朱曉培 簡文杰 侯夢然
摘要[目的]建立非對稱場流分離檢測鮑內臟多糖的方法。[方法]采用非對稱場流分離系統(tǒng)與靜態(tài)光散射、光電二極管陣列和示差折光檢測器聯(lián)用技術分離表征鮑內臟多糖。以0.05 mol/L NaNO3 [含0.02%(W/V)NaN3] 為流動相,研究橫向流速和樣品濃度對非對稱場流分離多糖的影響,并利用動靜態(tài)光散射測量鮑內臟多糖的分子特性(分子量、均方根旋轉半徑、分子構象、流體力學半徑)。[結果]不同橫向流速對多糖的分離表征有顯著影響;一定范圍內,不同多糖濃度對分離效果及分子特性結果無顯著差異。鮑內臟多糖分子量為(25.40±1.78)kD,均方根旋轉半徑為(16.70±0.30)nm,流體力學半徑為(143.23±15.49)nm,分子為無規(guī)則線團構象。[結論]非對稱場流技術適用于鮑內臟多糖的分離檢測。
關鍵詞非對稱場流;鮑內臟多糖;分離表征;動靜態(tài)光散射
中圖分類號S917文獻標識碼A文章編號0517-6611(2018)28-0164-03
Detection of Polysaccharide from Abalone Viscera by Asymmetrical Flow FieldFlow Fractionation
ZHU Xiaopei1,2,JIAN Wenjie2,HOU Mengran1 et al
(1. Fisheries College of Jimei University,Xiamen,F(xiàn)ujian 361021;2.Nutrition and Food Safety Research Office of Xiamen Medical College,Xiamen,F(xiàn)ujian 361021)
Abstract[Objective] To establish an asymmetric flow fieldflow fractionation (AF4) method for the detection of polysaccharide from abalone viscera (AV). [Method]AF4 technique was used to isolate polysaccharide from AV coupled with static light scattering device, photodiode array and differential refractive index detector. The effect of varying the cross flow and sample concentration on AF4 had been studied where 0.05 mol/L NaNO3 and 0.02%(W/V) NaN3 aqueous solution as carrier phase. The molecular characteristics (weightaverage molar mass (Mw), root mean square radius (RMS), molecular conformation, hydrodynamic radius) of polysaccharide from AV were measured by dynamic and static light scattering. [Result]The different cross flow had a significant effect on the determination of polysaccharide separation. Within a certain range, there was no significant difference in the separation effect and molecular property results between different polysaccharide concentrations.The Mw, RMS and hydrodynamic radius of polysaccharide from AV were (25.40±1.78) kDa, (16.70 ±0.30) nm and (143.23±15.49) nm, respectively. And the molecular conformation was random coil. [Conclusion] The AF4 is suitable for the separation and detection of polysaccharide from abalone viscera.
Key wordsAsymmetrical flow fieldflow fractionation;Polysaccharide from abalone viscera;Separation and characterization;Dynamic and static light scattering
基金項目國家海洋局海洋公益性行業(yè)科研專項(201405016);福建省高等學校新世紀優(yōu)秀人才支持計劃項目(20170008);福建省自然科學基金項目(2017D0009);福建省科技引導性項目(2016N0022)。
非對稱場流分離技術(asymmetrical flow field flow fractionation,AF4)是用于顆粒分離及表征的技術[1],是一種基于流動的分離方法,結合了色譜和場驅動技術的基本要素,樣本在外加垂直于層流方向的場力作用下,不同尺寸的被分離物層流層與通道壁的距離不同,具有不同的淋洗速度而達到分離的目的[2]。AF4無需固定相和填充物,具有較低的壓力和剪切力,有助于保護脆弱的團粒結構,減少大分子降解[3-4],最大限度地保護樣品的結構穩(wěn)定性[5],可快速高分辨率地分離1 nm~100 μm的樣品。由于AF4技術分離條件溫和且表征范圍廣,因此被廣泛應用于牛血清蛋白[6]、透明質酸[7]、淀粉[8]、脂蛋白[9]和脂質體[10]等生物顆粒和生物分子的分離檢測。在生物分析領域具有巨大的應用潛力[11]。
3結論
通過非對稱場流分離系統(tǒng)與靜態(tài)光散射、光電二極管陣列和示差折光檢測器聯(lián)用技術分離表征鮑內臟多糖,發(fā)現(xiàn)其分子量為(25.40±1.78)kD,均方根旋轉半徑為(16.70±0.30)nm,流體力學半徑為(143.23±15.49)nm,分子為無規(guī)則線團構象,與前期采用GPC-MALLS分離表征鮑內臟多糖結果相似[20],樣品處理與操作過程簡便,分離條件更加溫和且用時短。因此,AF4適用于鮑內臟多糖的分離檢測。
參考文獻
[1] KIM B,WOO S,PARK Y S,et al.Ionic strength effect on molecular structure of hyaluronic acid investigated by flow fieldflow fractionation and multiangle light scattering[J].Analytical and bioanalytical chemistry,2015,407(5):1327-1334.
[2] 張學軍.場流分離技術及應用研究[D].長春:吉林大學,2007.
[3] BOLINSSON H,LU Y,HALL S,et al.An alternative method for calibration of flow field flow fractionation channels for hydrodynamic radius determination:The nanoemulsion method(featuring multi angle light scattering)[J].Journal of chromatography A,2018,1533:155-163.
[4] TGEL I,RUNYON J R,GALINDO F G,et al.Analysis of polysaccharide and proteinaceous macromolecules in beer using asymmetrical flow fieldflow fractionation[J].Journal of the institute of brewing,2015,121(1):44-48.
[5] 鄂云龍.非對稱流場流分離技術聯(lián)用質譜對蛋白分子的分離表征[D].北京:北京化工大學,2015.
[6] YOHANNES G,WIEDMER S K,ELOMAA M,et al.Thermal aggregation of bovine serum albumin studied by asymmetrical flow fieldflow fractionation[J].Anal Chim Acta,2010,675(2):191-198.
[7] KIM B,WOO S,PARK Y S,et al.Ionic strength effect on molecular structure of hyaluronic acid investigated by flow fieldflow fractionation and multiangle light scattering[J].Anal Bioanal Chem,2015,407(5):1327-1334.
[8] BOWEN S E,GRAY D A,GIRAUD C,et al.Lipid oxidation and amylopectin molecular weight changes occurring during storage of extruded starch samples[J].Journal of cereal science,2006,43(3):275-283.
[9] 王靜,張瀟月,張競文,等.基于場流分離技術分離表征血清中的脂蛋白[J].河北大學學報(自然科學版),2017,37(2):128-133.
[10] RAMBALDI D C,ZATTONI A,RESCHIGLIAN P,et al.In vitro amyloid Aβ1-42 peptide aggregation monitoring by asymmetrical flow fieldflow fractionation with multiangle light scattering detection[J].Anal Bioanal Chem,2009,394(8):2145-2149.
[11] 梁啟慧,吳迪,邱百靈,等.非對稱流場流分離技術的現(xiàn)狀及發(fā)展趨勢[J].色譜,2017,35(9):918-926.
[12] ZHOU D Y,ZHU B W,QIAO L,et al.In vitro antioxidant activity of enzymatic hydrolysates prepared from abalone(Haliotis discus hannai Ino)viscera[J].Food and bioproducts processing,2012,90(2):148-154.
[13] RODA B,ZATTONI A,RESCHIGLIAN P,et al.Fieldflow fractionation in bioanalysis:A review of recent trends[J].Analytica chimica acta,2009,635(2):132-143.
[14] 王姣,魏好程,何傳波,等.鮑內臟多糖的抗氧化活性[J].食品科學,2017,38(15):115-121.
[15] 鄂云龍,全燦,金君素,等.基于非對稱流場流分離技術的蛋白分離研究[J].北京化工大學學報(自然科學版),2015,42(2):30-34.
[16] JIAN W J,WU H Y,WU L L,et al.Effect of molecular characteristics of Konjac glucomannan on gelling and rheological properties of Tilapia myofibrillar protein[J].Carbohydr Polym,2016,150:21-31.
[17] LOHRKE J,BRIEL A,MEDER K.Characterization of superparamagnetic iron oxide nanoparticles by asymmetrical flowfieldflowfractionation[J].Nanomedicine,2008,3(4):437-452.
[18] LIU M K,LI P,GIDDINGS J C.Rapid protein separation and diffusion coefficient measurement by frit inlet flow fieldflow fractionation[J].Protein science,1993,3(9):1520-1531.
[19] 劉攀攀,全燦,李紅梅,等.非對稱場流分離技術用于納米顆粒的表征[J].分析化學,2013,41(7):1063-1068.
[20] 王姣.鮑內臟多糖的分離純化及抗氧化活性研究[D].廈門:集美大學,2016.