, , ,
(浙江工業(yè)大學(xué) 膜分離與水科學(xué)技術(shù)中心,浙江 杭州 310014)
反滲透(RO)是溶劑和溶質(zhì)分離的過(guò)程,它以半透膜兩側(cè)的壓差為驅(qū)動(dòng)力.反滲透技術(shù)在海水苦咸水淡化和超純水制備中起著重要的作用.20世紀(jì)80年代,薄膜復(fù)合芳香族聚酰胺反滲透膜研制成功,并被商品化和大力推廣.盡管傳統(tǒng)TFC膜的改進(jìn)仍在繼續(xù),但膜的性能仍然需要更大的突破[1-4].迄今為止,芳香族聚酰胺反滲透膜仍然是反滲透膜產(chǎn)品的主流.由于具有滲透通量高、多價(jià)離子鹽保留率高、操作壓力低和維護(hù)費(fèi)用低等優(yōu)點(diǎn),反滲透膜已被廣泛應(yīng)用于水處理、制藥和生化等多個(gè)工業(yè)領(lǐng)域[5-8],在沼氣工程中也取得了很好的應(yīng)用效果,市場(chǎng)潛力與發(fā)展空間巨大[9-10].在長(zhǎng)期的實(shí)際操作中,膜的防污性能是一個(gè)主要問(wèn)題,因?yàn)槲酃竿ǔ?duì)膜的性能造成各種負(fù)面影響,如通量下降、運(yùn)行和維護(hù)成本增加以及膜降解等問(wèn)題[11-12].向薄膜層中加入親水組分被認(rèn)為是改善膜性能的一種方便而有效的方法.例如,通過(guò)在與均苯三甲酰氯(TMC)的界面聚合過(guò)程中向TEOA水溶液中加入不同量的β-環(huán)糊精(β-CD),將β-CD原位并入復(fù)合納濾膜中,發(fā)現(xiàn)將少量β-CD引入復(fù)合膜可以極大地改善NF性能[13].
環(huán)糊精(Cyclodextrins,CDs)是由環(huán)糊精糖基轉(zhuǎn)移酶(CGTase)產(chǎn)生的一類環(huán)狀低聚糖,由蠟狀芽孢桿菌(Bacilluscereus)培養(yǎng)產(chǎn)生,最顯著的特征是環(huán)外親水.由于其特殊的表面性質(zhì)和結(jié)構(gòu),已經(jīng)在滲透汽化膜和分子過(guò)濾器等領(lǐng)域開(kāi)展了大量有關(guān)β-CD分子的應(yīng)用研究[14-24].已經(jīng)證明使用CD作為膜中的添加劑對(duì)膜分離性能具有顯著的影響[25-36].筆者以間苯二胺(MPD)和均苯三甲酰氯(TMC)在β-環(huán)糊精存在下通過(guò)界面聚合方法制備了一種新型β-環(huán)糊精(β-CD)/聚酰胺薄膜反滲透膜.因?yàn)棣?CD的羥基可以與TMC的酰氯基團(tuán)反應(yīng),因此形成了穩(wěn)定的結(jié)構(gòu),從而避免長(zhǎng)時(shí)間操作過(guò)程中β-CD的浸出.研究了β-CD對(duì)RO復(fù)合膜的分離、形貌和防污性能的影響,對(duì)樣品進(jìn)行截留率、純水通量和水接觸角測(cè)試,并進(jìn)行了SEM,AFM和XPS表征.并將β-CD)/聚酰胺薄膜反滲透膜用于處理沼液,β-CD改性后的膜的水通量明顯高于未添加β-CD改性的聚酰胺膜,且截留率保持穩(wěn)定.
MPD和TMC購(gòu)自J&K Scientific Ltd(中國(guó)北京);β-CD(98%)購(gòu)自Sigma Aldrich(中國(guó)上海);十二烷基硫酸鈉(SDS)、三乙胺(TEA)、樟腦磺酸(CSA)和正己烷均購(gòu)自阿拉丁(中國(guó)).所有試劑均未經(jīng)進(jìn)一步純化而使用.聚砜(PS)超濾(UF)膜由杭州水處理技術(shù)開(kāi)發(fā)中心(中國(guó)杭州)提供.
通過(guò)IP反應(yīng)制備β-CD/聚酰胺改性RO膜.首先,制備含有0.02 g/mL MPD,0.001 g/mL SDS和一定濃度的β-CD的水相溶液.然后使用CSA和TEA體積比為2∶1的混合物調(diào)節(jié)溶液pH至8~9.將TMC溶解在正己烷中制備有機(jī)相溶液.質(zhì)量濃度為0.001 g/mL的β-CD /聚酰胺RO復(fù)合膜的制備過(guò)程為β-CD存在下TMC與MPD之間的IP反應(yīng)為
將水溶液倒在微孔聚砜膜的表面上將膜完全覆蓋,保持2 min,然后棄去多余的水溶液,將膜垂直懸掛直到表面上看不到殘留液滴.隨后采用同樣的方法將有機(jī)相溶液倒入膜表面將膜完全覆蓋,保持30 s,然后棄去多余的溶液.將膜放置60 s,最后放入60 ℃的烘箱中熱處理10 min以形成穩(wěn)定的結(jié)構(gòu).將膜浸泡在純水中12 h以除去未反應(yīng)的單體.上述操作在室溫下進(jìn)行.
使用交叉錯(cuò)流膜組件在1.6 MPa的操作壓力和25 ℃的溫度下測(cè)量截留率和純水通量,使用測(cè)試溶液為質(zhì)量分?jǐn)?shù)2×10-3的NaCl溶液.將所有膜預(yù)處理壓制60 min以獲得穩(wěn)定的流體,然后在相同條件下測(cè)試60 min,收集濾液,測(cè)試濾液含量和其電導(dǎo)率大小.通過(guò)電導(dǎo)率儀(DDSJ-308A,Leizi,中國(guó))測(cè)定滲透和進(jìn)料溶液的濃度.計(jì)算截留率的公式為
R=1-Cp/Cf
式中Cp和Cf分別表示濾液和進(jìn)料溶液的濃度.用于計(jì)算水通量的公式為
F=V/At
式中:V為滲透純水的總體積;A為膜面積;t為操作時(shí)間.
通過(guò)接觸角測(cè)角儀(OCA-20,Dataphysics,德國(guó))測(cè)量復(fù)合膜表面的親水性.使用去離子水作為探針液體,每個(gè)膜上至少選擇5個(gè)不同位置的接觸角來(lái)確定每個(gè)聚酰胺膜的平均接觸角值,測(cè)試在室溫下進(jìn)行.
將復(fù)合膜進(jìn)行真空干燥并用金噴射涂覆之后,通過(guò)SEM(HITACHI,S4700A 日本)測(cè)試其表面的形態(tài).使用AFM(Nanoscope IV,瑞士)確定RO膜的表面粗糙度值.使用電化學(xué)分析儀(SurPASS 3,Anton Paar GmbH,奧地利)測(cè)量膜的電位.
為了深入了解β-CD質(zhì)量濃度對(duì)膜性能的影響,分別使用質(zhì)量濃度為0.005,0.010,0.015,0.020 g/mL的β-CD制備RO復(fù)合膜.同時(shí)制備了不含β-CD的聚酰胺RO膜作為對(duì)照.
隨著水溶液中β-CD質(zhì)量濃度的增加,膜的水通量顯著增加,脫鹽率略有下降,表明β-CD改變了聚酰胺膜的性能.圖1顯示了β-CD質(zhì)量濃度對(duì)水通量和NaCl截留率的影響,隨著水相中β-CD質(zhì)量濃度的增加,水通量顯著增加.反滲透膜性能的改善很可能是由于β-CD和TMC之間的交聯(lián)程度比MPD和TMC小得多,膜結(jié)構(gòu)疏松,從而導(dǎo)致膜通量增大.當(dāng)β-CD質(zhì)量濃度超過(guò)閾值(>0.015 g/mL)時(shí),膜性能開(kāi)始惡化,這可能是由于β-CD在水溶液中產(chǎn)生自凝聚導(dǎo)致相分離,在薄膜層中形成缺陷,因此導(dǎo)致膜的截留率略有降低.總之,在膜制備過(guò)程中向水相中加入適量的β-CD可以使膜的水通量明顯提升,截留率保持在較高的水平.
圖1 β-CD質(zhì)量濃度對(duì)RO復(fù)合膜的純水通量和NaCl截留的影響(操作壓力1.6 MPa)Fig.1 Effects of β-CD concentration on the pure water flux and NaCl rejection of RO composite membranes (operating pressure 1.6 MPa)
圖2表明:隨著β-CD質(zhì)量濃度的增加,膜的接觸角顯著減小,親水性增強(qiáng),但是當(dāng)β-CD質(zhì)量濃度達(dá)到0.02 g/mL時(shí),接觸角開(kāi)始增加.因此,在討論β-CD質(zhì)量濃度對(duì)膜通透性的影響時(shí),應(yīng)綜合考慮多種因素[16-17,22].首先,由于β-CD表面含有大量的羥基,水分子與膜表面之間的氫鍵相互作用增加,這種相互作用促進(jìn)了復(fù)合膜的水輸送;其次,β-CD的引入可能已經(jīng)將額外的水通道引入到聚酰胺/β-CD界面中,導(dǎo)致比不含β-CD的聚酰胺膜存在更多的親水空隙,從而導(dǎo)致水分自由流動(dòng)并直接通過(guò)β-CD復(fù)合膜;第三,β-CD與聚合物鏈之間的分子級(jí)混合和β-CD的相對(duì)剛性結(jié)構(gòu)可能破壞了聚酰胺的規(guī)整結(jié)構(gòu),導(dǎo)致鏈間距增加;第四,β-CD的反應(yīng)性低于MPD,可能導(dǎo)致交聯(lián)膜表面層結(jié)構(gòu)較少,這種疏松且親水的表面層協(xié)同作用可能有助于增加水通量.據(jù)報(bào)道β-CD的內(nèi)腔直徑在6.0至6.4埃的范圍內(nèi),也能促進(jìn)水分子的快速通過(guò).然而,當(dāng)水溶液中β-CD質(zhì)量濃度增加到一定值時(shí),膜性能變差,這是由于β-CD發(fā)生嚴(yán)重自凝聚使親水性降低.
圖2 反滲透復(fù)合膜的水接觸角與β-CD質(zhì)量濃度的關(guān)系Fig.2 Water contact angles of RO composite membranes as a function of β-CD concentration
通過(guò)XPS分析不含β-CD的聚酰胺反滲透膜和β-CD改性后的聚酰胺反滲膜表層的化學(xué)組成,結(jié)果見(jiàn)表1.由表1可知:當(dāng)β-CD引入膜時(shí),O/N值從1.76增加到2.53.一方面,由于β-CD中大量的羥基,導(dǎo)致O/N值的增大;另一方面,由β-CD的添加導(dǎo)致的松散交聯(lián)結(jié)構(gòu)也可能導(dǎo)致O/N值增大.結(jié)果表明:β-CD中存在的大量親水羥基有效提高了膜的滲透性,與不含β-CD的膜相比,產(chǎn)生了具有更高親水性和更低交聯(lián)結(jié)構(gòu)的薄膜表層[21].通過(guò)原位界面聚合方法可以將β-CD成功地固定在膜表面.
表1不含β-CD的聚酰胺膜和β-CD/聚酰胺RO復(fù)合膜的相對(duì)表面原子百分比
Table1Relativesurfaceatomicconcentrationsoftheβ-CD-freepolyamidemembraneandβ-CD/polyamideROcompositemembranes
不同β?CD質(zhì)量濃度膜樣品/(g·mL-1)相對(duì)表面原子百分比/%CONO/N064.2922.3012.681.760.00564.6523.3011.342.050.01063.2325.0610.972.280.01563.6525.3410.012.530.02066.3622.9910.272.24
不同質(zhì)量濃度β-CD制備的反滲透復(fù)合膜表面的SEM圖像顯示(圖3),隨著β-CD質(zhì)量濃度的增加膜表面粗糙度呈現(xiàn)降低的趨勢(shì),當(dāng)β-CD質(zhì)量濃度超過(guò)0.015 g/mL時(shí),膜的表面粗糙度開(kāi)始增加,見(jiàn)圖4和表2.根據(jù)文獻(xiàn),界面聚合反應(yīng)較低的交聯(lián)度和水相中較強(qiáng)的分子間氫鍵作用導(dǎo)致比無(wú)β-CD的聚酰胺反滲透膜具有更光滑的膜表面[24].因?yàn)棣?CD比MPD的反應(yīng)性低,β-CD/MPD溶液的使用降低了交聯(lián)反應(yīng)率.隨著溶液中β-CD質(zhì)量濃度的增加,由于β-CD分子之間的氫鍵相互作用增強(qiáng),產(chǎn)生相分離,這種不均勻的分散或者自凝聚使薄膜出現(xiàn)缺陷和裂痕.
圖3 不同質(zhì)量濃度β-CD改性的RO復(fù)合膜表面SEM圖片F(xiàn)ig.3 SEM images of NF composite membrane surfaces prepared with the following concentrations of β-CD
圖4 不同質(zhì)量濃度β-CD改性的RO復(fù)合膜表面AFM圖片F(xiàn)ig.4 AFM images of RO composite membrane surfaces prepared with the following concentrations of β-CD
表2不同質(zhì)量濃度β-CD改性的RO復(fù)合膜的AFM表面粗糙度值
Table2AFMsurfaceroughnessvaluesofROcompositemembranespreparedwithdifferentconcentrationsofβ-CD
不同β?CD質(zhì)量濃度膜樣品/(g·mL-1)平均粗糙度Ra/nm均方根粗糙度Rq/nm076.196.30.00566.383.20.01046.864.00.01545.054.90.02056.772.0
圖5是不含β-CD和β-CD/聚酰胺反滲透膜的電勢(shì),結(jié)果表明:pH為3.0~9.5時(shí),不含β-CD的膜zeta電位范圍為-45~25 mV.然而在加入β-CD后,β-CD改性的膜表面zeta電位接近中性,zeta電位接近于零的膜表現(xiàn)出更好的防污性能,這是由于其帶電表面與有機(jī)污垢以及帶電有機(jī)污染物的相互作用降低.由圖5可知:β-CD質(zhì)量濃度為0.015 g/mL時(shí)zeta電位最接近中性,因此其抗污染性最強(qiáng).
圖5 RO和原位β-CD膜的Zeta電位與pH的關(guān)系Fig.5 pH dependence of the zeta potentials of TFC and in situ β-CD membranes
實(shí)驗(yàn)結(jié)果如圖6所示,圖6表明:β-CD/聚酰胺復(fù)合膜與未使用β-CD改性的聚酰胺相比,隨著運(yùn)行時(shí)間延長(zhǎng)水通量降低更少,β-CD的加入使膜親水性增大,并增強(qiáng)了膜表面的耐污染性,在處理沼液過(guò)程中為了更好地解決膜污染問(wèn)題,對(duì)膜采用高頻清洗的方式處理,膜的抗污染性能得到提高,可降低清洗頻率.因此β-CD/聚酰胺復(fù)合膜適用于沼液處理.
圖6 不同β-CD質(zhì)量濃度的β-CD/聚酰胺復(fù)合膜對(duì)沼液的水通量和截留率的影響(操作壓力2.0 MPa)Fig.6 Effects of β-CD/polyamide composite membrane with different β-CD concentration on the water flux and rejection rate of biogas slurry (operating pressure 2.0 MPa)
通過(guò)β-CD/MPD和TMC的原位生成法制備新型β-CD/聚酰胺反滲透膜.通過(guò)測(cè)量膜的截留率,純水通量和水接觸角以及SEM,AFM和XPS分析,研究了β-CD對(duì)反滲透復(fù)合膜的結(jié)構(gòu)、形態(tài)和分離性能的影響.改性后的β-CD/聚酰胺反滲透復(fù)合膜具有更好的透水性和親水性,當(dāng)β-CD的質(zhì)量濃度為0.015 g/mL時(shí),β-CD/聚酰胺反滲透膜的水通量是不含β-CD的聚酰胺反滲透膜水通量的1.52倍,同時(shí)保持較高的截留率.改性后的β-CD/聚酰胺反滲透復(fù)合膜在沼液濃縮中具有更好的透水性,且能保持較高的截留率,其在沼液濃縮過(guò)程中耐污染性更好.
參考文獻(xiàn):
[1] CHO Y H, HAN J, HAN S, et al. Polyamide thin-film composite membranes based on carboxylated polysulfone microporous support membranes for forward osmosis[J].Journal of membrane science, 2013, 445(41):220-227.
[2] MADAENI S S, RAHIMPOUR A. Effect of type of solvent and non-solvents on morphology and performance of polysulfone and polyethersulfone ultrafiltration membranes for milk concentration [J].Polymers for advanced technologies, 2005, 16(10):717-724.
[3] NAMVAR-MAHBOUB M, PAKIZEH M. Development of a novel thin film composite membrane by interfacial polymerization on polyetherimide/modified SiO2, support for organic solvent nanofiltration[J].Separation & purification technology, 2013, 119(46):35-45.
[4] RAHIMPOUR A, JAHANSHAHI M, PEYRAVI M, et al. Interlaboratory studies of highly permeable thin-film composite polyamide nanofiltration membrane[J].Polymers for advanced technologies, 2012, 23(5):884-893.
[5] KWAK S Y, KIM S H, KIM S S. Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling. 1. Preparation and characterization of TiO2nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane[J].Environmental science & technology, 2001, 35(11):2388.
[6] 周秀琴. 膜分離法的開(kāi)發(fā)應(yīng)用[J].發(fā)酵科技通訊, 2003, 32(3):39-40.
[7] 汪國(guó)剛, 張立萍, 劉巍. 膜式混合器在發(fā)酵連消過(guò)程中的應(yīng)用[J].發(fā)酵科技通訊, 2005, 34(2):36-36.
[8] 陳繼黃. 中空纖維膜超濾濃縮糖化酶發(fā)酵濾液[J].發(fā)酵科技通訊, 1995(1):10-13.
[9] 梁康強(qiáng), 閻中, 朱民, 等. 沼氣工程沼液反滲透膜濃縮應(yīng)用研究[J].中國(guó)礦業(yè)大學(xué)學(xué)報(bào), 2011, 40(3):470-475.
[10] 劉慶玉, 魏歡歡, 郎咸明, 等. 反滲透膜削減沼液氨氮工藝優(yōu)化[J].農(nóng)業(yè)工程學(xué)報(bào), 2016, 32(8):192-198.
[11] LONG D N, HAWKES S. Effects of membrane fouling on the nanofiltration of pharmaceutically active compounds (PhACs):mechanisms and role of membrane pore size[J].Separation & purification technology, 2007, 57(1):176-184.
[12] 李春艷, 李小青, 江明璋, 等. 發(fā)酵液中蛋白質(zhì)及美拉德產(chǎn)物對(duì)膜的污染及其機(jī)理研究[J].膜科學(xué)與技術(shù), 2013, 33(5):14-18.
[13] WU H, TANG B, WU P. Preparation and characterization of anti-fouling β-cyclodextrin/polyester thin film nanofiltration composite membrane[J].Journal of membrane science, 2013(428):301-308.
[14] CHOI S H, CHUNG J W, PRIESTLEY R D, et al. Functionalization of polysulfone hollow fiber membranes with amphiphilic β-cyclodextrin and their applications for the removal of endocrine disrupting plasticizer[J].Journal of membrane science, 2012(409/410):75-81.
[15] UYAR T, HAVELUND R, NUR Y, et al. Cyclodextrin functionalized poly(methyl methacrylate) (PMMA) electrospun nanofibers for organic vapors waste treatment[J].Journal of membrane science, 2010, 365(1):409-417.
[16] UYAR T, HAVELUND R, HACALOGLU J, et al. Functional electrospun polystyrene nanofibers incorporating α-, β-, and γ-cyclodextrins:comparison of molecular filter performance[J].Acs nano, 2010, 4(9):5121-5130.
[17] YANG T. Poly(vinyl alcohol)/sulfated β-cyclodextrin for direct methanol fuel cell applications[J].International journal of hydrogen energy, 2009, 34(16):6917-6924.
[18] PENG F, JIANG Z, HU C, et al. Pervaporation of benzene/cyclohexane mixtures through poly(vinyl alcohol) membranes with and without β-cyclodextrin[J].Desalination, 2006, 193(1/3):182-192.
[19] WANG Y, TAI S C, WANG H, et al. Butanol isomer separation using polyamide-imide/CD mixed matrix membranes via pervaporation[J].Chemical engineering science, 2009, 64(24):5198-5209.
[20] KUSUMOCAHYO S P, SUMARU K, KANAMORI T, et al. Synthesis and characterization of an ultrathin polyion complex membrane containing β-cyclodextrin for separation of organic isomers[J].Journal of membrane science, 2004, 230(1/2):171-174.
[21] CHEN H L, WU L G, TAN J, et al. PVA membrane filled β-cyclodextrin for separation of isomeric xylenes by pervaporation[J].Chemical engineering journal, 2000, 78(2):159-164.
[22] AND H T, WAY J D. Separation of isomeric xylenes using cyclodextrin-modified ceramic membranes[J].Industrial & engineering chemistry research, 2003, 42(6):1243-1252.
[23] LAN Y J, TAI S C. β-Cyclodextrin containing Matrimid?sub-nanocomposite membranes for pervaporation application[J].Journal of membrane science, 2009, 327(1/2):216-225.
[24] KUSUMOCAHYO S P, SUMARU K, KANAMORI T, et al. Synthesis and characterization of an ultrathin polyion complex membrane containing β-cyclodextrin for separation of organic isomers[J].Journal of membrane science, 2004, 230(1/2):171-174.
[25] XIAO Y, LIM H M, CHUNG T S, et al. Acetylation of beta-cyclodextrin surface-functionalized cellulose dialysis membranes with enhanced chiral separation[J].Langmuir the acs journal of surfaces & colloids, 2007, 23(26):12990.
[26] KOZLOWSKI C A, GIREK T, WALKOWIAK W, et al. Application of hydrophobic β-cyclodextrin polymer in separation of metal ions by plasticized membranes[J].Separation & purification technology, 2005, 46(3):136-144.
[27] COELHOSO I M. Resolution of racemic propranolol in liquid membranes containing TA-β-cyclodextrin[J].Separation science & technology, 2006, 41(16):3553-3568.
[28] SAENGER W. Chemical and physical studies on cyclodextrin inclusion compounds[C]//Proceedings of the Fourth International Symposium on Cyclodextrins.Berlin:Springer Netherlands, 1988:159-164.
[29] ZHOU N, ZHU X S. Ionic liquids functionalized β-cyclodextrin polymer for separation/analysis of magnolol[J].Journal of pharmaceutical analysis, 2014, 4(4):242-249.
[30]IVANOVA-MITSEVA P. Selective separation of toluene from n-heptane via emulsion liquid membranes containing substituted cyclodextrins as carrier[J].Separation science & technology, 2006, 41(16):3539-3552.
[31]PACZKOWSKA M, MIZERA M, SZYMANOWSKA-POWALOWSKA D, et al. β-cyclodextrin complexation as an effective drug delivery system for meropenem[J].European journal of pharmaceutics & biopharmaceutics official journal of arbeitsgemeinschaft fur pharmazeutische verfahrenstechnik E V, 2016, 99:24-34.
[32] TOUIL S, TINGRY S, BOUCHTALLA S, et al. Selective pertraction of isomers using membranes having fixed cyclodextrin as molecular recognition sites[J].Desalination, 2006,
193(1):291-298.
[33] KOZLOWSKI C A, SLIWA W. The use of membranes with cyclodextrin units in separation processes:recent advances [J].Carbohydrate polymers, 2008, 74(1):1-9.
[34] MIYATA T, IWAMOTO T, URAGAMI T. Characteristics of permeation and separation for propanol isomers through poly(vinyl alcohol) membranes containing cyclodextrin[J].Journal of applied polymer science, 2010, 51(12):2007-2014.
[35] ZHANG W, CHEN M, DIAO G. Electrospinning β-cyclodextrin/poly(vinyl alcohol) nanofibrous membrane for molecular capture[J].Carbohydrate polymers, 2011, 86(3):1410-1416.
[36] YANG T, LIU C. SPEEK/sulfonated cyclodextrin blend membranes for direct methanol fuel cell [J].International journal of hydrogen energy, 2011, 36(9):5666-5674.