亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于Quanser實(shí)驗(yàn)平臺(tái)的帶有輸出約束單連桿柔性機(jī)械臂的神經(jīng)網(wǎng)絡(luò)控制

        2018-05-30 10:48:04侯佳祎高赫佳賀威孫長(zhǎng)銀
        關(guān)鍵詞:連桿柔性約束

        侯佳祎 高赫佳 賀威 孫長(zhǎng)銀

        摘要 機(jī)械臂在航空航天、服務(wù)等領(lǐng)域的應(yīng)用越來越廣泛,其研究也越來越深入.相比于剛性機(jī)械臂,柔性機(jī)械臂質(zhì)量輕、能耗小,具有更好的性能.但是,由于柔性機(jī)械臂本身的結(jié)構(gòu)與材料具有特殊性,其在運(yùn)動(dòng)過程中會(huì)產(chǎn)生彈性形變與振動(dòng),這就給機(jī)械臂的定位、軌跡跟蹤帶來了困難,因此對(duì)其振動(dòng)抑制的研究具有重要意義.本文利用假設(shè)模態(tài)法對(duì)單連桿柔性機(jī)械臂系統(tǒng)進(jìn)行建模,通過李雅普諾夫直接法實(shí)現(xiàn)了閉環(huán)系統(tǒng)的穩(wěn)定性.由于一些實(shí)際問題對(duì)控制系統(tǒng)的狀態(tài)量有特殊要求,因此采用正切函數(shù)形式的障礙李雅普諾夫策略來處理輸出約束問題,之后利用神經(jīng)網(wǎng)絡(luò)控制方法來逼近系統(tǒng)的不確定性,通過李雅普諾夫法對(duì)閉環(huán)系統(tǒng)的穩(wěn)定性進(jìn)行了分析,并基于Matlab平臺(tái)設(shè)計(jì)仿真、基于Quanser實(shí)驗(yàn)平臺(tái)進(jìn)行實(shí)驗(yàn),對(duì)控制器的控制性能進(jìn)行了驗(yàn)證.

        關(guān)鍵詞

        柔性機(jī)械臂;輸出約束;神經(jīng)網(wǎng)絡(luò)控制;Quanser實(shí)驗(yàn)平臺(tái);假設(shè)模態(tài)法

        中圖分類號(hào)? TP273;TP183

        文獻(xiàn)標(biāo)志碼? A

        0 引言

        隨著社會(huì)生產(chǎn)力的迅速發(fā)展,機(jī)械臂在各個(gè)領(lǐng)域內(nèi)的應(yīng)用越來越廣泛,尤其是航空航天[1] 、服務(wù)[2] 等領(lǐng)域,機(jī)械臂的研究越來越受重視.與剛性機(jī)械臂相比,柔性機(jī)械臂自重輕、耗能低、靈活度高,具有明顯的優(yōu)勢(shì),所以柔性機(jī)械臂的研究也成為了一個(gè)熱點(diǎn).但是,柔性機(jī)械臂的自身結(jié)構(gòu)與材料所具有的優(yōu)點(diǎn)也是其研究困擾所在.在運(yùn)動(dòng)過程中,柔性機(jī)械臂自身會(huì)產(chǎn)生彈性形變與振動(dòng),這就使得其運(yùn)動(dòng)定位與軌跡跟蹤有一定難度,因此,對(duì)柔性機(jī)械臂的運(yùn)動(dòng)軌跡實(shí)現(xiàn)跟蹤并對(duì)其振動(dòng)進(jìn)行抑制有重要意義.此外,在運(yùn)動(dòng)控制中常遇到約束問題,比如驅(qū)動(dòng)電動(dòng)機(jī)的額定轉(zhuǎn)矩、額定轉(zhuǎn)速、機(jī)械限位、運(yùn)動(dòng)干涉等,還有一些特定場(chǎng)合中的特殊約束問題,如繩牽引機(jī)構(gòu)在運(yùn)動(dòng)中需要考慮繩子的牽引力約束[3] 、機(jī)械加工中需要通過優(yōu)化刀具運(yùn)動(dòng)軌跡使切削力滿足約束[4] 、視覺伺服系統(tǒng)需要考慮視覺的能見性約束、移動(dòng)小車在轉(zhuǎn)彎過程中需要考慮曲率約束、剛性機(jī)器人的運(yùn)動(dòng)中需要對(duì)各個(gè)關(guān)節(jié)的角速度和角度進(jìn)行約束,而在本文中對(duì)柔性機(jī)械臂的運(yùn)動(dòng)進(jìn)行控制時(shí),對(duì)柔性臂的偏轉(zhuǎn)角度誤差進(jìn)行約束是主要問題.在柔性機(jī)械臂的研究?jī)?nèi)容中,主要有4個(gè)方面:1)柔性機(jī)械臂的動(dòng)力學(xué)建模;2)控制策略設(shè)計(jì)及穩(wěn)定性驗(yàn)證;3)基于Matlab進(jìn)行仿真;4)進(jìn)行實(shí)驗(yàn)驗(yàn)證.

        柔性機(jī)械臂是一個(gè)復(fù)雜的動(dòng)力學(xué)系統(tǒng),進(jìn)行動(dòng)態(tài)建模是對(duì)其實(shí)現(xiàn)控制的基礎(chǔ).利用有限元法[5] 、有限差分法、集總參數(shù)法、假設(shè)模態(tài)法等均可建立其離散化模型,從而在柔性臂的運(yùn)動(dòng)過程中實(shí)現(xiàn)對(duì)其末端的精準(zhǔn)定位和對(duì)其軌跡的精確追蹤.本文采用假設(shè)模態(tài)法對(duì)單連桿柔性機(jī)械臂進(jìn)行了建模.假設(shè)柔性連桿的彈性形變比較小,將其表示為有限個(gè)模態(tài)函數(shù)的線性組合和,將每個(gè)模態(tài)定義成兩個(gè)函數(shù)的乘積,一個(gè)函數(shù)是模態(tài)函數(shù),另一個(gè)函數(shù)是與模態(tài)函數(shù)對(duì)應(yīng)的廣義坐標(biāo).

        在所提出的動(dòng)力學(xué)模型的基礎(chǔ)上進(jìn)行控制器設(shè)計(jì)可以實(shí)現(xiàn)控制目標(biāo),即讓柔性臂偏轉(zhuǎn)到理想角度[6] ,令其彈性形變[7] 得到有效抑制.目前已經(jīng)有許多應(yīng)用于柔性結(jié)構(gòu)的控制策略[8] ,如用末端加速度反饋[9] 實(shí)現(xiàn)對(duì)柔性機(jī)械臂末端的軌跡控制;選用黏彈性大的阻尼材料用于柔性機(jī)械臂的振動(dòng)控制,即被動(dòng)阻尼控制[10] ;通過力反饋控制,即根據(jù)逆動(dòng)力學(xué)分析,通過臂末端的給定運(yùn)動(dòng)而求得施加于驅(qū)動(dòng)端的力矩,并通過運(yùn)動(dòng)或力檢測(cè)對(duì)驅(qū)動(dòng)力矩進(jìn)行反饋補(bǔ)償,從而實(shí)現(xiàn)軌跡跟蹤與振動(dòng)抑制[11] ;變結(jié)構(gòu)滑??刂芠12] 能夠使控制系統(tǒng)在發(fā)生變化和外部擾動(dòng)的情形下仍具有很強(qiáng)的魯棒性且容易解藕;利用邊界控制法[13] 使最終一致有界的閉環(huán)柔性機(jī)械系統(tǒng)、邊界外部干擾以及輸入死區(qū)非線性的問題得以解決;將魯棒控制[14] 應(yīng)用于電動(dòng)柔性關(guān)節(jié)機(jī)器人的電壓控制非常有效;使用模糊模型的隸屬函數(shù)[15] 來逼近系統(tǒng)的不確定性;利用自適應(yīng)模糊控制對(duì)非嚴(yán)格反饋隨機(jī)非線性系統(tǒng)實(shí)現(xiàn)控制[16] 等.

        與傳統(tǒng)控制方法相比,神經(jīng)網(wǎng)絡(luò)控制方法所需要的動(dòng)態(tài)信息比較少,將其用于處理不確定非線性系統(tǒng)[17] 的有效性已被證明[18] ,而且其具有出色的非線性擬合能力和高適應(yīng)性、容錯(cuò)性,在非線性系統(tǒng)的控制設(shè)計(jì)[19-22] 中得到了廣泛應(yīng)用.本文針對(duì)單連桿柔性機(jī)械臂系統(tǒng)的不確定性,提出了一種基于RBF(Radial Basis Function)神經(jīng)網(wǎng)絡(luò)的單連桿柔性機(jī)械臂系統(tǒng)的控制器.

        目前,已經(jīng)有許多控制方法被應(yīng)用于解決約束問題[23] ,如根據(jù)機(jī)器人動(dòng)力學(xué)方程,通過優(yōu)化時(shí)間[24] 使得機(jī)器人滿足關(guān)節(jié)力矩約束和操作力約束;通過優(yōu)化B樣條曲線的參數(shù),獲得滿足約束條件的關(guān)節(jié)運(yùn)動(dòng)軌跡,可用于軌跡規(guī)劃的曲線類型有梯形和S形速度曲線、三角函數(shù)曲線、B樣條曲線、多項(xiàng)式曲線等[25] ;采用一種自適應(yīng)的位置/力來保證系統(tǒng)的不確定約束的軌跡跟蹤問題[26] 等.障礙李雅普諾夫函數(shù)方法也是一種很有效的解決約束的控制方法[27-28] .本文采用的解決輸出約束問題的方法是障礙李雅普諾夫函數(shù)法.

        本文的主要貢獻(xiàn)包括:

        1)基于系統(tǒng)的已知狀態(tài)與未知狀態(tài),提出了具有全狀態(tài)反饋的神經(jīng)網(wǎng)絡(luò)控制器,利用障礙李雅普諾夫函數(shù),提出了具有輸出約束的神經(jīng)網(wǎng)絡(luò)控制器,并通過李雅普諾夫直接法,證明了閉環(huán)系統(tǒng)的一直最終有界性.

        2)基于Matlab,對(duì)受帶輸出約束的神經(jīng)網(wǎng)絡(luò)控制的

        單連桿柔性機(jī)械臂系統(tǒng)進(jìn)行了數(shù)字仿真,并與開環(huán)系統(tǒng)、受無輸出約束的神經(jīng)網(wǎng)絡(luò)控制的系統(tǒng)進(jìn)行了對(duì)比,證明了帶有輸出約束的神經(jīng)網(wǎng)絡(luò)控制器的有效性.

        3)基于Quanser單連桿柔性機(jī)械臂實(shí)驗(yàn)平臺(tái),利用Simulink設(shè)計(jì)控制框圖實(shí)現(xiàn)控制,對(duì)其在無輸出約束和有輸出約束的兩種控制器的控制下進(jìn)行了實(shí)驗(yàn),通過分析實(shí)驗(yàn)數(shù)據(jù)并進(jìn)行對(duì)比,證明了輸出約束控制器的有效性.

        1 問題描述與系統(tǒng)建模

        本文中實(shí)驗(yàn)所用的單連桿柔性機(jī)械臂主要由旋轉(zhuǎn)伺服裝置、柔性連桿模塊以及應(yīng)變片三部分組成.建模時(shí)做如下假設(shè):1)只考慮橫向振動(dòng),忽略其軸向變形和剪切變形等;2)柔性機(jī)械臂(梁)的長(zhǎng)度遠(yuǎn)大于其截面尺寸;3)柔性機(jī)械臂用固定夾頭與電機(jī)轉(zhuǎn)軸剛性連接,轉(zhuǎn)軸是剛性的,梁與轉(zhuǎn)軸相連處是固定邊界條件;4)端部物體尺寸忽略不計(jì),可看作質(zhì)點(diǎn);5)電動(dòng)機(jī)轉(zhuǎn)軸、齒輪箱和夾持裝置簡(jiǎn)化成一個(gè)中心剛體,其轉(zhuǎn)動(dòng)慣量為 J .因此,可將柔性臂系統(tǒng)視為歐拉-伯努利梁,單連桿柔性機(jī)械臂的結(jié)構(gòu)示意如圖1所示.

        3.1 開環(huán)系統(tǒng)

        在初始時(shí)刻對(duì)柔性連桿施以微小的干擾,并不對(duì)其施加任何控制,柔性連桿會(huì)產(chǎn)生非常明顯的振動(dòng),仿真結(jié)果如圖2所示.柔性連桿的末端位置與總位移在開環(huán)狀態(tài)下均不穩(wěn)定且伴有連續(xù)振蕩,振蕩幅度達(dá)到了4 cm.

        3.2 無輸出約束的單連桿柔性臂

        設(shè)置柔性連桿偏轉(zhuǎn)角的期望軌跡為正弦函數(shù) θ= ?sin (t),選擇參數(shù)K 1=0.5,K 2=5 進(jìn)行仿真,仿真結(jié)果如圖3所示.從圖3c、3d可知,大約在 t =1.2 s時(shí),柔性連桿開始實(shí)現(xiàn)理想軌跡跟蹤,并在控制器的控制下保持穩(wěn)定;由圖3a可知,柔性連桿穩(wěn)定后,其偏轉(zhuǎn)角誤差峰值接近0.101 rad(5.787°);由圖3b可知,柔性連桿穩(wěn)定后,其末端振動(dòng)誤差峰值接近1.63×10-3 ?rad(0.093°).在下一小節(jié)中,將通過第2節(jié)中設(shè)計(jì)的控制器對(duì)偏轉(zhuǎn)角誤差進(jìn)行約束.

        3.3 有輸出約束的單連桿柔性臂

        設(shè)置柔性連桿偏轉(zhuǎn)角的期望軌跡為正弦函數(shù) θ= ?sin (t),選擇參數(shù)K 1=23,K 2=11進(jìn)行仿真,令輸出約束k a=0.05, 可觀察到,相比于無輸出約束控制下的系統(tǒng),性能有所改善,仿真結(jié)果如圖4所示.從圖4c、4d可知,約在 t =0.8 s時(shí),柔性連桿開始實(shí)現(xiàn)理想軌跡跟蹤,并在控制器的控制下保持穩(wěn)定.由圖4a可知,相比上一節(jié)中的仿真結(jié)果,柔性連桿穩(wěn)定后,其偏轉(zhuǎn)角誤差峰值明顯減小,其最大值接近0.008 rad(0.458°),誤差減小了約92%,約束效果非常明顯;由圖4b可知,柔性連桿穩(wěn)定后,其末端振動(dòng) 的誤差峰值接近1.545×10-3 ?rad(0.088 5°),誤差減小了約5%.因此,第2節(jié)中所設(shè)計(jì)的控制器能對(duì)單連桿柔性機(jī)械臂實(shí)現(xiàn)明顯的輸出約束控制與振動(dòng)抑制,且效果良好.

        4 實(shí)驗(yàn)

        為進(jìn)一步驗(yàn)證控制器的可行性,本文基于Quanser單連桿柔性機(jī)械臂實(shí)驗(yàn)平臺(tái)進(jìn)行了實(shí)驗(yàn),該平臺(tái)是一種將FLEXGAGE模塊與物理模型聯(lián)通的實(shí)驗(yàn)設(shè)備,能對(duì)實(shí)驗(yàn)過程進(jìn)行實(shí)時(shí)監(jiān)測(cè).

        4.1 實(shí)驗(yàn)平臺(tái)簡(jiǎn)介

        如圖5所示,該平臺(tái)由電腦、柔性尺、SRV02伺服裝置、數(shù)據(jù)采集卡、功率放大器以及急停按鈕等組成,在電腦上利用Matlab中的Simulink模塊設(shè)計(jì)控制算法后可通過數(shù)據(jù)采集卡和功率放大器來與SRV02伺服裝置進(jìn)行聯(lián)通,因此可得到單連桿柔性機(jī)械臂實(shí)驗(yàn)平臺(tái)的工作框圖如圖6所示.Quanser柔性臂系統(tǒng)如圖7所示,其組成結(jié)構(gòu)包含一個(gè)輕質(zhì)的不銹鋼連桿,桿的一端裝有一個(gè)應(yīng)變片用來測(cè)量連桿末端的偏轉(zhuǎn)角度 θ ,柔性連桿在水平面上進(jìn)行轉(zhuǎn)動(dòng)的動(dòng)作是由SRV02旋 轉(zhuǎn)伺服電機(jī)(直流電機(jī))來驅(qū)動(dòng)的, 在該伺服電機(jī)上安裝著一個(gè)光電編碼器(分辨率為在正交模式下每轉(zhuǎn)計(jì)數(shù)4 096次)用來測(cè)量所產(chǎn)生的角度信號(hào)值.Quanser柔性臂系統(tǒng)的參數(shù)在表2中列出.

        為了對(duì)無輸出約束的控制器和帶有輸出約束的控制器的控制效果進(jìn)行觀察,用Simulink模塊為它們?cè)O(shè)計(jì)了帶有輸出約束的控制框圖(圖8).實(shí)驗(yàn)過程中,反饋信號(hào)為測(cè)得的柔性機(jī)械臂的偏轉(zhuǎn)角度的模擬信號(hào),該模擬信號(hào)通過功率放大器被傳輸?shù)綌?shù)據(jù)采集卡上進(jìn)行模數(shù)轉(zhuǎn)換,轉(zhuǎn)換得到的數(shù)字信號(hào)會(huì)被送到電腦上的控制器中,控制器會(huì)根據(jù)接收到的反饋信號(hào)進(jìn)行調(diào)整,而后再將調(diào)整后的控制信號(hào)經(jīng)數(shù)據(jù)采集板進(jìn)行數(shù)模轉(zhuǎn)換后傳輸?shù)剿欧b置中,這樣就能夠?qū)崿F(xiàn)對(duì)單連桿柔性機(jī)械臂系統(tǒng)的閉環(huán)控制.

        在以下兩小節(jié)中,將對(duì)無輸出約束的控制器和帶有輸出約束的控制器單連桿柔性機(jī)械臂進(jìn)行對(duì)比實(shí)驗(yàn).實(shí)驗(yàn)時(shí)間均設(shè)置為5 s,信號(hào)設(shè)置為幅值為1的正弦函數(shù),信號(hào)在0.1 s時(shí)給出,在進(jìn)行弧度-角度轉(zhuǎn)換前被放大45倍,因此,跟蹤軌跡的最大幅度應(yīng)趨于45°.期望結(jié)果用紫色線條表示,實(shí)際結(jié)果用藍(lán)色線條表示.如圖9a所示,可根據(jù)實(shí)驗(yàn)設(shè)備上的標(biāo)識(shí)線判斷柔性尺的大致位置,圖9b、9c、9d分別為柔性尺的初始位置與兩個(gè)最大偏轉(zhuǎn)角.但是由于在針對(duì)約束問題設(shè)計(jì)控制器的過程中,式(13)存在偏轉(zhuǎn)角的偏差 z 1 初始狀態(tài)等于0的情況,在進(jìn)行實(shí)驗(yàn)時(shí),即

        使將理想軌跡的初始值設(shè)為非零數(shù), z 1 在實(shí)驗(yàn)的初始時(shí)刻仍然為0,導(dǎo)致實(shí)驗(yàn)無法進(jìn)行,因此,需要在初始時(shí)刻手動(dòng)制造誤差,采取措施如下:

        1)由于初始誤差也需要在約束范圍內(nèi),所以將初始誤差的值設(shè)置為0.5°;

        2)根據(jù)實(shí)驗(yàn)對(duì)照原則,在無輸出約束的實(shí)驗(yàn)中也應(yīng)制造相同大小的誤差,因此根據(jù)需求畫出草圖,并將其貼在實(shí)驗(yàn)平臺(tái)上作為參照線;

        3)實(shí)驗(yàn)時(shí)先將柔性尺位置調(diào)整至復(fù)位狀態(tài)(圖10a),載入程序并連接設(shè)備后,將柔性尺位置調(diào)整至誤差為0.5°的狀態(tài)(圖10b),然后運(yùn)行并觀察生成的曲線.

        4.2 無輸出約束的單連桿柔性臂

        將參數(shù)設(shè)置為 K 1=35,K 2=2.5, 實(shí)驗(yàn)結(jié)果如圖11—13所示.觀察可知,控制器的控制效果與跟蹤效果都比較好,無輸出約束的單連桿柔性臂的偏轉(zhuǎn)角度誤差峰值穩(wěn)定后約為1.1°,末端振動(dòng)約在1.7 s時(shí)穩(wěn)定.

        4.3 有輸出約束的單連桿柔性臂

        將參數(shù)設(shè)置為 K 1=75,K 2=3.5, 實(shí)驗(yàn)結(jié)果如圖14—16所示.觀察可知,控制器的控制效果也比較好,有輸出約束的單連桿柔性臂的偏轉(zhuǎn)角度誤差峰值穩(wěn)定后約為0.8°,小于1°,證明有約束效果,末端振動(dòng)約在1.7 s時(shí)穩(wěn)定,其幅度相對(duì)于圖13有所減小.

        5 結(jié)論

        本文利用假設(shè)模態(tài)法對(duì)單連桿柔性機(jī)械臂的動(dòng)力學(xué)模型進(jìn)行了離散,設(shè)計(jì)了全狀態(tài)反饋的RBF神經(jīng)網(wǎng)絡(luò)控制器來實(shí)現(xiàn)對(duì)柔性連桿的軌跡跟蹤與振動(dòng)抑制,并且利用障礙李雅普諾夫函數(shù)實(shí)現(xiàn)了對(duì)柔性連桿偏轉(zhuǎn)角度誤差的約束,通過李雅普諾夫直接法實(shí)現(xiàn)了閉環(huán)系統(tǒng)的一致最終有界性.在此理論基礎(chǔ)上,基于Matlab進(jìn)行了數(shù)字仿真,并基于Quanser實(shí)驗(yàn)平臺(tái)進(jìn)行了大量實(shí)驗(yàn),驗(yàn)證了文中神經(jīng)網(wǎng)絡(luò)控制器的可行性與有效性.

        參考文獻(xiàn)

        References

        [ 1 ]?Ge ?S S,Zhang S,He W.Modeling and control of an Euler-Bernoulli beam under unknown spatiotemporally varying disturbance[C]∥American Control Conference.IEEE,2011:2988-2993

        [ 2 ] Zhao Y,Qiu Z,Xie T,et al.Intelligent tea service robot,has taking manipulator whose end is clamped between paper cup column and bayonet,where lower end of bayonet is formed as plane-shaped structure and upper end of bayonet is formed as arrow-head structure:Chinese,CN205905034-U[P].2017-01-25

        [ 3 ] Fahham ?H R,F(xiàn)arid M,Khooran M.Time optimal trajectory tracking of redundant planar cable-suspended robots considering both tension and velocity constraints[J].Journal of Dynamic Systems Measurement and Control,2011,133(1):011004

        [ 4 ] Tounsi N,Bailey T E,Elbestawi M A.Minimum time trajectory planning along specified tool path with consideration of cutting force constraint and feed drive dynamics[C]∥ASME 2002 International Mechanical Engineering Congress and Exposition,2002:159-169

        [ 5 ] Zebin T,Alam M S.Modeling and control of a two-link flexible manipulator using fuzzy logic and genetic optimization techniques[J].Journal of Computers,2012,7(3):578-585

        [ 6 ] Sun ?C,Xia Y.An analysis of a neural dynamical approach to solving optimization problems[J].IEEE Transactions on Automatic Control,2009,54(8):1972-1977

        [ 7 ] He W,Ge S S.Vibration control of a flexible beam with output constraint[J].IEEE Transactions on Industrial Electronics ,2015,62(8):5023-5030

        [ 8 ] Chang T K,Spowage A,Chan K Y.Review of control and sensor system of flexible manipulator[J].Journal of Intelligent & Robotic Systems,2015,77(1):187-213

        [ 9 ] Khorrami F,Jain S.Nonlinear control with end-point acceleration feedback for a two-link flexible manipulator:experimental results[J].Journal of Robotic Systems,1993,10(4):505-530

        [10] Rossi M,Zuo K,Miang D.Issues in the design of passive controllers for flexible link robots[C]∥IEEE International Conference on Robotics and Automation.Proceedings,IEEE Xplore,1994,1:321-326

        [11] Xia J Z,Menq C H.Real time estimation of elastic deformation for end-point tracking control of flexible two-link manipulators[J].Journal of Dynamic Systems Measurement & Control,1993,115(3):418-422

        [12] Ingole ?A R,Bandyopadhyay B,Gorez R.Variable structure control application for flexible manipulators[C]∥Proceedings of the Third IEEE Conference on Control Applications,1994,2:1311-1316

        [13] Jiang T,Liu J,He W.Boundary control for a flexible manipulator based on infinite dimensional disturbance observer[J].Journal of Sound & Vibration,2015,348:1-14

        [14] Fateh ?M M.Robust control of flexible-joint robots using voltage control strategy[J].Arabian Journal for Science & Engineering,2014,39(4):3111-3121

        [15] Li H,Gao Y,Shi P,et al.Observer-based fault detection for nonlinear systems with sensor fault and limited communication capacity[J].IEEE Transactions on Automatic Control,DOI:10.1109/TAC.2015.2503566

        [16] Zhou Q,Li H,Wang L,et al.Prescribed performance observer-based adaptive fuzzy control for nonstrict-feedback stochastic nonlinear systems[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,DOI:10.1109/TSMC.2017.2738155

        [17] Dinh ?H T,Kamalapurkar R,Bhasin S,et al.Dynamic neural network-based robust observers for uncertain nonlinear systems.[J].Neural Networks,2014,60:44-52

        [18] Ge S S,Wang C.Direct adaptive NN control of a class of nonlinear systems[J].IEEE Transaction on Neural Networks,2002,13(1):214-221

        [19] Narendra K S,Parthasarathy K.Identification and control of dynamical systems using neural networks[J].IEEE Transactions on Neural Networks,1990,1(1):4-27

        [20] Gao H,He W,Zhou C,et al.Neural network control of a two-link flexible robotic manipulator using assumed mode method[J].IEEE Transactions on Industrial Informatics,2018,DOI:10.1109/TII.2018.2818120

        [21] Nguyen D H,Widrow B.Neural networks for self-learning control systems[J].IEEE Control Systems Magazine,2002,10(3):18-23

        [22] Chow T W S,F(xiàn)ang Y.A recurrent neural-network-based real-time learning control strategy applying to nonlinear systems with unknown dynamics[J].IEEE Transactions on Industrial Electronics,1998,45(1):151-161

        [23] Xing X,Liu J.Switching fault-tolerant control of a moving vehicle-mounted flexible manipulator system with state constraints[J].Journal of the Franklin Institute,2018,355(6):3050-3078

        [24] Cho ?B H,Choi B S,Lee J M.Time-optimal trajectory planning for a robot system under torque and impulse constraints[C]∥Conference of IEEE Industrial Electronics Society,2004.IECON 2004,2004,2:1058-1063

        [25] Tang ?Z L.Tangent barrier lyapunov functions for the control of output-constrained nonlinear systems[C]∥ACM Conference on Computer Supported Cooperative Work,CSCW 2006,Banff,Alberta,Canada,November.DBLP,2006:99-108

        [26] Tee K P,Ge S S,Li H,et al.Control of nonlinear systems with time-varying output constraints[J].Automatica,2011,47(11):2511-2516

        [27] Ngo K B,Mahony R,Jiang Z P.Integrator backstepping using barrier functions for systems with multiple state constraints[C]∥Proceedings of the 44th IEEE Conference on Decision and control,2005,DOI:10.1109/CDC.2005.1583507

        [28] Li H,Bai L,Wang L,et al.Adaptive neural control of uncertain nonstrict-feedback stochastic nonlinear systems with output constraint & unknown dead zone[J].IEEE Transactions on Systems Man and Cybernetics Systems,2017,47(8):2048-2059

        [29] Sun C,Gao H,He W,et al.Fuzzy neural network control of a flexible robotic Manipulator using assumed mode method[J].IEEE Transactions on Neural Networks & Learning Systems,2018,29(11):5214-5227

        [30] Rahn C D.Mechatronic control of distributed noise and vibration[M].New York,USA:Springer-Verlag,2001

        [31] Hardy G H,Littlewood J E,Polya G.Inequalities[M].Cambridge,UK:Cambridge University Press,1959

        Neural network control of a single-link flexible manipulator with

        output constraints based on Quanser platform

        HOU Jiayi1,2 ?GAO Hejia1,2 ?HE Wei1,2 ?SUN Changyin 3

        1 School of Automation and Electrical Engineering,University of Science & Technology Beijing,Beijing 100083

        2 Key Laboratory of Knowledge Automation for Industrial Processes,Ministry of Education,

        University of Science & Technology Beijing,Beijing 100083

        3 School of Automation,Southeast University,Nanjing 210096

        Abstract? Owing to their rapidly increasingapplicationsin aerospace,service,and other fields,manipulators are an area of active in-depth research.In comparison with the rigid manipulator,the flexible manipulator is light,flexible,and highly efficient.It also consumes less energy.The advantages of the flexible manipulator have made it a subject of in-depth study and further research.However,because of the particularity of the structure and build material,the operation of the flexible manipulator produces elastic deformation and vibration,which make the positioning and tracking of the manipulator difficult.Thus,it is important to study vibration suppression.In this paper,the assumed mode method is used to model the single-link flexible manipulator system andthe Lyapunov direct method is used to realize the stability of the closed-loop system.Giventhe particular constrained targets in practical use,the tangent-function form of the Lyapunov strategy is utilized to deal with the output constraints.The neural network control method is used to approach the uncertainty of the system,and the stability of the closed-loop system is analyzed by the Lyapunov method.The control performance of the controller is verified through simulations in MATLAB and experiments using the Quanser platform.

        Key words? flexible manipulator;output constraints;neural network control;Quanser platform;assumed mode method

        猜你喜歡
        連桿柔性約束
        一種柔性拋光打磨頭設(shè)計(jì)
        灌注式半柔性路面研究進(jìn)展(1)——半柔性混合料組成設(shè)計(jì)
        石油瀝青(2021年5期)2021-12-02 03:21:18
        “碳中和”約束下的路徑選擇
        高校學(xué)生管理工作中柔性管理模式應(yīng)用探索
        某發(fā)動(dòng)機(jī)連桿螺栓擰緊工藝開發(fā)
        約束離散KP方程族的完全Virasoro對(duì)稱
        適當(dāng)放手能讓孩子更好地自我約束
        人生十六七(2015年6期)2015-02-28 13:08:38
        連桿的運(yùn)動(dòng)及有限元分析
        一種連桿、杠桿撬斷澆口的新型模具設(shè)計(jì)
        脹斷連桿用的低合金鋼
        玩弄丰满奶水的女邻居| 丰满人妻无套内射视频| 人妻在线有码中文字幕| 很黄很色很污18禁免费| 国产成人av免费观看| 亚洲中文字幕乱码免费| 麻豆国产精品久久天堂| 欧美丰满老熟妇aaaa片| 五十路熟妇高熟无码视频| 在线成人tv天堂中文字幕| 久久老熟女一区二区三区| 高h小月被几个老头调教| 18禁美女裸身无遮挡免费网站| 亚洲高清国产品国语在线观看 | 国产剧情福利AV一区二区| 在线视频亚洲一区二区三区| 精品亚洲麻豆1区2区3区| 亚洲国产一区二区a毛片| 亚洲欧美另类精品久久久| 亚洲av毛片在线播放| 吃奶摸下高潮60分钟免费视频| 亚洲美免无码中文字幕在线| 亚洲AV乱码毛片在线播放| 日本本土精品午夜视频| 亚洲成av人的天堂在线观看| 欧美亚洲日本在线| 亚洲国产精品成人av| 欧美a级毛欧美1级a大片| 精品亚洲国产成人av| 777久久| 一区二区高清免费日本| 色欲综合一区二区三区| 亚洲一二三区在线观看| 国产一区二区三区av香蕉| 久久精品国产亚洲av天| 公粗挺进了我的密道在线播放贝壳| 洲色熟女图激情另类图区| av天堂免费在线播放| 四虎影视成人永久免费观看视频| 欧美午夜a级精美理论片| 中文字幕这里都是精品|