亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        支持向量機(jī)與譜表示法模擬隨機(jī)場及在可靠度中的應(yīng)用

        2018-07-05 01:26:42楊慶年張再偉
        土木工程與管理學(xué)報 2018年3期

        楊慶年, 趙 駿, 張再偉

        (南陽理工學(xué)院 土木工程學(xué)院, 河南 南陽 473004)

        隨著社會經(jīng)濟(jì)的發(fā)展和城市化進(jìn)程的加快,已有基礎(chǔ)設(shè)施均超負(fù)荷運行,尤其是濱海沿江發(fā)達(dá)城市,規(guī)劃基礎(chǔ)設(shè)施建設(shè)最為密集。當(dāng)高層建筑過于密集,城市地下空間便成了新的開發(fā)領(lǐng)域。以2015年人民網(wǎng)報導(dǎo)的上海、天津為例,十三五期間,地下空間將以每年300萬m2的速度增長,中心城區(qū)地下建筑占全部建筑總規(guī)模的15%。地下軌道交通作為主要的地下建筑,在經(jīng)濟(jì)發(fā)達(dá)地區(qū)的客運交通中發(fā)揮著不可替代的作用,據(jù)住建部公布的數(shù)據(jù),十三五期間擁有軌道交通的城市將達(dá)到50個,近6000 km,規(guī)模居世界第一。

        地鐵工程是一個涉及大量參數(shù)的復(fù)雜地下隱蔽工程,由于其跨度長、埋深深、管徑大的特點,穿越的土層復(fù)雜多變,相比于結(jié)構(gòu)工程設(shè)計的鋼筋、混凝土材料,巖土參數(shù)不確定性更大,即使是在同一土層也表現(xiàn)出非常大的空間變異性[1]。這種不確定性在傳統(tǒng)的計算中經(jīng)常會被忽略,而采用均值代替。傳統(tǒng)的定量設(shè)計方法使用了確定性的方法,通過一定的途徑或經(jīng)驗將這些設(shè)計條件、環(huán)境因素和材料參數(shù)均視為定值來計算各種失效模式,最后將不確定性因素歸一到一個值——安全系數(shù)上。這種所謂的容許應(yīng)力設(shè)計法忽略了實際工程中諸多不確定性因素,這樣就造成了設(shè)計中經(jīng)常出現(xiàn)工程師的估計和計算結(jié)果與實際相差甚遠(yuǎn)的情況,而在實際工程中甚至?xí)霈F(xiàn)幾種建筑計算出安全系數(shù)一樣但安全程度確相差很大,更甚者會出現(xiàn)安全系數(shù)越大安全程度反而降低的情況。因此,片面的安全系數(shù)法并不能精確描述工程的安全性和穩(wěn)定性,更不能成為工程可靠性的唯一度量標(biāo)準(zhǔn)。在大多數(shù)情況下,這種處理方法并不準(zhǔn)確甚至是錯誤的。因此,如何正確模擬土體參數(shù)的空間變異性是一個富有挑戰(zhàn)性的問題。隨機(jī)場理論為土體空間變異性的模擬提供了有效途徑。目前關(guān)于隨機(jī)場模擬分析方面的文獻(xiàn)較多。Griffiths等[2~4]將蒙特卡羅法用于隨機(jī)場分析中,對比了考慮空間變異性后結(jié)構(gòu)的失效概率變化;吳振君等[5]將隨機(jī)場模擬和區(qū)域化變量理論的Kriging 方法結(jié)合,建立約束隨機(jī)場;閆澍旺等[6]等研究了隨機(jī)場方差折減函數(shù)的確定原則,并通過算例說明了折減原則的合理性;史良勝[7]等研究了Karhunen-Loeve(KL)展開在土性參數(shù)隨機(jī)場模擬中的應(yīng)用;Shinozuka等[8,9]比較了超分辨率映射(Super Resolution Mapping,SRM)與KL方法在隨機(jī)場離散中的優(yōu)劣,證明在相關(guān)距離較短時,KL方法收斂難度較大。盡管上述方法在巖土工程隨機(jī)場分析中得到了一定的應(yīng)用,但仍然存在很多不足。方差折減法需要大量數(shù)據(jù)確定方差折減函數(shù);蒙特卡羅法法需要更大數(shù)量級的樣本數(shù)量和計算時間,計算代價過大。KL方法需要解決Fredholm積分方程問題;更重要的是,在實際工程中,土體參數(shù)一般為多維多變量隨機(jī)場,而傳統(tǒng)的SRM在模擬多維多元隨機(jī)場時互相關(guān)性精度不足。

        本文在傳統(tǒng)譜表示法的基礎(chǔ)上,引入基于馬爾可夫(Markov)鏈(M-SVM)改進(jìn)的支持向量機(jī)(Support Vector Machine,SVM)法與譜表示法耦合,提出一種能兼顧參數(shù)自相關(guān)性與互相關(guān)性的隨機(jī)場模擬耦合算法。該耦合算法在保持傳統(tǒng)SRM在自相關(guān)性上優(yōu)勢的基礎(chǔ)上,利用SVM在復(fù)雜模型機(jī)器學(xué)習(xí)方面的優(yōu)勢,提高傳統(tǒng)SRM在互相關(guān)性上的精度,同時采用馬爾可夫鏈改進(jìn)傳統(tǒng)的SVM,為減小支持向量機(jī)法對輸入樣本精度的依賴性,采用M-SVM改進(jìn)傳統(tǒng)的支持向量機(jī)法,使得訓(xùn)練樣本能夠自適應(yīng)地模擬極限狀態(tài)面的重要區(qū)域,以馬爾可夫鏈的自適應(yīng)特點生成訓(xùn)練樣本,然后使用支持向量機(jī)的機(jī)器學(xué)習(xí)特性訓(xùn)練得出原函數(shù)的顯示極限狀態(tài)方程,使得到的顯式極限狀態(tài)方程能最大程度地逼近原隱式方程。在此基礎(chǔ)上以武漢市軌道交通7號線一期工程過江段為依托,研究巖土體空間變異性對該地鐵可靠度的影響程度。

        1 基本理論

        1.1 譜表示法

        (1)

        式中:φi(i=1,...,N1)為在[0,2π]區(qū)間服從標(biāo)準(zhǔn)分布的獨立隨機(jī)相位角,頻率設(shè)定為:

        (2)

        式中:κ1u為截斷波數(shù)。幅值A(chǔ)i可以用下式確定:

        (3)

        式中:Sf0為非負(fù)函數(shù)κ1的功率譜密度函數(shù)。式(1)的模擬過程構(gòu)成了隨機(jī)場的頻譜表示。

        當(dāng)隨機(jī)場為二維時,式(1)改寫為以下形式:

        (4)

        式中:

        (5)

        (6)

        (7)

        κ1i=iΔκ1,κ2j=jΔκ2

        (8)

        土體參數(shù)空間變異性分析常采用自相關(guān)函數(shù)描述隨機(jī)場計算區(qū)域內(nèi)任意兩個不同空間位置處土體參數(shù)間的自相關(guān)性[10]。對于土體的自相關(guān)函數(shù),尚無定論,常用的相關(guān)函數(shù)型式有指數(shù)型和指數(shù)余弦型。本文采用各向同性指數(shù)平方型相關(guān)函數(shù)[11],表達(dá)式為:

        (9)

        式中:b為隨機(jī)場的相關(guān)距離;τ1和τ2為隨機(jī)場坐標(biāo)軸上的距離。

        1.2 支持向量機(jī)

        SVM的基本思想是通過非線性變化把原數(shù)據(jù)空間映射到某一高維的特征空間,然后在這個新空間中求取最優(yōu)線性分類面,使得該超平面將兩類樣本正確無誤地分開且使分類間隔最大[12~14]。

        對于給定一組樣本數(shù)據(jù)(x1,y1),(x2,y2),…,(xk,yk),xi∈Rn,yi∈R。尋找一個n維空間中的線性函數(shù)f(x),使得對于所有從訓(xùn)練數(shù)據(jù)所得的目標(biāo)數(shù)據(jù)yi的偏差最小。

        f(x)=wx+b

        (10)

        經(jīng)過整理,最優(yōu)分類面問題可以表示成如下約束優(yōu)化問題,求下列函數(shù)的最小值。

        (11)

        對于線性不可分情況,根據(jù)統(tǒng)計學(xué)理論,可以通過在約束條件中引入松弛變量,在目標(biāo)函數(shù)中加入罰函數(shù)來解決這一問題。式(11)即可演變?yōu)橄率剑?/p>

        (12)

        (13)

        解決上述優(yōu)化問題后,即可得到回歸方程:

        (14)

        如果一個問題在其定義的空間中不是線性可分的,可以考慮通過引入核函數(shù)K(xi,xj)把問題轉(zhuǎn)換到一個新的空間中,相應(yīng)的判別函數(shù)為:

        (15)

        本文采用徑向基核函數(shù)[15,16],其形式如下:

        (16)

        式中:參數(shù)g是核函數(shù)中的重要參數(shù),影響著SVM算法的復(fù)雜程度。

        1.3 基于馬爾可夫鏈的支持向量機(jī)法

        傳統(tǒng)的SVM基本原理是采用非線性變化把原數(shù)據(jù)空間映射到某一高維的特征空間,機(jī)器學(xué)習(xí)的精度嚴(yán)重依賴于輸入樣本的質(zhì)量和精度。一般的抽樣方法是在隨機(jī)變量均值兩側(cè)k倍標(biāo)準(zhǔn)差的區(qū)間里均勻抽樣所得(k為常數(shù)),只有當(dāng)樣本點能夠大量落在最優(yōu)超平面附近時,才能獲得理想的計算精度。常用的特殊抽樣法,如重要性抽樣法、拉丁抽樣法等,其本質(zhì)也不符合最優(yōu)超平面原則。為此,本文采用M-SVM改進(jìn)傳統(tǒng)的SVM,利用M-SVM的自適應(yīng)特點[17],使其模擬產(chǎn)生的樣本點將自適應(yīng)的覆蓋最可能失效區(qū)域生成訓(xùn)練樣本,另一方面盡量使樣本點靠近極限狀態(tài)曲面,SVM則能夠?qū)崿F(xiàn)風(fēng)險最小化的極限狀態(tài)方程的替代。

        以一階M-SVM為例,設(shè)結(jié)構(gòu)極限狀態(tài)面函數(shù)為g(x),其中包含聯(lián)合概率密度為f(x)的n維基本變量x=[x1,x2,…,xn]T。

        失效域F上樣本數(shù)據(jù)的條件分布密度函數(shù)為:

        f(x|F)=IF(x)f(x)/Pf

        (17)

        式中:IF(x)為F的指示函數(shù),

        (18)

        (19)

        M-SVM是指存在這樣的一組序列{X1,X2,X3,…},對于任意時刻t,Xt+1時刻的狀態(tài)僅僅與前一個時刻Xt有關(guān),而與Xt以前的狀態(tài)無關(guān),這樣的隨機(jī)變量序列稱之為M-SVM。這種序列的產(chǎn)生方式有很多種,包括吉布斯抽樣算法、M-H(Metropolis-Hasting)抽樣方法,本文主要介紹M-H抽樣方法。

        M-H算法核心思想是產(chǎn)生一個樣本點,然后依據(jù)接受概率來判定產(chǎn)生的樣本點是否可以被接受,首先馬爾科夫鏈中所選用的概率密度函數(shù)p*(x)必須滿足細(xì)致平衡條件,即:

        p*(y|x)=p*(x|y)

        (20)

        依據(jù)p*(x)隨機(jī)產(chǎn)生備選樣本點y,大量研究表明,備選樣本點最好取值在區(qū)間x-l,x+l,M-H算法的轉(zhuǎn)移接受概率為:

        α=min1,π(y)/π(x)

        (21)

        其中,π(·)為目標(biāo)分布,由于樣本點落在失效區(qū)域Fi容易得到IFix=1,再結(jié)合式(20)可得轉(zhuǎn)移接受概率為:

        α=min1,q(y)IFi(y)/q(x)

        (22)

        第i+1個子集中的M-SVM具體步驟如圖1所示。

        圖1 M-SVM流程

        (1)得到失效域Fi中第i個子集中一個樣本點向量Xi=[xi(1),xi(1),…,xi(n)]T,n表示隨機(jī)變量的維度。

        (2)對于第j(j=1,2,…,n)個維度,產(chǎn)生一個服從建議分布p*(x)的備選樣本點yj,據(jù)研究表明,yj通??捎蓌1j-l,x1j+l區(qū)間上的均勻分布產(chǎn)生,依據(jù)此方法可以產(chǎn)生一個對應(yīng)的樣本點向量:

        y=[y1,y2…,yn]T

        (23)

        (3)依據(jù)式(22)中的轉(zhuǎn)移接受概率和以下兩步來判定樣本點向量y是否可以被接受。

        先計算rj=min1,q(yj)/q(xi(j),然后隨機(jī)產(chǎn)生一個服從[0,1]區(qū)間均勻分布的隨機(jī)數(shù)uj,如果uj≤rj,則yj=yj,否則,yj=xj,產(chǎn)生n個維度的樣本點之后,可以得到新的樣本向量:

        y*=y1,y2,…,ynT

        (24)

        驗證g(y*)的值是否落在失效域內(nèi),即是否有g(shù)(y*)

        (25)

        (4)重復(fù)步驟(2)和(3),直至在第i+1個子集中產(chǎn)生足夠多的樣本點。一般來講第i個子集中的一個樣本需要產(chǎn)生1/p0個i+1子集中的樣本點,最終i+1子集中需要有n/p0個樣本點。

        (26)

        重復(fù)上述步驟即可得到一組訓(xùn)練數(shù)據(jù)x(1),x(2),…,x(M),分布形式為平穩(wěn)分布。

        M-SVM的基本思想是改進(jìn)傳統(tǒng)的SVM,使得訓(xùn)練樣本能夠自適應(yīng)模擬極限模擬結(jié)構(gòu)的重要區(qū)域,以馬爾可夫鏈的自適應(yīng)特點生成訓(xùn)練樣本,然后使用SVM的機(jī)器學(xué)習(xí)特性訓(xùn)練得出原函數(shù)的顯示極限狀態(tài)方程,使得得到的顯示極限狀態(tài)方程能最大程度地逼近原隱式方程。

        1.4 SRM與SVM耦合算法

        對于給定一組樣本數(shù)據(jù),可得參數(shù)矩陣X:

        (27)

        Xi=[xi1,xi2,…,xim]表示矩陣X的一行,代表一組土體參數(shù);Xj=[x1j,x2j,…,xnj]表示矩陣X的一列,代表一項土體參數(shù)(例如:黏聚力、內(nèi)摩擦角等)。

        根據(jù)矩陣X可計算得到協(xié)方差矩陣Q:

        (28)

        式中:σj為土體參數(shù)Xj的標(biāo)準(zhǔn)差;δij為土體參數(shù)Xj與Xi之間的協(xié)方差,δij=δji。

        基于SVM和SRM的耦合算法計算流程如下:

        (29)

        (30)

        (3)選擇核函數(shù)。由于土體參數(shù)的分布函數(shù)關(guān)系并非給定屬性的簡單線性函數(shù),故應(yīng)選擇合適的核函數(shù)替換。

        (31)

        式中:κ(x,xi)為核函數(shù)(如多項式核函數(shù)、徑向基核函數(shù)、Sigmoid核函數(shù)等),對于小樣本問題,一般選擇最適合非線性程度較高的巖土工程的核函數(shù)——徑向基核函數(shù)。

        2 工程概況

        武漢市軌道交通7號線一期工程線路起點位于金銀湖區(qū),穿越長江至板橋村,全長約31.3 km,除停車場、車輛段及出入場線為地面線外,其余正線全為地下隧道工程。其中穿越長江段,全長約3.23 km,雙向六車道,該段隧道采用直徑為15.76 m的超大型泥水平衡盾構(gòu)施工。工程場區(qū)位于長江河床及兩岸一級階地區(qū),此處江面寬約1400 m。覆蓋層為二元結(jié)構(gòu)的黏性土及砂類土,下伏基巖為白堊~第三系東湖群砂礫巖及粉砂質(zhì)泥巖。

        本文研究斷面取該工程最具代表性的界面(隧道過江段折線處如圖2所示),該斷面處于過江段的折線處,且底部位于基巖內(nèi),地質(zhì)狀況最為復(fù)雜。該盾構(gòu)段頂覆土值約為18.5 m,穿越土層主要有:淤泥質(zhì)粉質(zhì)黏土、粉質(zhì)粘土、粉細(xì)砂、強風(fēng)化粉砂質(zhì)泥巖和弱膠結(jié)礫巖,常規(guī)物理力學(xué)指標(biāo)統(tǒng)計成果及原位測試成果分別見表1,2。

        圖2 跨江段縱截面剖面/m

        巖土名稱編號統(tǒng)計項目壓縮模量/MPa重力密度/(kN/m3)內(nèi)摩擦角(快剪)/(°)粘聚力(快剪)/kPa淤泥質(zhì)粉質(zhì)黏土2-1n6622Xmax4.1118.94.3010.40Xmin2.6117.63.507.00Xm3.2618.13.908.70σ0.6240.4453.2472.915δ0.1910.0250.5320.365粉質(zhì)黏土3-2n1191672525Xmax5.6719.512.5017.50Xmin2.7517.64.308.30Xm3.8718.57.3713.13σ0.7320.3632.2072.713δ0.1890.0200.2990.207粉細(xì)砂4-2n356399Xmax19.1821.937.7012.30Xmin7.7617.923.303.10Xm12.9320.031.887.50σ2.5640.9224.3453.815δ0.1980.0460.1360.509粉質(zhì)黏土4-2an131355Xmax6.6919.919.7021.90Xmin4.1318.113.2012.80Xm5.5418.916.5217.62σ0.9080.5105.4454.825δ0.1640.0270.2370.429

        注:n代表統(tǒng)計個數(shù);Xmax為統(tǒng)計最大值;Xmin為統(tǒng)計最小值;Xm為統(tǒng)計均值;σ為統(tǒng)計標(biāo)準(zhǔn)差;δ為統(tǒng)計變異系數(shù)

        表2 盾構(gòu)段巖體主要物理力學(xué)指標(biāo)分層統(tǒng)計

        3 計算分析

        建立隨機(jī)場模型前,必須首先選取合適的相關(guān)距離和相關(guān)函數(shù)。根據(jù)地勘報告中盾構(gòu)段斷面圖分析,各土體的相關(guān)距離見表3;相關(guān)函數(shù)選用各向同性指數(shù)型相關(guān)函數(shù)。

        表3 不同土層的相關(guān)距離

        由表1,2可知,土體初始樣本數(shù)量較少,遠(yuǎn)遠(yuǎn)無法滿足隨機(jī)場模擬和可靠度分析的需要。且淤泥質(zhì)粉質(zhì)黏土、粉質(zhì)粘土、粉細(xì)砂、粉質(zhì)粘土這四種土體的黏聚力和內(nèi)摩擦角的協(xié)方差分別為-0.523,-0.332,-0.579,-0.601,即呈天然負(fù)相關(guān)性,重度和彈性模量相關(guān)性較小。其中淤泥質(zhì)粉質(zhì)黏土的黏聚力c和內(nèi)摩擦角φ的相關(guān)性散點圖如圖3。

        圖3 相關(guān)性散點圖

        建立一個50 m×60 m的二維四元隨機(jī)場模型,網(wǎng)格大小為0.1 m×0.1 m。其中“二維”為橫截面的橫向與縱向(x,y軸);“四元”分別為密度ρ、彈性模量E、黏聚力c和內(nèi)摩擦角φ。由于密度ρ、彈性模量E相關(guān)性較小,故這兩項參數(shù)直接使用傳統(tǒng)的譜表示法離散。黏聚力c和內(nèi)摩擦角φ使用本文提出的基于SVM和SRM的耦合算法離散,其中SVM模型中核函數(shù)選擇使用最為廣泛、最適合非線性程度較高的核函數(shù)——徑向基核函數(shù);罰函數(shù)C和徑向基核函數(shù)參數(shù)g使用遺傳算法計算,圖4表示遺傳算法計算時進(jìn)化代數(shù)與適應(yīng)度的關(guān)系。計算所得C和g的值見表4。從圖4中可知,當(dāng)進(jìn)化代數(shù)到7時,淤泥質(zhì)粉質(zhì)黏土適應(yīng)度曲線收斂達(dá)到最佳,計算所得罰函數(shù)C的值為26.2377,參數(shù)g的值為2.3614;當(dāng)進(jìn)化代數(shù)到4時,粉質(zhì)粘土適應(yīng)度曲線收斂達(dá)到最佳,計算所得罰函數(shù)C的值為32.3629,參數(shù)g的值為5.2361;當(dāng)進(jìn)化代數(shù)到8時,粉細(xì)砂適應(yīng)度曲線收斂達(dá)到最佳,計算所得罰函數(shù)C的值為12.9861,參數(shù)g的值為7.2269;當(dāng)進(jìn)化代數(shù)到5時,粉質(zhì)粘土適應(yīng)度曲線收斂達(dá)到最佳,計算所得罰函數(shù)C的值為18.3659,參數(shù)g的值為2.6748。

        圖4 遺傳算法的進(jìn)化代數(shù)與適應(yīng)度關(guān)系曲線

        巖土名稱及編號進(jìn)化代數(shù)適應(yīng)度Cg淤泥質(zhì)粉質(zhì)黏土70.92326.23772.3614粉質(zhì)粘土40.96332.36295.2361粉細(xì)砂80.91312.98617.2269粉質(zhì)粘土50.95518.36592.6748

        SVM模型的輸入與輸出見表6,則計算所得統(tǒng)計特征參數(shù)見表7。從表7中可知離散后四種土體中黏聚力c和內(nèi)摩擦角φ的相關(guān)性。對比離散前協(xié)方差可知淤泥質(zhì)粉質(zhì)黏土的抗剪強度相關(guān)性差別為0.03;粉質(zhì)粘土的抗剪強度相關(guān)性差別為0.019;粉細(xì)砂的抗剪強度相關(guān)性差別為0.009;粉質(zhì)粘土的抗剪強度相關(guān)性差別為0.009。從以上數(shù)據(jù)可知,離散后的隨機(jī)場中的黏聚力c和內(nèi)摩擦角φ的互相關(guān)性與輸入數(shù)據(jù)基本相同,保持了較高的互相關(guān)性。

        表5 黏聚力c和內(nèi)摩擦角φ的相關(guān)性

        表6 輸入與輸出數(shù)據(jù)集

        表7 隨機(jī)場中黏聚力c和內(nèi)摩擦角φ協(xié)方差矩陣

        根據(jù)離散后數(shù)據(jù)可畫出隨機(jī)場中抗剪強度參數(shù)的概率密度分布對比圖,其中淤泥質(zhì)粉質(zhì)黏土的抗剪強度參數(shù)的概率密度分布對比見圖5。從該概率密度分布對比圖和表7中均值與方差可知隨機(jī)場中黏聚力c和內(nèi)摩擦角φ的自相關(guān)性保持了較高的精度。

        圖5 概率密度分布對比

        離散后的抗剪強度參數(shù)隨機(jī)場如圖6,其中顏色越深,黏聚力越大,內(nèi)摩擦角越小。

        圖6 抗剪強度參數(shù)隨機(jī)場

        建立ANSYS有限元模型,隧道外徑15.2 m,隧道內(nèi)徑13.9 m,兩隧道間距6 m,襯砌厚0.65 m,管片采用C50混凝土,管片分塊采用9+1分塊設(shè)計。隧道埋深20 m,土層的寬度和高度分別為100 m和80 m,列車荷載1.03106 N。ANSYS模型如圖7。其中土體參數(shù)為上文建立的隨機(jī)場。

        圖7 ANSYS網(wǎng)格模型

        10000次蒙特卡羅法有限元計算中某一次有限元計算結(jié)果如圖8,9,其中,圖8所示為管片的變形情況,圖9所示為管片的位移云圖。

        由于地鐵工程為復(fù)雜多變地下工程,其力學(xué)性能受到圍巖特性、開挖方法、支護(hù)形式和施工工藝等眾多因素的影響而存在較大差異,加上當(dāng)前受限于對巖土性狀及其工作條件的認(rèn)識水平,從而使得目前在現(xiàn)有數(shù)學(xué)和力學(xué)方法手段上還難以完全準(zhǔn)確的對隧道穩(wěn)定狀態(tài)作用機(jī)理進(jìn)行合理描述。根據(jù)工程設(shè)計經(jīng)驗和國內(nèi)外眾多學(xué)者多年研究成果[19,20],本文假設(shè)隧道襯砌頂部沉降超過50 mm時,結(jié)構(gòu)達(dá)到承載能力極限狀態(tài),隧道失效。

        圖8 襯砌變形

        圖9 襯砌位移云圖

        依據(jù)現(xiàn)有數(shù)學(xué)和力學(xué)方法手段還難以完全準(zhǔn)確地對隧道穩(wěn)定狀態(tài)作用機(jī)理進(jìn)行合理描述,通常無法建立起直觀、簡明、未知數(shù)次數(shù)較低的顯式極限狀態(tài)方程來判別隧道失效與否;由于可供使用的樣本點極少,MCS和RSM同樣不適用于這種工程條件。本文采用M-SVM結(jié)合隨機(jī)有限元法計算該地鐵隧道的可靠度。同時,將圍巖視作隨機(jī)變量模型(土體參數(shù)均用均值和方差代替隨機(jī)場模型),采用MCS和M-SVM計算失效概率,對比圍巖的空間變異性對地鐵隧道失效概率的影響和MCS與M-SVM的計算效率與精度。

        圖10,11為在不考慮空間變異性的條件下,對比MCS和M-SVM兩種算法的計算效率與精度。從圖10中可知,使用MCS計算失效概率,當(dāng)樣本組個數(shù)接近106時,失效概率曲線趨近平穩(wěn),計算結(jié)果收斂,失效概率值為0.43%。從圖11中可知,使用M-SVM計算失效概率,當(dāng)樣本組個數(shù)接近100時,失效概率曲線趨近平穩(wěn),計算結(jié)果收斂,失效概率值為0.41%。對比圖10,11有限元計算次數(shù)可知,M-SVM與傳統(tǒng)的MCS相比,失效概率相對誤差僅為0.02%,精度完全滿足需求,但有限元計算次數(shù)降低了約106次??梢奙-SVM方法的計算效率遠(yuǎn)遠(yuǎn)高于傳統(tǒng)的MCS方法,該方法的計算結(jié)果能更加貼近原極限狀態(tài)面,更能覆蓋求解失效概率時的重要區(qū)域,計算收斂速度更快,更加符合實際工程中小樣本的情況,適用于在實際條件無法滿足勘察要求時的情況。

        圖11,12為在同時使用M-SVM方法的條件下,對比土體空間變異性對隧道失效概率的影響。從圖11中可知,在不考慮空間變異性的條件下,當(dāng)樣本組個數(shù)接近100時,失效概率曲線趨近平穩(wěn),計算結(jié)果收斂,失效概率值為0.41%。從圖12中可知在考慮空間變異性的條件下,當(dāng)樣本組個數(shù)接近100時,失效概率曲線趨近平穩(wěn),計算結(jié)果收斂,失效概率值為0.26%。對比圖11,12失效概率可知,使用同樣的可靠度分析方法的條件下,兩者確定性有限元分析次數(shù)僅相差20次,但失效概率的值相差0.15%。對比失效概率可知,在不考慮空間變異性時的失效概率偏高,說明傳統(tǒng)的基于隨機(jī)變量方法的可靠度分析結(jié)果偏保守,會導(dǎo)致使用成本的提高,造成不必要的經(jīng)濟(jì)浪費。

        圖10 不考慮空間變異性時使用MCS的樣本數(shù)量與失效概率關(guān)系趨勢

        圖11 不考慮空間變異性時使用M-SVM的樣本數(shù)量與失效概率關(guān)系趨勢

        圖12 考慮空間變異性時使用M-SVM的樣本數(shù)量與失效概率關(guān)系趨勢

        4 結(jié) 論

        本文以武漢市軌道交通7號線一期工程過江段為例,結(jié)合該地區(qū)的地勘報告,取該地鐵最有代表性的隧道折線處斷面為研究對象,使用本文提出的SVM與SRM耦合的計算方法模擬隧道圍巖隨機(jī)場。建立過江段折線處橫斷面ANSYS有限元模型,采用M-SVM結(jié)合隨機(jī)有限元法計算該地鐵隧道的可靠度。同時,將圍巖視作隨機(jī)變量模型(土體參數(shù)均用均值和方差代替隨機(jī)場模型),采用MCS和M-SVM計算失效概率,對比圍巖的空間變異性對地鐵隧道失效概率的影響和MCS與M-SVM的計算效率與精度。通過上述分析,可以得到以下結(jié)論:

        (1)與傳統(tǒng)的譜表示法相比,采用本文提出的耦合算法,不僅可以模擬變量的自相關(guān)性,還可以兼顧變量間的互相關(guān)性,全面地反映了空間變異性,更加有利于工程設(shè)計計算。

        (2)與傳統(tǒng)的支持向量機(jī)法相比,采用馬爾可夫鏈改進(jìn)傳統(tǒng)的支持向量機(jī)法,使得訓(xùn)練樣本能夠自適應(yīng)地模擬極限狀態(tài)面的重要區(qū)域,得到的顯式極限狀態(tài)方程能最大程度上更高效快速地逼近原隱式方程。

        (3)通過有限元計算和可靠度分析比較,本文所研究橫斷面在不考慮空間變異性時的失效概率偏高,說明傳統(tǒng)的基于隨機(jī)變量方法的可靠度分析結(jié)果偏保守。

        [1] Li D, Chen Y, Lu W, et al. Stochastic response surface method for reliability analysis of rock slopes involving correlated non-normal variables[J]. Computers and Geotechnics, 2011, 38: 58-68.

        [2] Griffiths D V, Fenton G A. Probabilistic slope stability analysis by finite elements[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(5): 507-518.

        [3] Griffiths D V, Fenton G A. Bearing capacity of spatially random soil: The undrained clay Prandtl problem revisited[J]. Géotechnique, 2001, 51(4): 351-359.

        [4] Fenton G A, Griffiths D V. Bearing-capacity prediction of spatially random c φ soils[J]. Canadian Geotechnical Journal, 2003, 40(1): 54-65.

        [5] 吳振君, 王水林, 葛修潤. 約束隨機(jī)場下的邊坡可靠度隨機(jī)有限元分析方法[J]. 巖土力學(xué), 2009, 30(10): 3086-3092.

        [6] 閆澍旺, 朱紅霞, 劉 潤. 關(guān)于隨機(jī)場理論在土工可靠度計算中應(yīng)用的研究[J]. 巖土工程學(xué)報, 2006, 28(12): 2053-2059.

        [7] 史良勝, 楊金忠, 陳伏龍, 等. Karhunen-Loeve展開在土性各向異性隨機(jī)場模擬中的應(yīng)用研究[J]. 巖土力學(xué), 2007, 28(11): 2303-2308.

        [8] Huang S P, Quek S T, Phoon K K. Convergence study of the truncated Karhunen-Loeve expansion for simulation of stochastic processes[J]. International Journal for Numerical Methods in Engineering, 2001, 52: 1029-1043.

        [9] Shinozuka M, Deodatis G. Simulation of multi-dimensional Gaussian stochastic fields by spectral representation[J]. Applied Mechanics Reviews, 1996, 49(1): 29-53.

        [10] 蔣水華, 李典慶, 周創(chuàng)兵, 等. 考慮自相關(guān)函數(shù)影響的邊坡可靠度分析[J]. 巖土工程學(xué)報, 2014, 36(3): 508-518.

        [11] 龔 勛, 張冬梅, 黃宏偉. 二維空間隨機(jī)場的淺基礎(chǔ)極限承載力可靠度分析[J]. 地下空間與工程學(xué)報, 2012, 8(s2): 1676-1679.

        [12] 何婷婷, 尚岳全, 呂 慶, 等. 邊坡可靠度分析的支持向量機(jī)法[J]. 巖土力學(xué), 2013, 34(11): 3269-3276.

        [13] 趙洪波, 茹忠亮, 張士科. SVM 在地下工程可靠性分析中的應(yīng)用[J]. 巖土力學(xué), 2009, 30(2): 526-530.

        [14] 趙洪波. 基于 GA 與 SVM 的最危險滑動面識別[J]. 巖土力學(xué), 2006, 27(11): 2011-2014.

        [15] Keerthi S S, Lin C J. Asymptotic behaviors of support vector machines with Gaussian kernel[J]. Neural Computation, 2003, 15(7): 1667-1689.

        [16] Smola A J, Sch?lkopf B, Müller K R. The connection between regularization operators and support vector kernels[J]. Neural Networks, 1998, 11: 637-649.

        [17] Chen J, Li H, Jian S. Some limit theorems for absorbing Markov processes[J]. Journal of Physics A: Mathematical and Theoretical, 2012, 45(34): 3747-3762.

        [18] Collet P, Martínez S, Martín J S. Quasi-stationary distributions: Markov chains, diffusions and dynamical systems[J]. Springer Berlin Heidelberg, 2013, 23(3): 439-449

        [19] 楊成永, 張 彌, 白小亮. 隧道噴混凝土襯砌結(jié)構(gòu)可靠度分析的位移方法[J]. 巖石力學(xué)與工程學(xué)報, 2003, 22(2): 266-269.

        [20] Zhao H, Ru Z, Chang X, et al. Reliability analysis of tunnel using least square support vector machine[J]. Tunnelling and Underground Space Technology, 2014, 41: 14-23.

        白嫩丰满少妇av一区二区| 日本在线观看不卡| 久久久9色精品国产一区二区三区| 中文字幕人妻一区二区二区| 97色伦图片97综合影院| 日本道精品一区二区三区| 91亚洲国产成人aⅴ毛片大全| 中文字幕一区二区三在线| 亚洲国产一区二区三区精品| 99久久精品免费观看国产| 国内少妇偷人精品视频免费| 69堂在线无码视频2020| 中文字幕一区二区黄色| 精品精品国产自在97香蕉| 香蕉视频www.5.在线观看| 国产精品欧美视频另类专区| 国产精品一区二区三区av在线| 亚洲av乱码一区二区三区按摩| 人妻丰满熟妇av无码处处不卡| 91在线区啪国自产网页| 青青草视频在线观看绿色| 人妻av不卡一区二区三区| 亚洲国产精品高清在线| 少妇高潮流白浆在线观看| 久久精品亚洲牛牛影视| 亚洲av永久综合网站美女| 国产自拍精品一区在线观看| a级毛片成人网站免费看 | 国产欧美日韩在线观看| 亚洲青涩在线不卡av| 精品亚洲第一区二区三区| 国产精品一区二区久久乐下载| jlzzjlzz全部女高潮| 99热婷婷一区二区三区| 77777_亚洲午夜久久多人| 欧美俄罗斯乱妇| 谁有在线观看av中文| 日韩精品视频免费网站| 女人被狂躁到高潮视频免费网站 | 亚洲AV无码精品呻吟| 日本高清一区在线你懂得|