王賀 任玉梅 王華
摘 ?要: 傳統(tǒng)運(yùn)動風(fēng)險評估方法能夠?qū)\(yùn)動中存在的風(fēng)險進(jìn)行評估,但存在評估過程耗時長、精準(zhǔn)度差,不能進(jìn)行大規(guī)模運(yùn)動評估的問題。提出基于大數(shù)據(jù)分析的運(yùn)動風(fēng)險評估方法。通過對風(fēng)險因子進(jìn)行分析構(gòu)建大運(yùn)動風(fēng)險評估模型,引入多層次疊加運(yùn)算以及多因素調(diào)解方差法,對運(yùn)動風(fēng)險數(shù)據(jù)進(jìn)行處理,基于大數(shù)據(jù)分析法,實(shí)現(xiàn)運(yùn)動風(fēng)險評估。實(shí)驗(yàn)結(jié)果表明,提出的基于大數(shù)據(jù)分析的運(yùn)動風(fēng)險評估方法,相比傳統(tǒng)風(fēng)險評估方法,能夠進(jìn)行高效率精準(zhǔn)的運(yùn)動風(fēng)險評估,并能夠適用于大規(guī)模的風(fēng)險評估。
關(guān)鍵詞: 大數(shù)據(jù)分析; 運(yùn)動風(fēng)險評估; 風(fēng)險因子; 多層次疊加運(yùn)算; 多因素調(diào)解方差; 運(yùn)動場地
中圖分類號: TN913?34 ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)識碼: A ? ? ? ? ? ? ? ? ? ? ? ?文章編號: 1004?373X(2018)10?0140?03
Abstract: The traditional exercise risk assessment method can assess the risks existing in exercise, but has the problems of time?consuming assessment process and poor assessment accuracy, and cannot be used for large?scale exercise assessment. Therefore, an exercise risk assessment method based on big data analysis is proposed. The big exercise risk assessment model is built by analyzing risk factors. The multilevel overlay operation and multifactor mediation variance method are introduced to deal with the exercise risk data, and the exercise risk assessment is realized based on the big data analysis method. The experimental results show that in comparison with the traditional risk assessment method, the proposed exercise risk assessment method based on big data analysis can perform high efficient and accurate exercise risk assessment, and can be applied to large?scale risk assessment.
Keywords: big data analysis; exercise risk assessment; risk factor; multilevel overlay operation; multifactor mediation variance; sports field
研究表明,運(yùn)動愛好者以及專業(yè)運(yùn)動員在運(yùn)動過程中,產(chǎn)生的運(yùn)動風(fēng)險不僅是由單一原因造成的,通常是由多個因素疊加影響造成的。傳統(tǒng)運(yùn)動風(fēng)險評估方法以運(yùn)動方式為重心,風(fēng)險計(jì)算范圍有限。同時存在評估效率低、準(zhǔn)確性差、不適合進(jìn)行大規(guī)模評估的問題。根據(jù)上述問題,本文提出基于大數(shù)據(jù)分析的運(yùn)動風(fēng)險評估方法。對風(fēng)險因子重新分析,利用風(fēng)險因子特征構(gòu)建評估框架,采用多層次疊加運(yùn)算,以多因素調(diào)解方差法采集風(fēng)險數(shù)據(jù)[1]。通過得到的風(fēng)險因子,依托計(jì)算機(jī)技術(shù),引入大數(shù)據(jù)評估方法,對風(fēng)險因子進(jìn)行大數(shù)據(jù)分析,調(diào)整計(jì)算方式,得到基礎(chǔ)風(fēng)險關(guān)聯(lián)數(shù)據(jù),從而實(shí)現(xiàn)對運(yùn)動風(fēng)險的評估。通過仿真實(shí)驗(yàn),進(jìn)行評估效率、評估準(zhǔn)確性、評估能力三方面實(shí)驗(yàn)。實(shí)驗(yàn)結(jié)果表明,本文設(shè)計(jì)的運(yùn)動風(fēng)險評估方法,適用于大、中、小不同規(guī)模的運(yùn)動風(fēng)險評估,且具有高準(zhǔn)確性和高評估效率。
1 ?大數(shù)據(jù)運(yùn)動風(fēng)險評估模型的建立
本文對風(fēng)險因子進(jìn)行重新分析,改進(jìn)傳統(tǒng)單重心的分析方式,采用多層次分析的方式,通過風(fēng)險因子框架疊加運(yùn)算,加上多因素調(diào)解方差法對風(fēng)險數(shù)據(jù)進(jìn)行基本采集[2]。
本文設(shè)計(jì)的運(yùn)動風(fēng)險評估方法主要分為三個階段:風(fēng)險識別階段、風(fēng)險計(jì)算階段和風(fēng)險評估階段。
風(fēng)險識別階段:首先利用風(fēng)險因子預(yù)計(jì)算,判斷是否納入識別范圍。其風(fēng)險預(yù)計(jì)算不考慮意外風(fēng)險值f(c),不存在風(fēng)險間接判斷,對可能存在風(fēng)險值以參數(shù)的形式進(jìn)行計(jì)算[9]。
風(fēng)險計(jì)算階段:利用風(fēng)險識別階段的數(shù)據(jù),對來源數(shù)據(jù)進(jìn)行大數(shù)據(jù)風(fēng)險因子的過程量計(jì)算。其計(jì)算縝密度分為嚴(yán)謹(jǐn)、適中、寬松三個等級,對應(yīng)評估系數(shù)分別是[0.75~1.0],[0.5~0.75),[0~0.5)。評估系數(shù)越高,對系統(tǒng)配置要求越高,風(fēng)險評估綜合性能越好[10]。
風(fēng)險評估階段:對風(fēng)險計(jì)算結(jié)果分析,出具合理評估風(fēng)險報告,其各主要評估階段評估內(nèi)容如表1所示。
運(yùn)動分析評估流程圖如圖1所示,對評估對象進(jìn)行逐步分析,計(jì)算過程中選用計(jì)算偏離模塊,驗(yàn)證計(jì)算數(shù)據(jù)是否偏離[11]。
通過對風(fēng)險因子進(jìn)行大飽和計(jì)算,對風(fēng)險數(shù)據(jù)進(jìn)行辨別。依據(jù)風(fēng)險識別數(shù)據(jù)進(jìn)行風(fēng)險計(jì)算,引入大數(shù)據(jù)評估方法,實(shí)現(xiàn)基于大數(shù)據(jù)分析的運(yùn)動風(fēng)險評估。
3.1 ?實(shí)驗(yàn)?zāi)康呐c參數(shù)設(shè)置
為了驗(yàn)證基于大數(shù)據(jù)分析的運(yùn)動風(fēng)險評估方法的有效性,進(jìn)行評估效率、評估準(zhǔn)確性、評估能力的三次實(shí)驗(yàn)。實(shí)驗(yàn)系統(tǒng)運(yùn)行環(huán)境為Windows 7/Windows XP,最低配置要求4 GHz 64?bit 雙核處理器,8 GB系統(tǒng)內(nèi)存, 500 GB 硬盤分區(qū),GeForce GTX 1050Ti顯卡 4 GB顯存,DVD?R/W 光驅(qū)。完成實(shí)驗(yàn)準(zhǔn)備,通過對大數(shù)據(jù)風(fēng)險評估方法與傳統(tǒng)風(fēng)險評估方法進(jìn)行評估效率、評估準(zhǔn)確性兩方面進(jìn)行實(shí)驗(yàn)分析,并將數(shù)據(jù)進(jìn)行統(tǒng)計(jì),其具體實(shí)驗(yàn)如下。
3.2 ?評估效率實(shí)驗(yàn)
評估效率實(shí)驗(yàn)(Assessment Efficiency Experiment)是對運(yùn)動風(fēng)險評估方法進(jìn)行效率測試。其測試流程是,在1 s時間內(nèi),統(tǒng)計(jì)風(fēng)險評估所完成的運(yùn)算次數(shù),用EEE表示。其中,EEE(750~1 000)代表高效運(yùn)行,系統(tǒng)運(yùn)轉(zhuǎn)速度快,達(dá)到高效處理;EEE(500~700)代表中效運(yùn)行,系統(tǒng)運(yùn)行較慢,不適合進(jìn)行增加運(yùn)算量;EEE(0~500)代表低效運(yùn)行,系統(tǒng)運(yùn)行緩慢,效率低下。
通過對傳統(tǒng)評估方法和大數(shù)據(jù)評估方法,進(jìn)行50萬條數(shù)據(jù)量試驗(yàn),其運(yùn)動風(fēng)險EEE曲線如圖2所示。
根據(jù)運(yùn)動風(fēng)險EEE曲線得出:傳統(tǒng)評估方法在數(shù)據(jù)量達(dá)到10萬條時開始快速下降,當(dāng)數(shù)據(jù)量達(dá)到22萬時達(dá)到第一次谷值EEE(580),隨后小幅上升,當(dāng)數(shù)據(jù)量達(dá)到30萬~35萬時,出現(xiàn)EEE(600)平臺。系統(tǒng)處于中靈敏度。數(shù)據(jù)量超過35萬時,EEE曲線呈現(xiàn)陡崖式下降,達(dá)到EEE(375),系統(tǒng)運(yùn)行效率低下。而大數(shù)據(jù)評估方法保證平穩(wěn)的EEE曲線,從測試數(shù)據(jù)5萬~50萬,保證大于EEE(750)高速運(yùn)行。
3.3 ?評估準(zhǔn)確性實(shí)驗(yàn)
評估精確性實(shí)驗(yàn)(Evaluate the Accuracy Experiment)是對運(yùn)動風(fēng)險評估方法進(jìn)行準(zhǔn)確性測試。其測試流程是,觀察實(shí)際發(fā)生風(fēng)險與評估結(jié)果風(fēng)險的比值,用EAE表示。其中,EAE(85%~100%)代表高準(zhǔn)確性運(yùn)行,系統(tǒng)評估結(jié)果可靠;EAE(50%~85%)代表中準(zhǔn)確性運(yùn)行,系統(tǒng)評估存在偶然性;EAE(0~50%)代表低準(zhǔn)確性運(yùn)行,系統(tǒng)評估不可信。通過對傳統(tǒng)評估方法和大數(shù)據(jù)評估方法進(jìn)行80萬條數(shù)據(jù)量試驗(yàn),其運(yùn)動風(fēng)險EAE圖如圖3所示。
根據(jù)運(yùn)動風(fēng)險EAE圖得出,傳統(tǒng)評估方法數(shù)據(jù)量在10萬~70萬時其EAE(45%~60%),其中數(shù)據(jù)量為40萬時出現(xiàn)第一次谷值EAE(45%),總體進(jìn)行中準(zhǔn)確性運(yùn)行,系統(tǒng)評估存在偶然性,當(dāng)數(shù)據(jù)量超過70萬時, 達(dá)到EAE(30%),其系統(tǒng)評估不可信。而大數(shù)據(jù)評估方法EAE曲線保證平穩(wěn),在EAE(80%~90%)之間運(yùn)行,系統(tǒng)評估結(jié)果可靠。
通過分析風(fēng)險因子以及大數(shù)據(jù)計(jì)算技術(shù),實(shí)現(xiàn)基于大數(shù)據(jù)分析的運(yùn)動風(fēng)險評估。對評估效率、評估準(zhǔn)確性、評估能力的三個層次實(shí)驗(yàn),結(jié)果表明,大數(shù)據(jù)分析的運(yùn)動風(fēng)險評估方法具有高評估效率、高準(zhǔn)確性和強(qiáng)評估能力。
[1] 劉白,廖秀健.基于大數(shù)據(jù)的重大行政決策社會穩(wěn)定風(fēng)險評估機(jī)制構(gòu)建研究[J].情報雜志,2016,35(9):43?47.
LIU Bai, LIAO Xiujian. A study based on the big data of the construction of social stability risk assessment mechanism in major administrative policy decision [J]. Journal of intelligence, 2016, 35(9): 43?47.
[2] 趙丹.基于大數(shù)據(jù)分析的運(yùn)動損傷估計(jì)模型設(shè)計(jì)[J].現(xiàn)代電子技術(shù),2017,40(17):101?104.
ZHAO Dan. Design of sports injury estimation model based on big data analysis [J]. Modern electronics technique, 2017, 40(17): 101?104.
[3] 龔偉志,劉增良,王燁,等.基于大數(shù)據(jù)分析恐怖襲擊風(fēng)險預(yù)測研究與仿真[J].計(jì)算機(jī)仿真,2015,32(4):30?33.
GONG Weizhi, ?LIU Zengliang, WANG Ye, et al. Research and simulation of terrorist attack risk prediction based on big data analysis [J]. Computer simulation, 2015, 32(4): 30?33.
[4] 鄭宏,蔡宇翔.大數(shù)據(jù)環(huán)境下入侵風(fēng)險評估優(yōu)化模型仿真分析[J].計(jì)算機(jī)仿真,2016,33(9):292?295.
ENG Hong, CAI Yuxiang. Big data environment risk assessment of optimization model for the simulation analysis [J]. Computer simulation, 2016, 33(9): 292?295.
[5] 司光耀,王凱,李文強(qiáng),等.基于大數(shù)據(jù)和粗糙集的產(chǎn)品需求分析方法研究[J].工程設(shè)計(jì)學(xué)報,2016,23(6):521?529.
SI Guangyao, WANG Kai, LI Wenqiang, et al. Research on product demand analysis method based on big data and rough set [J]. Chinese journal of engineering design, 2016, 23(6): 521?529.
[6] 杜艷君,班婕,孫慶華,等.環(huán)境健康風(fēng)險的研究前沿及展望[J].現(xiàn)代預(yù)防醫(yī)學(xué),2016,43(24):4437?4439.
DU Yanjun, BAN Jie, SUN Qinghua, et al. Research front and prospect in environmental health risks [J]. Modern preventive medicine, 2016, 43(24): 4437?4439.
[7] 胡萍.大數(shù)據(jù)環(huán)境下基于信息融合的網(wǎng)絡(luò)風(fēng)險評估模型[J].科技通報,2015,31(9):220?223.
HU Ping. Network risk assessment model based on big data environment information fusion [J]. Bulletin of science and technology, 2015, 31(9): 220?223.
[8] WANG Z, LAI C, CHEN X, et al. Flood hazard risk assessment model based on random forest [J]. Journal of hydrology, 2015, 527: 1130?1141.
[9] GARBOLINO E, CHERY J P, GUARNIERI F. A simplified approach to risk assessment based on system dynamics: an industrial case study [J]. Risk analysis, 2016, 36(1): 16?29.
[10] POLZER S, GASSER T C. Biomechanical rupture risk assessment of abdominal aortic aneurysms based on a novel probabilistic rupture risk index [J]. Journal of the royal society interface, 2015, 12(113): 1?11.
[11] HAN L, SONG Y, DUAN L, et al. Risk assessment methodology for Shenyang Chemical Industrial Park based on fuzzy comprehensive evaluation [J]. Environmental earth sciences, 2015, 73(9): 5185?5192.