亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于博弈論的無線Mesh網(wǎng)絡(luò)路由與信道分配聯(lián)合優(yōu)化算法

        2018-06-01 06:25:29張維維何家峰高國旺任麗莉申鉉京
        關(guān)鍵詞:博弈論吞吐量參與者

        張維維,何家峰,高國旺,任麗莉,申鉉京

        (1.吉林大學(xué) 計(jì)算機(jī)科學(xué)與技術(shù)學(xué)院,長春 130012;2.長春師范大學(xué) 國際交流學(xué)院,長春 130032;3.31693部隊(duì),哈爾濱150036;4.西安石油大學(xué) 電子工程學(xué)院,西安 710065;5.長春師范大學(xué) 網(wǎng)絡(luò)中心,長春 130032)

        0 引 言

        無線Mesh網(wǎng)(Wireless Mesh networks,WMN)結(jié)合了無線局域網(wǎng)(Wireless LAN,WLAN)和無線移動(dòng)自組織網(wǎng)絡(luò)(Ad-hoc網(wǎng)絡(luò))的優(yōu)點(diǎn),是針對(duì)特定業(yè)務(wù)需求而出現(xiàn)的一種新型無線網(wǎng)絡(luò)技術(shù)[1]。其應(yīng)用包括了家庭寬帶網(wǎng)絡(luò)(Home network)、區(qū)域和城網(wǎng)絡(luò)(WMAN)、公共緊急通信、戰(zhàn)場(chǎng)通信等[2]。由于具有傳輸速率高、架設(shè)方便、覆蓋范圍靈活以及較強(qiáng)的容錯(cuò)能力等優(yōu)點(diǎn),無線Mesh網(wǎng)絡(luò)被認(rèn)為是自組織無線網(wǎng)和自動(dòng)可配置無線網(wǎng)中最有發(fā)展?jié)摿Φ慕M網(wǎng)技術(shù)之一[3]。

        由美國麻省理工學(xué)院成立的較早啟動(dòng)的WMN實(shí)驗(yàn)研究項(xiàng)目的實(shí)驗(yàn)數(shù)據(jù)表明,對(duì)于超過4跳的路徑,基于TCP協(xié)議的端到端吞吐量在達(dá)到47.3 kB/s時(shí),其端到端延遲為43 ms[4]。德國柏林洪德寶大學(xué)(HumboldtUniversity)的計(jì)算機(jī)科學(xué)學(xué)院的學(xué)生志愿者組建了名為Berlin Roof Net的WMN測(cè)試環(huán)境(Duarte et al. 2012)[5]。國內(nèi)也對(duì)WMN進(jìn)行了研究,比如天津技術(shù)開發(fā)區(qū)已采用無線Mesh解決方案在全區(qū)范圍內(nèi)進(jìn)行部署,日后將實(shí)現(xiàn)達(dá)到200個(gè)監(jiān)控點(diǎn)的分布式網(wǎng)絡(luò)[6]。

        著名科學(xué)家von Neuma和Morgenstern于20世紀(jì)中期提出了博弈論(也被稱為對(duì)策論或賽局理論),主要研究某一博弈中決策者根據(jù)實(shí)時(shí)或者非實(shí)時(shí)的環(huán)境變化做出的決策對(duì)于最終收益的影響[7]。博弈論自出現(xiàn)之日起就在經(jīng)濟(jì)學(xué)領(lǐng)域得到了廣泛應(yīng)用,據(jù)統(tǒng)計(jì),研究博弈論的學(xué)者們自博弈論誕生到2015年期間已經(jīng)獲得了8次諾貝爾經(jīng)濟(jì)學(xué)獎(jiǎng),其中在2012年時(shí),更是以當(dāng)時(shí)的獲獎(jiǎng)?wù)週loyd Shapley的名字命名了著名的Shapley值,在2014年時(shí),諾貝爾經(jīng)濟(jì)學(xué)獎(jiǎng)?lì)C獎(jiǎng)委員會(huì)將獎(jiǎng)項(xiàng)頒發(fā)給了著有《博弈論》一書的法國作家——Jean Tirole[8]。

        本文提出了一種新的基于博弈論的合作算法來解決聯(lián)合路由與信道分配的最優(yōu)化問題。提出了兩個(gè)博弈策略:極大極小策略給所有節(jié)點(diǎn)分配最優(yōu)極大極小路徑,提供給納什均衡策略一個(gè)常數(shù)向量;納什均衡策略應(yīng)用向量l計(jì)算最優(yōu)發(fā)射功率來達(dá)到均衡的信道分配。納什均衡點(diǎn)如果存在,解是唯一的。最后,通過數(shù)值仿真驗(yàn)證了聯(lián)合簇間公平路由與信道分配算法的性能。

        1 相關(guān)工作

        在無線Mesh網(wǎng)絡(luò)中,如果節(jié)點(diǎn)被允許絕對(duì)自私地管理,節(jié)點(diǎn)在低質(zhì)量鏈路上可能選擇轉(zhuǎn)發(fā)包(因此發(fā)生一個(gè)更低的機(jī)會(huì)花銷),而不是占據(jù)一種合作形式,在合作形式下節(jié)點(diǎn)轉(zhuǎn)發(fā)通信在一條高質(zhì)量鏈路上,在合作形式下可能得到公平的鏈接[8]。處理過程如下:假定每個(gè)資源節(jié)點(diǎn)(或是自私的或是合作的)是理性的。如果節(jié)點(diǎn)知道權(quán)力低將會(huì)受到網(wǎng)絡(luò)的懲罰,一個(gè)自私節(jié)點(diǎn)不會(huì)所有時(shí)間在一個(gè)低質(zhì)量鏈路上轉(zhuǎn)發(fā)數(shù)據(jù)[9]。在另一方面,需要目標(biāo)節(jié)點(diǎn)(收到流量)監(jiān)測(cè)服務(wù)水平檢測(cè)到部分源節(jié)點(diǎn)壞的行為,監(jiān)測(cè)對(duì)硬件和軟件都是一種需要很大能量花銷的活動(dòng)。因此,源節(jié)點(diǎn)考慮范圍內(nèi)合作而不是自私,與此同時(shí),目標(biāo)節(jié)點(diǎn)考慮監(jiān)測(cè)來自于源節(jié)點(diǎn)的服務(wù)范圍[10]。用貝葉斯博弈理論找到Nash均衡點(diǎn)確保源節(jié)點(diǎn)的最優(yōu)合作范圍和目的節(jié)點(diǎn)的最優(yōu)監(jiān)測(cè)率。本文的博弈理論公式是基于價(jià)格模型,為了確保可靠的鏈接,每個(gè)目標(biāo)節(jié)點(diǎn)收益一定量的“虛擬貨幣”給源節(jié)點(diǎn)(基于預(yù)算)[11]。虛擬貨幣被執(zhí)行作為可用網(wǎng)絡(luò)經(jīng)濟(jì)的有限的令牌集合。源節(jié)點(diǎn)用貨幣購買鏈接目的節(jié)點(diǎn)的鏈接。假定源節(jié)點(diǎn)通過指令通信控制中間節(jié)點(diǎn)。

        信道對(duì)競(jìng)爭(zhēng)和節(jié)點(diǎn)自身之間的信道分配方案影響越來越大,是導(dǎo)致無線網(wǎng)絡(luò)性能下降的最主要原因之一。雖然無線網(wǎng)絡(luò)中的所有節(jié)點(diǎn)都設(shè)置有多個(gè)射頻通信接口,但只有當(dāng)連接的接口和信道保持通信時(shí),每個(gè)接口才對(duì)應(yīng)不同的信道。

        為了適合節(jié)點(diǎn)自私自利的特性,幾個(gè)新的基于博弈論的機(jī)制被設(shè)計(jì)在Mesh傳感器網(wǎng)絡(luò)的路由算法中。帶有參數(shù)(V,T)的重復(fù)博弈方案被解釋如下:每一個(gè)節(jié)點(diǎn)的效用U與閾值V比較。如果U

        博弈論廣泛應(yīng)用于經(jīng)濟(jì)學(xué)領(lǐng)域,從最初的經(jīng)濟(jì)學(xué)領(lǐng)域建模發(fā)展到網(wǎng)絡(luò)問題,用于仿真自私節(jié)點(diǎn)的合作。每個(gè)循環(huán)的進(jìn)程從匯聚節(jié)點(diǎn)或基站重新調(diào)度基于最高的能量級(jí)別簇頭,以應(yīng)答信息到新的簇頭的方式。該方法是基于實(shí)用動(dòng)態(tài)源路由協(xié)議。協(xié)議的另一個(gè)重要方法是收益計(jì)算的閾值,閾值是0或者1。0代表取決于閾值的收益縮減,1代表取決于閾值的收益增加。與之前的Leach協(xié)議比較,基于閾值條件下收益用于發(fā)送能量數(shù)據(jù),避免整個(gè)網(wǎng)絡(luò)中的自大化攻擊者。博弈論是簇間能效優(yōu)化的網(wǎng)絡(luò)性能優(yōu)化方法。

        2 吞吐量分析及模型構(gòu)建

        2.1 預(yù)備知識(shí)

        解決相鄰信道傳輸之間的干擾引起的約束問題,利用聯(lián)合信道分配和路由器接口分配,將該問題看作是一種跨層網(wǎng)絡(luò)效用最大化問題。在一個(gè)多信道無線Mesh網(wǎng)絡(luò)中,兩個(gè)邏輯鏈路(m,n),(m,p)∈L被定義為相互干擾,必須同時(shí)滿足如下條件:

        (2)一個(gè)信道的發(fā)送/接收接口是在其他信道的發(fā)送/接收接口的干涉范圍內(nèi)。

        2.2 不可轉(zhuǎn)移收益合作博弈方法

        通過建模,博弈了理論有效的改善路由協(xié)議性能。兩個(gè)參與者的初始狀態(tài)是最小化參與者和最大化參與者。定義博弈的每一個(gè)參與者和收益函數(shù),量化最小參與者的結(jié)果;最小化參與者選擇最小化函數(shù),最大化參與者選擇最大化函數(shù)。在使用博弈模型中,兩個(gè)參與者是同樣的。所有的路由器聚集到一起形成一個(gè)參與者,是路由器參與者的集合;另一個(gè)參與者是鏈路的集合,是網(wǎng)絡(luò)參與者。路由器參與者集合的博弈移動(dòng)是執(zhí)行路由協(xié)議。網(wǎng)絡(luò)參與者博弈移動(dòng)是改變網(wǎng)絡(luò)拓?fù)?。極大極小策略搜索博弈樹找到極大極小路徑;極大極小值(極大極小結(jié)果)是應(yīng)用到路徑上的代價(jià)函數(shù)。極大極小值是在博弈的約束內(nèi),如果路由器已經(jīng)被優(yōu)化,那么,在網(wǎng)絡(luò)內(nèi)無論發(fā)生什么,路由器確保不會(huì)低于極小極大值。

        不可轉(zhuǎn)移收益合作博弈模型包括4個(gè)基本要素:局中人、結(jié)果集合、特征函數(shù)、以及收益函數(shù)。其中,局中人(參與者)是博弈過程中的決策主體,結(jié)果集是X,將N的每個(gè)非空子集S(即一合作)賦一個(gè)集合V(S) ?X的特征函數(shù)V。收益函數(shù)是局中人從各種策略中能夠獲取的收益。其中,N={1,2,…,n}為全部博弈局中人的集合,S=S1×S2×…×Sn為所有參與者的策略的集合,×為笛卡爾乘積。參與者i的收益是一個(gè)測(cè)量函數(shù),用ui來表示。U表示所有局中人獲得的收益集合,其中U={u1,u2,…,un}。不可轉(zhuǎn)移收益模型是一種靜態(tài)的博弈模型,在這個(gè)模型中,一些參與者合作達(dá)到高的收益率。本文采用極大極小合作納什均衡,目標(biāo)是最大化通信線路的收益,分析極大極小合作納什均衡的存在,證明極大極小合作納什均衡的必要條件。仿真結(jié)果顯示,根據(jù)合作收益得到的多跳鏈路數(shù)據(jù)速率,極大極小合作納什均衡優(yōu)于合作納什均衡方案和納什均衡方案。

        2.3 基于合作博弈的聯(lián)合簇間公平路由與信道分配模型

        聯(lián)合簇間公平路由與信道分配對(duì)隨機(jī)博弈網(wǎng)絡(luò)定義如下:

        SGN= (N,T,P,F,π,λ,R,U,M0)

        每個(gè)參與者采用一個(gè)統(tǒng)一的隨機(jī)分布策略,比如以0.5 的概率選擇一個(gè)信道將本文采用的信道分配與隨機(jī)分配信道相比較,5個(gè)參與者的節(jié)點(diǎn)的滿意度明顯高于隨機(jī)分配。

        剩余能量越小,成為簇頭的概率越?。?/p>

        (1)

        式中:fi為節(jié)點(diǎn)i當(dāng)前的剩余能量,取值范圍為[0,1];Ei為節(jié)點(diǎn)i在初始狀態(tài)時(shí)所具有的能量;Ei0為剩余能量因子。

        令簇頭間的距離為最佳距離,就可以使得周圍節(jié)點(diǎn)密度較大的節(jié)點(diǎn)更有可能成為簇頭節(jié)點(diǎn)。

        Leach協(xié)議不考慮節(jié)點(diǎn)是否曾經(jīng)擔(dān)任過簇頭,對(duì)節(jié)點(diǎn)的任務(wù)分配極為不公平。對(duì)比分析節(jié)點(diǎn)的狀態(tài)函數(shù),增加節(jié)點(diǎn)的節(jié)點(diǎn)需求帶寬等參數(shù),構(gòu)建節(jié)點(diǎn)的狀態(tài)描述模型:定義ci,j為節(jié)點(diǎn)i在某一時(shí)刻j的貢獻(xiàn)值衡量函數(shù),Δc為不同的貢獻(xiàn)變化值,而如何選擇最終的簇頭節(jié)點(diǎn),就需要通過博弈論來解決問題。

        (2)

        (3)

        式中:b∈(0,1]為Ui函數(shù)中可調(diào)的參數(shù),表示節(jié)點(diǎn)的帶寬需求的滿意程度,Ui為效用函數(shù);Lw為節(jié)點(diǎn)在帶寬w下傳輸數(shù)據(jù)幀(不包含控制信息)的長度為L;節(jié)點(diǎn)i在發(fā)送功率p下傳輸數(shù)據(jù)幀的長度為M;0≤s1≤s2≤…≤s,Si={0,s1,s2,…,s}為參與者i的策略空間。

        對(duì)于任何兩個(gè)節(jié)點(diǎn)m,n∈N,存在一條邏輯鏈路(m,n)∈L,定義一個(gè)C×1的信道分配向量Xmn,如果節(jié)點(diǎn)m與n在第i條頻道進(jìn)行通信,那么向量Xmn中的第i個(gè)元素就被設(shè)置為1;否則,將被設(shè)置為0。例如,假設(shè)C=5,節(jié)點(diǎn)m與n在第2條頻道上進(jìn)行通信,則Xmn=[0 1 0 0 0]T。

        為了建立邏輯鏈路(m,n)∈L,路由器節(jié)點(diǎn)m與n應(yīng)該分配通用的信道,即:

        Xmn=Xnm,?m,n∈N, (m,n)∈L

        (4)

        lTXmn=1,?m,n∈N, (m,n)∈L

        (5)

        式中:l表示一個(gè)C×1的信道分配向量,其所有的向量元素均為1??紤]兩個(gè)邏輯鏈路(m,n),(m,p)∈L,有如下公式:

        (6)

        對(duì)于任何兩個(gè)節(jié)點(diǎn)m,n∈N,存在一條邏輯鏈路(m,n)∈L,定義一個(gè)I×1的接口分配向量Ymn,如果節(jié)點(diǎn)m的第i個(gè)接口與節(jié)點(diǎn)n進(jìn)行通信,那么向量Ymn中的第i個(gè)元素就被設(shè)置為1;否則,將被設(shè)置為0。例如,假設(shè)I=3,節(jié)點(diǎn)m使用其第1個(gè)接口與節(jié)點(diǎn)n進(jìn)行通信,則Ymn=[1 0 0]T。

        為了建立邏輯鏈路(m,n)∈L,路由器節(jié)點(diǎn)m與n應(yīng)該使用它們的一個(gè)接口。需要特別注意的是,Ymn≠Ynm。然而,其仍然需要滿足:

        lTYmn=1,?m,n∈N,(m,n)∈L

        (7)

        (8)

        ?m,n,p∈N;(m,n),(m,p)∈L

        信道和接口聯(lián)合分配模型可以表示為〈X,Y〉,在模型由信道分配向量Xmn和接口分配向量Ymn共同決定了所有邏輯鏈路(m,n)∈L的分配。

        為Mesh傳感器網(wǎng)絡(luò)構(gòu)造收益函數(shù),通過并行迭代的方式獲得網(wǎng)絡(luò)信道分配的納什均衡策略,使所有節(jié)點(diǎn)的收益函數(shù)達(dá)到最優(yōu)化,節(jié)點(diǎn)i的收益函數(shù)Ui=M是節(jié)點(diǎn)i占用帶寬進(jìn)行直接傳輸所獲得的吞吐量與節(jié)點(diǎn)i所獲得的吞吐量之和除以節(jié)點(diǎn)i對(duì)所占用的協(xié)作帶寬wi的支付。

        對(duì)于聯(lián)合合作博弈的模型,由于尋求模型(3)最優(yōu)解的問題是一個(gè)NP難題,本文嘗試用貪婪算法尋求近似最優(yōu)解。

        貪婪算法:設(shè)I表示當(dāng)前帶寬需求低的節(jié)點(diǎn)(參與者)構(gòu)成的集合,若當(dāng)前最大收益為Ui(j)=maxk∈N,l∈jrl(k)則說明參與者i的帶寬需求高,則將參與者i放入表示帶寬需求高的節(jié)點(diǎn)構(gòu)成的集合j。

        每個(gè)Mesh節(jié)點(diǎn)根據(jù)策略Si來選擇效用Us,如果效用函數(shù)提高,則博弈過程再次進(jìn)入循環(huán)。同時(shí)所有節(jié)點(diǎn)依次進(jìn)行次操作從而達(dá)到納什均衡。本文博弈基本算法步驟如下:

        (1)初始化,為N個(gè)Mesh節(jié)點(diǎn)分配信道,所有節(jié)點(diǎn)的策略組合記為S0。

        (2)迭代過程,節(jié)點(diǎn)按照接入網(wǎng)絡(luò)的順序依次進(jìn)行博弈,依次選擇使得效用函數(shù)最大的策略,更新所有節(jié)點(diǎn)的策略組合為S*。

        (3)終止過程,重復(fù)迭代過程,直至算法收斂。

        3 仿真和性能分析

        在前文提出的基于不可轉(zhuǎn)移收益合作博弈的簇間公平性路由聯(lián)合信道分配的基礎(chǔ)上進(jìn)行仿真實(shí)驗(yàn),使用仿真工具NS3作為仿真平臺(tái),驗(yàn)證路由協(xié)議的有效性,并對(duì)比簇間公平路由、所有Leach路由的吞吐量,對(duì)比不同的信道分配策略。設(shè)定邊長為800 m的方形監(jiān)測(cè)區(qū)域內(nèi),隨機(jī)放置100個(gè)點(diǎn)。假設(shè)仿真場(chǎng)景中的無線路由器也是固定不動(dòng)的,整個(gè)仿真網(wǎng)絡(luò)參數(shù)設(shè)置如表1所示。為了方便計(jì)算,路由度量參數(shù)設(shè)定為跳數(shù)。算法求解合作博弈函數(shù)的最大值。

        表1 仿真參數(shù)Table 1 Simulation parameters

        實(shí)驗(yàn)設(shè)定目的地址是由路由器隨機(jī)選擇的,隨后通過發(fā)送數(shù)據(jù)分組不斷擴(kuò)展整個(gè)無線網(wǎng)絡(luò)的大小,圖1為基于兩種不同路由協(xié)議網(wǎng)絡(luò)總吞吐量的對(duì)比值。其中,網(wǎng)絡(luò)吞吐量定義為從源節(jié)點(diǎn)發(fā)送的在正確的接收時(shí)間內(nèi)目的節(jié)點(diǎn)接收到的數(shù)據(jù)總量。由圖1可以發(fā)現(xiàn),2種路由協(xié)議的網(wǎng)絡(luò)吞吐量隨著節(jié)點(diǎn)數(shù)目的增多而發(fā)生變化,可以發(fā)現(xiàn)簇間公平路由協(xié)議的網(wǎng)絡(luò)吞吐量明顯高于LEACH協(xié)議的網(wǎng)絡(luò)吞吐量。

        圖2中顯示的是在9個(gè)節(jié)點(diǎn)的情景中對(duì)使用2種不同路由協(xié)議的無線路由網(wǎng)絡(luò)中每個(gè)節(jié)點(diǎn)的吞吐量進(jìn)行對(duì)比的結(jié)果。在這9個(gè)節(jié)點(diǎn)中,將第5個(gè)節(jié)點(diǎn)配置為網(wǎng)關(guān)節(jié)點(diǎn),將第7個(gè)節(jié)點(diǎn)配置為與網(wǎng)關(guān)節(jié)點(diǎn)相距最遠(yuǎn)的節(jié)點(diǎn)。每個(gè)節(jié)點(diǎn)的吞吐量差別在簇間公平路由協(xié)議下基本保持相近的狀態(tài)。這就說明簇間公平路由協(xié)議對(duì)于各個(gè)節(jié)點(diǎn)的公平性考慮得比較全面,每個(gè)節(jié)點(diǎn)通過簇間公平路由協(xié)議都可以得到相應(yīng)的帶寬,其公平性原則在分配帶寬時(shí)顯得尤為重要。

        圖2 節(jié)點(diǎn)的吞吐量對(duì)比Fig.2 Comparing nodes throughput

        如圖3所示,在節(jié)點(diǎn)(參與者)帶寬需求相同時(shí),比較基于博弈論的算法和基于貪婪算法的系統(tǒng)吞吐量,在參與者的平均帶寬需求大于56 Mbit/s時(shí),存在相互干擾,從而導(dǎo)致網(wǎng)絡(luò)的吞吐量呈下降趨勢(shì),基于博弈算法的吞吐量明顯大于基于貪婪算法的吞吐量。

        圖3 系統(tǒng)吞吐量與節(jié)點(diǎn)平均帶寬需求之間的關(guān)系Fig. 3 Relationship of participants’ average business requirements and system throughput

        4 結(jié)束語

        本文根據(jù)無線Mesh網(wǎng)絡(luò)中路由器分布的公平性原則,使用博弈論方法進(jìn)行分析后將協(xié)議進(jìn)行了路由協(xié)議。實(shí)驗(yàn)結(jié)果表明,基于博弈論的無線Mesh網(wǎng)絡(luò)路由協(xié)議增加了網(wǎng)絡(luò)吞吐量,并使得網(wǎng)絡(luò)中各個(gè)無線節(jié)點(diǎn)占有的信道資源基本相近,滿足公平性原則。這些研究可以很好地解決當(dāng)前Mesh網(wǎng)絡(luò)接入?yún)f(xié)議的問題,為Mesh網(wǎng)絡(luò)的普及和應(yīng)用提供非常重要的作用。

        參考文獻(xiàn):

        [1]叢犁,張海林,劉毅,等.基于粒子群優(yōu)化的協(xié)作網(wǎng)絡(luò)資源分配的博弈策略[J].吉林大學(xué)學(xué)報(bào):工學(xué)版, 2012, 42(1): 207-212.

        Cong Li,Zhang Hai-lin, Liu Yi,et al.Particle swarm optimized game theory for resource allocation in cooperative networks[J].Journal of Jilin University(Engineering and Technology Edition),2012,42(1):207-212.

        [2]魯智,顧學(xué)邁,李世忠,等.新的速率與功率聯(lián)合博弈的分布式控制算法[J].吉林大學(xué)學(xué)報(bào):工學(xué)版, 2008, 38(2): 231-235.

        Lu Zhi,Gu Xue-mai, Li Shi-zhong,et al.Novel distributed rate and power on control algorithm based on joint game theoretic approach [J]. Journal of Jilin University(Engineering and Technology Edition), 2008, 38(2): 231-235.

        [3]Duarte P B F, Fadlullah Z M, Vasilakos A V, et al. On the partially overlapped channel assignment on wireless mesh network backbone: a game theoretic approach[J]. IEEE Journal on Selected Areas in Communications, 2012, 30(1): 119-127.

        [4]Gabale V,Raman B,Dutta P,et al.A classification framework for scheduling algorithms in wireless Mesh networks[J]. IEEE Communications Surveys & Tutorials, 2013, 15(1): 199-222.

        [5]Vural S, Wei D, Moessner K. Survey of experimental evaluation studies for wireless Mesh network deployments in urban areas towards ubiquitous internet[J]. IEEE Communications Surveys & Tutorials, 2013, 15(1): 223-239.

        [6]Jahanshahi M, Dehghan M, Meybodi M R. LAMR: learning automata based multicast routing protocol for multi-channel multi-radio wireless Mesh networks[J]. Applied Intelligence, 2013, 38(1): 58-77.

        [7]Chen J, He K, Du R, et al. Dominating set and network coding-based routing in wireless Mesh networks[J]. IEEE Transactions on Parallel and Distributed Systems, 2015, 26(2): 423-433.

        [8]Zhang Z, Long K, Wang J. Self-organization paradigms and optimization approaches for cognitive radio technologies: a survey[J]. IEEE Wireless Communications, 2013, 20(2): 36-42.

        [9]Wang B, Liu K J. Advances in cognitive radio networks: asurvey[J].IEEE Journal of Selected Topics in Signal Processing, 2011, 5(1):5-23.

        [10]Kaabi F, Ghannay S, Filali F. Channel allocation and routing in wireless Mesh networks: a survey and qualitative comparison between schemes[J]. International Journal of Wireless and Mobile Network, 2010, 2(1): 132-151.

        [11]de Domenico A, Strinati E C, di Benedetto M G. A survey on MAC strategies for cognitive radio networks[J].Communications Surveys & Tutorials,2012, 14(1): 21-44.

        [12]Rezgui J, Hafid A,Gendreau M. Distributed admission control in wireless mesh networks:models,algorithms,and evaluation[J].IEEE Transactions on Vehicular Technology,2010,59(3):1459-1473.

        猜你喜歡
        博弈論吞吐量參與者
        休閑跑步參與者心理和行為相關(guān)性的研究進(jìn)展
        淺析打破剛性兌付對(duì)債市參與者的影響
        2016年10月長三角地區(qū)主要港口吞吐量
        集裝箱化(2016年11期)2017-03-29 16:15:48
        2016年11月長三角地區(qū)主要港口吞吐量
        集裝箱化(2016年12期)2017-03-20 08:32:27
        博弈論視角下的自首行為分析
        海外僑領(lǐng)愿做“金絲帶”“參與者”和“連心橋”
        無知之幕與博弈:從“黃燈規(guī)則”看博弈論的一種實(shí)踐方案
        樊畿不等式及其在博弈論中的應(yīng)用
        2014年1月長三角地區(qū)主要港口吞吐量
        集裝箱化(2014年2期)2014-03-15 19:00:33
        博弈論視角下醫(yī)療糾紛解決方式選擇
        成人毛片av免费| 亚洲粉嫩视频在线观看| 一区二区在线视频免费蜜桃| 亚洲国产成人一区二区精品区| 久久精品视频在线看99| 美女高潮流白浆视频在线观看| 成年男女免费视频网站点播| 亚洲av无码国产精品久久| 欧洲精品免费一区二区三区| 成人欧美在线视频| 黄色三级一区二区三区| 一本一道久久精品综合| 中文乱码字慕人妻熟女人妻| 亞洲綜合一區二區三區無碼| 午夜男女视频一区二区三区| 国产自拍精品视频免费| 亚洲一区 日韩精品 中文字幕| 精品五月天| 人妻少妇偷人精品久久人妻| 国产精品99久久不卡二区| 日本av天堂一区二区三区| 正在播放国产多p交换视频| 久99久热只有精品国产男同| 亚洲精品中文字幕尤物综合| 一区二区三区高清在线观看视频| 亚洲精品国产av天美传媒| 中文字幕少妇AV| 麻豆av毛片在线观看| 狠狠摸狠狠澡| 国产精品ⅴ无码大片在线看| 中文字幕精品久久久久人妻红杏1| 国产真实伦视频在线视频| 中文国产乱码在线人妻一区二区| 女局长白白嫩嫩大屁股| 在线一区不卡网址观看| 亚洲一区久久久狠婷婷| 在线观看av网站永久| 亚洲精品字幕在线观看| 噜噜噜色97| 精品国产精品三级在线专区| 亚洲av无码一区二区三区观看|