚集[41]。隨后研究還發(fā)現(xiàn),通過使用白藜蘆醇或過表達(dá)線粒體自噬相關(guān)蛋白等手段進(jìn)一步增強(qiáng)線粒體自噬活性后,可減少受損線粒體,改善AD相關(guān)癥狀[29,58]。綜上所述,AD腦內(nèi)線粒體分裂融合失衡、線粒體自噬活性減弱等質(zhì)量控制障礙,導(dǎo)致受損線粒體無法清除而聚集在神經(jīng)元中,加重AD的癥狀。
腦神經(jīng)元的抗氧化系統(tǒng)受損是AD腦神經(jīng)元氧化應(yīng)激水平增高的重要原因。Lu等[35]發(fā)現(xiàn),4周的跑臺運(yùn)動顯著促進(jìn)了鏈脲霉素誘發(fā)的AD模型大鼠腦神經(jīng)元發(fā)生,減少了腦內(nèi)的Aβ沉積和磷酸化的tau蛋白,并且研究發(fā)現(xiàn),運(yùn)動顯著減少了AD大鼠腦內(nèi)的4-HNE、8-OHDG等氧化產(chǎn)物,降低了ROS水平,提示,運(yùn)動可顯著降低AD腦內(nèi)的氧化應(yīng)激水平,改善AD病理癥狀。Leem等[33]采用3月齡的Tg-NSE/htau23小鼠腦內(nèi)出現(xiàn)過度磷酸化tau蛋白的聚集,腦線粒體內(nèi)Cu/Zn SOD(copper/zinc superoxide dismutase)和CAT等抗氧化酶活性下降,但其進(jìn)行3個月的跑臺運(yùn)動后,小鼠腦內(nèi)Cu/Zn SOD和CAT等抗氧化酶活性得到提高,過度磷酸化tau蛋白減少。Gimenez等[23]采用6月齡的3×Tg-AD轉(zhuǎn)基因小鼠進(jìn)行為期5周的跑臺運(yùn)動,發(fā)現(xiàn)運(yùn)動顯著降低了小鼠皮層的脂質(zhì)氧化產(chǎn)物MDA、4-HNE,以及顯著提高了小鼠皮層的Mn-SOD、Cu/Zn SOD的水平。Garcia等[19]采用12月齡的3×Tg-AD雌性轉(zhuǎn)基因小鼠進(jìn)行為期3個月的自主跑輪運(yùn)動,發(fā)現(xiàn)運(yùn)動顯著減少了Aβ沉積和磷酸化tau蛋白,并降低了轉(zhuǎn)基因小鼠海馬內(nèi)的GSSG等氧化因子,提高了Cu/Zn-SOD等抗氧化酶表達(dá)。綜上表明,長期的運(yùn)動可增強(qiáng)腦神經(jīng)元的抗氧化酶活性,減少線粒體ROS的釋放,改善脂質(zhì)、蛋白質(zhì)、DNA的過度氧化,繼而減輕腦線粒體造成的氧化應(yīng)激水平。
線粒體生物發(fā)生是維持線粒體數(shù)量的基礎(chǔ),是滿足神經(jīng)元能量代謝需要的保證。mtDNA受損是造成AD腦線粒體生物發(fā)生障礙的重要原因之一。Clark等[13]采用3月齡的mtDNA突變小鼠進(jìn)行為期6個月的跑臺運(yùn)動發(fā)現(xiàn),運(yùn)動顯著降低了mtDNA小鼠腦內(nèi)的GSSG等氧化因子水平,并顯著增加了突變小鼠腦線粒體的代謝水平。Garcia-Mesa等[20]采用6月齡3×Tg-AD轉(zhuǎn)基因小鼠進(jìn)行為期6周的跑臺運(yùn)動和二甲雙胍聯(lián)合治療,發(fā)現(xiàn)運(yùn)動和二甲雙胍聯(lián)合治療組小鼠腦內(nèi)Aβ和磷酸化tau蛋白減少,SOD和CAT酶活性升高,受損mtDNA減少,學(xué)習(xí)記憶能力得到提高,這提示,運(yùn)動可通過減少mtDNA受損改善AD小鼠的學(xué)習(xí)記憶能力。Bo等[7]采用3月齡的APP/PS1小鼠進(jìn)行為期20周的跑臺運(yùn)動,運(yùn)動組AD小鼠腦內(nèi)Aβ沉積和ROS產(chǎn)生減少,MnSOD酶活性和ATP產(chǎn)生增加,并且發(fā)現(xiàn)OGG1表達(dá)也顯著增加,提示,運(yùn)動可提高OGG1酶的活性修復(fù)mtDNA。
Bayod等[5]等采用6月齡的SAMP8雌性快速衰老小鼠進(jìn)行為期2周的自主跑輪運(yùn)動,發(fā)現(xiàn)自主跑輪運(yùn)動顯著提高了小鼠海馬內(nèi)SIRT1和氧化磷酸化底物表達(dá),提示增加SIRT1表達(dá)促進(jìn)了海馬內(nèi)線粒體生物發(fā)生。Koo等[30]采用12月齡的NSE/APPsw的轉(zhuǎn)基因AD小鼠進(jìn)行8周的跑臺運(yùn)動,發(fā)現(xiàn)AD小鼠運(yùn)動后大腦皮層中SIRT1-PGC1α信號通路激活,Aβ沉積減少,學(xué)習(xí)記憶能力提高。Azimi等[3]發(fā)現(xiàn)4周的跑臺運(yùn)動顯著提高了AD模型大鼠腦內(nèi)AMPK、PGC1α等線粒體生物發(fā)生調(diào)控因子的表達(dá),減少了AD大鼠腦內(nèi)的Aβ沉積水平,提高了其學(xué)習(xí)記憶能力。綜上表明,運(yùn)動一方面通過提高線粒體DNA修復(fù)酶的活性減少mtDNA受損,增加mtDNA數(shù)量。另一方面,運(yùn)動通過AMPK-SIRT1-PGC-1α信號通路增加腦線粒體生物發(fā)生的調(diào)控因子,最終促進(jìn)AD腦線粒體的生物發(fā)生。
線粒體介導(dǎo)的內(nèi)源性細(xì)胞凋亡是造成AD腦神經(jīng)元缺失的重要原因之一。Kang等[28]采用24月齡的PS2突變AD小鼠進(jìn)行12周的跑臺運(yùn)動,發(fā)現(xiàn)運(yùn)動組小鼠腦內(nèi)的caspase3、caspase9、Bax等細(xì)胞凋亡標(biāo)志物下降,學(xué)習(xí)記憶能力得到改善,Aβ42減少。與其研究結(jié)果相似,Cho等[11]人采用NSE/APPsw轉(zhuǎn)基因AD小鼠進(jìn)行16周的運(yùn)動鍛煉與α-硫辛酸結(jié)合治療,發(fā)現(xiàn)運(yùn)動鍛煉與α-硫辛酸結(jié)合治療組小鼠不僅增加了GLUT1和BDNF等神經(jīng)元因子的表達(dá),而且下調(diào)了Bax和caspase3表達(dá),這提示長期運(yùn)動可有效減少細(xì)胞凋亡因子的釋放,增加神經(jīng)元營養(yǎng)因子的表達(dá),繼而起到保護(hù)神經(jīng)元的作用。UM等[56]采用12月齡的NSE/PS2m轉(zhuǎn)基因AD小鼠進(jìn)行為期12個月的跑臺運(yùn)動,發(fā)現(xiàn)運(yùn)動組小鼠腦內(nèi)磷酸化Tau蛋白減少,小鼠學(xué)習(xí)記憶能力得到提高,細(xì)胞色素C、Caspase3的表達(dá)減少,提示運(yùn)動可減少線粒體內(nèi)細(xì)胞色素C釋放,進(jìn)而抑制了線粒體介導(dǎo)的細(xì)胞凋亡途徑。M等[55]的另一研究中,采用NSE/APPsw轉(zhuǎn)基因AD小鼠進(jìn)行16周的跑臺運(yùn)動,發(fā)現(xiàn)AD小鼠運(yùn)動后腦內(nèi)Aβ42減少,細(xì)胞色素C、caspase3、caspase9及Bax等細(xì)胞凋亡標(biāo)志物的表達(dá)下降,Bcl-2和HSP70等抑制細(xì)胞凋亡因子增加,提示運(yùn)動可通過提高HSP70的表達(dá)減少線粒體細(xì)胞色素C的釋放,進(jìn)而抑制線粒體介導(dǎo)的細(xì)胞凋亡途徑。綜上表明,運(yùn)動可上調(diào)腦內(nèi)的HSP70以增強(qiáng)線粒體蛋白質(zhì)保護(hù)作用,減少線粒體內(nèi)細(xì)胞色素C釋放,從而抑制線粒體介導(dǎo)的內(nèi)源性細(xì)胞凋亡途徑,降低caspase3、caspase9等細(xì)胞凋亡因子的表達(dá),改善AD腦神經(jīng)元過度凋亡。
AD腦線粒體出現(xiàn)的高分裂低融合及自噬活性降低導(dǎo)致大量的受損線粒體片段聚集在神經(jīng)元內(nèi)。因此,促進(jìn)腦線粒體的分裂融合平衡,提高線粒體自噬活性對改善AD腦線粒體質(zhì)量控制障礙至關(guān)重要。Luo等[36]采用3月齡的SD大鼠進(jìn)行10周的游泳訓(xùn)練,發(fā)現(xiàn)游泳組大鼠腦線粒體PGC1α、Mfn1/2和Drp1的表達(dá)水平增加,線粒體自噬標(biāo)志物L(fēng)C3II/I、Parkin表達(dá)增加,自噬底物P62減少,這提示運(yùn)動可以促進(jìn)線粒體分裂融合平衡和提高線粒體自噬活性。與Luo結(jié)果相似,Aleixo等[37]采用3周齡SD大鼠分別進(jìn)行為期12周的跑臺運(yùn)動和跑輪運(yùn)動,運(yùn)動后的大鼠大腦皮層中不僅線粒體生物合成蛋白表達(dá)增多(PGC1α、TFAM升高),并且其還發(fā)現(xiàn)線粒體融合蛋白Mfn1/2和OPA1表達(dá)升高,線粒體分裂相關(guān)蛋白Drp1、Fis1表達(dá)下降,線粒體自噬標(biāo)志物Beclin1、LC3II/I及PINK1的表達(dá)升高,自噬底物P62的聚集下降。以上研究提示運(yùn)動可增強(qiáng)正常鼠線粒體分裂融合動態(tài)平衡,提高線粒體自噬活性,促進(jìn)線粒體的更新,進(jìn)而維持腦的健康。
Aleixo的另一項研究[38]使用3周齡SD大鼠注射阿霉素(DOX)造模,注射DOX組大鼠學(xué)習(xí)記憶能力下降,神經(jīng)元出現(xiàn)凋亡,并且在大腦皮層中出現(xiàn)了自噬體堆積,P62表達(dá)也升高,提示注射DOX可導(dǎo)致腦內(nèi)自噬出現(xiàn)異常,損傷神經(jīng)元,這與AD腦內(nèi)出現(xiàn)的病理改變相似。然而,12周的跑臺和跑輪運(yùn)動均提高了DOX組大鼠的學(xué)習(xí)記憶能力,促進(jìn)了線粒體生成,線粒體自噬也得到了改善,其主要表現(xiàn)為腦內(nèi)的自噬體堆積減少,P62表達(dá)降低,提高了Beclin1、Pink1、parkin、LC3-II/I比值的表達(dá)。Kang等[27]采用18月齡的NSE/htau23轉(zhuǎn)基因AD小鼠進(jìn)行為期12周的跑臺運(yùn)動,發(fā)現(xiàn)運(yùn)動顯著增加了小鼠腦內(nèi)的LC3-II的表達(dá),減少了P62的聚集,提示運(yùn)動顯著增加了NSE/htau23小鼠腦內(nèi)的自噬活性。Kou等[31]也發(fā)現(xiàn),游泳運(yùn)動可顯著改善D-半乳糖誘導(dǎo)的AD模型大鼠的學(xué)習(xí)記憶能力,并且其發(fā)現(xiàn)運(yùn)動可通過上調(diào)miR-34A提高自噬,促進(jìn)mfn2的表達(dá)以改善線粒體質(zhì)量控制障礙。綜上研究提示,運(yùn)動可促進(jìn)AD腦線粒體分裂融合平衡,提高線粒體自噬活性,預(yù)防和改善AD腦內(nèi)的線粒體質(zhì)量控制障礙。運(yùn)動改善AD腦線粒體功能障礙的具體機(jī)制如下圖所示:
腦神經(jīng)元內(nèi)的線粒體功能障礙是AD發(fā)生的重要原因之一。運(yùn)動可改善AD腦線粒體功能障礙,其主要作用如下:1)運(yùn)動可提高腦線粒體內(nèi)抗氧化酶的活性,減少氧化產(chǎn)物的生成,降低AD腦內(nèi)的氧化應(yīng)激水平;2)運(yùn)動可增加AD腦內(nèi)的mtDNA數(shù)量,并可通過激活A(yù)MPK-SIRT1-PGC1α信號通路促進(jìn)AD腦內(nèi)線粒體生物發(fā)生;3)運(yùn)動可改善線粒體介導(dǎo)的細(xì)胞過度凋亡,減少AD腦神經(jīng)元丟失;4)運(yùn)動可促進(jìn)線粒體分裂融合的動態(tài)平衡,以及提高線粒體自噬活性控制AD腦線粒體質(zhì)量??傊?,運(yùn)動可通過以上作用改善Aβ誘發(fā)的線粒體功能障礙,誘導(dǎo)線粒體自我更新,以此預(yù)防和緩解AD。
[1]何標(biāo),徐波,張憲亮.運(yùn)動通過提高DNA甲基化水平改善阿爾茨海默病小鼠空間學(xué)習(xí)記憶能力[J].天津體育學(xué)院學(xué)報,2016,31(4):333-339.
[2]ALARIFI S,ALI H,ALKAHTANI S,et al.Regulation of apoptosis through bcl-2/bax proteins expression and DNA damage by nano-sized gadolinium oxide[J].Int J Nanomed,2017,12:4541-4551.
[3]AZIMI M,GHARAKHANLOU R,NAGHDI N,et al.Moderate treadmill exercise ameliorates amyloid-beta-induced learning and memory impairment,possibly via increasing AMPK activity and up-regulation ofthePGC-1alpha/FNDC5/BDNF pathway[J].Peptides,2018,102:78-88.
[4]BARONE E,HEAD E,BUTTERFIELD D A,et al.HNE-modified proteins in down syndrome:Involvement in development of Alzheimer disease neuropathology[J].Free Radic Biol Med,2017,111:262-269.
[5]BAYOD S,GUZMAN-BRAMBILA C,SANCHEZ-ROIGE S,et al.Voluntary exercise promotes beneficial anti-aging mechanisms in SAMP8 female brain[J].J Mol Neurosci,2015,55(2):525-532.
[6]BLOOM G S.Amyloid-beta and tau:the trigger and bullet in Alzheimer disease pathogenesis[J].JAMA Neurol,2014,71(4):505-508.
[7]BO H,KANG W,JIANG N,et al.Exercise-induced neuroprotection of hippocampus in APP/PS1 transgenic mice via upregulation of mitochondrial 8-oxoguanine DNA glycosylase[J].Oxid Med Cell Longev,2014,2014:834502.
[8]BULER M,AATSINKI S M,IZZI V,et al.SIRT5is under the control of PGC-1alpha and AMPK and is involved in regulation of mitochondrialenergymetabolism[J].FASEBJ,2014,28(7):3225-3237.
[9]CASPERSEN C,WANG N,YAO J,et al.Mitochondrial Abeta:a potential focal point for neuronal metabolic dysfunction in Alzheimer's disease[J].FASEB J,2005,19(14):2040-2041.
[10]CHAN D C.Mitochondria:dynamic organelles in disease,aging,and development[J].Cell,2006,125(7):1241-1252.
[11]CHO J Y,UM H S,KANG E B,et al.The combination of exercise training and alpha-lipoic acid treatment has therapeutic effects on the pathogenic phenotypes of Alzheimer's disease in NSE/APPswtransgenic mice[J].Int J Mol Med,2010,25(3):337-346.
[12]CHO J,SHIN M K,KIM D,et al.Treadmill running reverses cognitive declines due to Alzheimer disease[J].Med Sci Sports Exe,2015,47(9):1814-1824.
[13]CLARK-MATOTT J,SALEEM A,DAI Y,et al.Metabolomic analysis of exercise effects in the POLG mitochondrial DNA mutator mouse brain[J].Neurobiol Aging,2015,36(11):2972-2983.
[14]COSKUN P E,BEAL M F,WALLACE D C.Alzheimer's brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication[J].Proc Natl Acad Sci U S A,2004,101(29):10726-10731.
[15]DAO A T,ZAGAAR M A,ALKADHI K A.Moderate treadmill exercise protects synaptic plasticity of the dentate gyrus and related signaling cascade in a rat model of alzheimer's disease[J].Mol Neurobiol,2015,52(3):1067-1076.
[16]DAO A T,ZAGAAR M A,LEVINE A T,et al.Treadmill exercise prevents learning and memory impairment in Alzheimer's disease-like pathology[J].Curr Alzheimer Res,2013,10(5):507-515.
[17]ESKELINEN E L,SAFTIG P.Autophagy:alysosomal degradation pathway with a central role in health and disease[J].Biochim Biophys Acta,2009,1793(4):664-673.
[18]FERNANDEZ-MARCOS P J,AUWERX J.Regulation of PGC-1alpha,a nodal regulator of mitochondrial biogenesis[J].Am J Clin Nutr,2011,93(4):884S-890S.
[19]GARCIA-MESA Y,COLIE S,CORPAS R,et al.Oxidative stress is a central target for physical exercise neuroprotection against pathological brain aging[J].J Gerontol A Biol Sci Med Sci,2016,71(1):40-49.
[20]GARCIA-MESA Y,GIMENEZ-LLORT L,LOPEZ L C,et al.Melatonin plus physical exercise are highly neuroprotective in the 3xTg-AD mouse[J].Neurobiol Aging,2012,33(6):1113-1124.
[21]GARRIDO C,BRUNET M,DIDELOT C,et al.Heat shock proteins 27 and 70:anti-apoptotic proteins with tumorigenic properties[J].Cell Cycle,2006,5(22):2592-2601.
[22]GEISLER S,HOLMSTROM K M,SKUJATD,etal.PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1[J].Nat Cell Biol,2010,12(2):119-131.
[23]GIMENEZ-LLORT L,GARCIA Y,BUCCIERI K,et al.Genderspecific neuroimmunoendocrine response to treadmill exercise in 3xTg-AD Mice[J].Int J Alzheimers Dis,2010,2010:128354.
[24]HOSHINO T,MURAO N,NAMBA T,et al.Suppression of Alzheimer's disease-related phenotypes by expression of heat shock protein 70 in mice[J].J Neurosci,2011,31(14):5225-5234.
[25]HUNG C H,CHENG S S,CHEUNG Y T,et al.A reciprocal relationship between reactive oxygen species and mitochondrial dynamics in neurodegeneration[J].Redox Biol,2018,14:7-19.
[26]ISLA A G,VAZQUEZ-CUEVAS F G,PENA-ORTEGA F.Exercise prevents amyloid-beta-induced hippocampal network disruption by inhibiting GSK3beta activation[J].J Alzheimers Dis,2016,52(1):333-343.
[27]KANG E B,CHO J Y.Effect of treadmill exercise on PI3K/AKT/mTOR,autophagy,and Tau hyperphosphorylation in the cerebral cortex of NSE/htau23 transgenic mice[J].J Exerc Nutr Biochem,2015,19(3):199-209.
[28]KANG E B,KWON I S,KOO J H,et al.Treadmill exercise represses neuronal cell death and inflammation during Abetainduced ER stress by regulating unfolded protein response in aged presenilin 2 mutant mice[J].Apoptosis,2013,18(11):1332-1347.
[29]KHANDELWAL P J,HERMAN A M,HOE H S,et al.Parkin mediates beclin-dependent autophagic clearance of defective mitochondria and ubiquitinated Abeta in AD models[J].Hum Mol Genet,2011,20(11):2091-2102.
[30]KOO J H,KANG E B,OH Y S,et al.Treadmill exercise decreases amyloid-beta burden possibly via activation of SIRT-1 signaling in a mouse model of Alzheimer's disease[J].Exp Neurol,2017,288:142-152.
[31]KOU X,LI J,LIU X,et al.Swimming attenuates d-galactoseinduced brain aging via suppressing miR-34a-mediated autophagy impairment and abnormal mitochondrial dynamics[J].J Appl Physiol,2017,122(6):1462-1469.
[32]KRAKO N,MAGNIFICO M C,ARESE M,et al.Characterization of mitochondrial dysfunction in the 7PA2 cell model of Alzheimer's disease[J].J Alzheimers Dis,2013,37(4):747-758.
[33]LEEM Y H,LIM H J,SHIM S B,et al.Repression of tau hyperphosphorylation by chronic endurance exercise in aged transgenic mouse model of tauopathies[J].J Neurosci Res,2009,87(11):2561-2570.
[34]LIU H L,ZHAO G,ZHANG H,et al.Long-term treadmill exercise inhibits the progression of Alzheimer's disease-like neuropathology in thehippocampus of APP/PS1 transgenic mice[J].Behav Brain Res,2013,256:261-272.
[35]LU Y,DONG Y,TUCKER D,et al.Treadmill exercise exerts neuroprotection and regulates microglial polarization and oxidative stress in a streptozotocin-induced rat model of sporadic Alzheimer's disease[J].J Alzheimers Dis,2017,56(4):1469-1484.
[36]LUO L,DAI J R,GUO S S,et al.Lysosomal proteolysis is associated with exercise-induced improvement of mitochondrial quality control in aged hippocampus[J].J Gerontol A Biol Sci Med Sci,2017,72(10):1342-1351.
[37]MARQUES-ALEIXO I,SANTOS-ALVES E,BALCA M M,et al.Physical exercise improves brain cortex and cerebellum mitochondrial bioenergetics and alters apoptotic,dynamic and auto(mito)phagy markers[J].Neurosci,2015,301:480-495.
[38]MARQUES-ALEIXO I,SANTOS-ALVES E,BALCA M M,et al.Physical exercise mitigates doxorubicin-induced brain cortex and cerebellum mitochondrial alterations and cellular quality control signaling[J].Mitochondrion,2016,26:43-57.
[39]MELOV S,ADLARD P A,MORTEN K,et al.Mitochondrial oxidative stress causes hyperphosphorylation of tau[J].PLoS One,2007,2(6):e536.
[40]MOORE K M,GIRENS R E,LARSON S K,et al.A spectrum of exercise training reduces soluble Abeta in a dose-dependent mannerin a mouse model of Alzheimer's disease[J].Neurobiol Dis,2016,85:218-224.
[41]MOREIRA P I,SIEDLAK S L,WANG X,et al.Increased autophagic degradation of mitochondria in Alzheimer disease[J].Autophagy,2007,3(6):614-615.
[42]OBULESU M,LAKSHMI M J.Apoptosis in Alzheimer's disease:an understanding of the physiology,pathology and therapeutic avenues[J].Neurochem Res,2014,39(12):2301-2312.
[43]OHIA-NWOKO O,MONTAZARI S,LAU Y S,et al.Long-term treadmillexercise attenuates tau pathology in P301S tau transgenic mice[J].Mol Neurodegener,2014,9:54.
[44]ONYANGO I G,LU J,RODOVA M,et al.Regulation of neuron mitochondrialbiogenesis and relevance to brain health[J].Biochim Biophys Acta,2010,1802(1):228-234.
[45]PODLESNIY P,FIGUEIRO-SILVA J,LLADO A,et al.Low cerebrospinalfluid concentration ofmitochondrialDNA in preclinical Alzheimer disease[J].Ann Neurol,2013,74(5):655-668.
[46]PORCELLOTTI S,FANELLI F,FRACASSI A,et al.Oxidative stress during the progression of beta-Amyloid pathology in the neocortex of the Tg2576 mouse model of Alzheimer's disease[J].Oxid Med Cell Longev,2015,2015:967203.
[47]RESENDE R,MOREIRA P I,PROENCA T,et al.Brain oxidative stress in a triple-transgenic mouse model of Alzheimer disease[J].Free Radic Biol Med,2008,44(12):2051-2057.
[48]SAH S K,LEE C,JANG J H,et al.Effect of high-fat diet on cognitive impairment in triple-transgenic mice model of Alzheimer's disease[J].Biochem Biophys Res Commun,2017,493(1):731-736.
[49]SAHA P,BISWAS S C.Amyloid-beta induced astrocytosis and astrocytedeath:Implication ofFoxO3a-Bim-caspase3 death signaling[J].Mol Cell Neurosci,2015,68:203-211.
[50]SCHUESSEL K,SCHAFER S,BAYER T A,et al.Impaired Cu/Zn-SOD activity contributes to increased oxidative damage in APP transgenic mice[J].Neurobiol Dis,2005,18(1):89-99.
[51]SHAO C,XIONG S,LI G M,et al.Altered 8-oxoguanine glycosylase in mild cognitive impairment and late-stage Alzheimer's disease brain[J].Free Radic Biol Med,2008,45(6):813-819.
[52]SHENG B,WANG X,SU B,et al.Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer's disease[J].J Neurochem,2012,120(3):419-429.
[53]SILVA D F,SELFRIDGE J E,LU J,et al.Bioenergetic flux,mitochondrial mass and mitochondrial morphology dynamics in AD and MCI cybrid cell lines[J].Hum Mol Genet,2013,22(19):3931-3946.
[54]SWOMLEY A M,BUTTERFIELD D A.Oxidative stress in Alzheimer disease and mild cognitive impairment:evidence from human data provided by redox proteomics[J].Arch Toxicol,2015,89(10):1669-1680.
[55]UM H S,KANG E B,KOO J H,et al.Treadmill exercise represses neuronal cell death in an aged transgenic mouse model of Alzheimer's disease[J].Neurosci Res,2011,69(2):161-173.
[56]UM H S,KANG E B,LEEM Y H,et al.Exercise training acts as a therapeutic strategy for reduction of the pathogenic phenotypes for Alzheimer's disease in an NSE/APPsw-transgenic model[J].Int J Mol Med,2008,22(4):529-539.
[57]WANG L,GUO L,LU L,et al.Synaptosomal mitochondrial dysfunction in 5xFAD mouse model of Alzheimer's disease[J].PLoS One,2016,11(3):e150441.
[58]WANG X,ZHAO X L,XU L L,et al.Mitophagy in APPsw/PS1dE9 transgenic mice and APPsw stably expressing in HEK293 cells[J].Eur Rev Med Pharmacol Sci,2015,19(23):4595-4602.
[59]YE X,SUN X,STAROVOYTOV V,et al.Parkin-mediated mitophagy in mutant hAPP neurons and Alzheimer's disease patient brains[J].Hum Mol Genet,2015,24(10):2938-2951.
[60]ZHANG F,WANG S,GAN L,et al.Protective effects and mechanisms of sirtuins in the nervous system[J].Prog Neurobiol,2011,95(3):373-395.