高 景 齊智利
(華中農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,武漢 430070)
反芻動(dòng)物通過瘤胃微生物發(fā)酵飼糧中的碳水化合物產(chǎn)生大量的乙酸、丙酸、丁酸等短鏈脂肪酸(short chain fatty acid,SCFA)并通過瘤胃上皮吸收。研究發(fā)現(xiàn),一部分SCFA經(jīng)瘤胃上皮吸收進(jìn)入血液,在肝臟中糖異生生成葡萄糖供能,另一部分在瘤胃上皮細(xì)胞內(nèi)發(fā)生代謝,生成酮體、膽固醇。瘤胃上皮是SCFA吸收的主要場所,具有分層結(jié)構(gòu),從瘤胃內(nèi)腔由外到內(nèi)可以分為角質(zhì)層、顆粒層、棘皮層以及基底層[1-2]。SCFA在瘤胃內(nèi)腔有2種存在形式,分別為解離狀態(tài)和未解離狀態(tài)。不同類型以及存在形式的SCFA,其轉(zhuǎn)運(yùn)吸收到瘤胃上皮細(xì)胞的方式和特點(diǎn)也不一樣。SCFA的轉(zhuǎn)運(yùn)是被動(dòng)擴(kuò)散與特異性載體轉(zhuǎn)運(yùn)共存[3-4]。而SCFA作為一種弱酸,不論在瘤胃內(nèi)腔里解離出H+還是進(jìn)入瘤胃上皮細(xì)胞后解離出H+,均會引起酸化,將會激活細(xì)胞膜上的相關(guān)轉(zhuǎn)運(yùn)載體如Na+/H+交換體(Na+/H+exchanger,NHE),將細(xì)胞內(nèi)H+轉(zhuǎn)運(yùn)出細(xì)胞。SCFA在進(jìn)入瘤胃上皮細(xì)胞后進(jìn)行代謝,代謝率超過50%,其中以丁酸的代謝率最高。SCFA代謝途徑包括膽固醇合成和酮體合成,這2種合成途徑的前體物3-羥基3-甲基戊二酰輔酶A(3-hydroxy-3-methylglutaryl-CoA,HMG-CoA)是由SCFA經(jīng)過一系列反應(yīng)生成的。酮體生成后經(jīng)單羧酸鹽/H+共轉(zhuǎn)運(yùn)蛋白(monocarboxylate/H+co-transporters,MCT)轉(zhuǎn)運(yùn)到血液,為外周組織提供能量,當(dāng)生酮作用過強(qiáng)時(shí),會導(dǎo)致反芻動(dòng)物血液中酮體濃度過高,嚴(yán)重時(shí)可引起酮病。而膽固醇積累過多則會導(dǎo)致細(xì)胞炎癥和氧化應(yīng)激等,進(jìn)而影響機(jī)體整體能量供應(yīng),造成炎癥反應(yīng)。因此研究SCFA在瘤胃上皮的轉(zhuǎn)運(yùn)吸收對深入了解瘤胃動(dòng)態(tài)及構(gòu)建營養(yǎng)調(diào)控模型有重要指導(dǎo)意義。
瘤胃上皮有吸收、代謝SCFA以及保護(hù)瘤胃等重要生理功能。瘤胃上皮具有分層結(jié)構(gòu),從瘤胃內(nèi)腔表面開始由外到內(nèi)按照細(xì)胞分布可分為4層,分別是角質(zhì)層、顆粒層、棘皮層及基底層?;讓蛹?xì)胞富含線粒體,顆粒層和棘皮層細(xì)胞位于中間,之間界限不明顯,其中棘皮層細(xì)胞也含有少量線粒體,因此基底層和棘皮層是瘤胃上皮SCFA代謝的主要場所。顆粒層細(xì)胞之間緊密間隙連接,角質(zhì)層位于最外面,細(xì)胞高度角質(zhì)化,起到了屏障保護(hù)作用,可作為對瘤胃內(nèi)物理環(huán)境的防御屏障[5-8]。角質(zhì)層細(xì)胞層數(shù)受到SCFA的調(diào)控。當(dāng)飼糧精粗比上升時(shí),丙酸/乙酸上升,SCFA濃度上升,瘤胃液pH下降,角質(zhì)層細(xì)胞層數(shù)可增加至15層。反之,角質(zhì)層細(xì)胞層數(shù)可下降至4層。瘤胃上皮遍布葉狀乳頭,牛葉狀乳頭長度可達(dá)10~15 mm,大大增加了SCFA吸收表面積[9]。葉狀乳頭作為瘤胃吸收營養(yǎng)物質(zhì)的主要結(jié)構(gòu),其分布密度和大小影響SCFA的吸收。有研究表明,高蛋白質(zhì)和高能量濃度攝入能提高血清胰島素樣生長因子1(IGF-1)濃度,在其與受體結(jié)合后激活下游Ras/Raf/絲裂原活化的細(xì)胞外信號調(diào)節(jié)激酶(MEK)/細(xì)胞外調(diào)節(jié)蛋白激酶(ERK)信號通路,上調(diào)細(xì)胞周期蛋白D1(cyclin D1)表達(dá),促進(jìn)瘤胃上皮細(xì)胞增殖,增加其對SCFA的吸收[10-11]。Yazdi等[12-13]則發(fā)現(xiàn)熱應(yīng)激能增加乳頭高度。因此,瘤胃上皮形態(tài)結(jié)構(gòu)與SCFA的吸收處在動(dòng)態(tài)平衡的調(diào)節(jié)之中,兩者相互協(xié)調(diào),維持瘤胃內(nèi)環(huán)境的穩(wěn)態(tài)。
SCFA在瘤胃內(nèi)腔和胞內(nèi)之間存在濃度差,但并不是簡單的順濃度梯度的擴(kuò)散,其在瘤胃內(nèi)腔內(nèi)有解離和非解離2種形式,以非解離SCFA為主,因此導(dǎo)致其吸收轉(zhuǎn)運(yùn)方式存在差異[14-15]。體外試驗(yàn)發(fā)現(xiàn)丁酸在無濃度梯度下呈現(xiàn)出最高凈吸收速率,而乙酸和丙酸的凈吸收率較低[16]。在SCFA的吸收轉(zhuǎn)運(yùn)中,被動(dòng)擴(kuò)散與特異性載體運(yùn)輸共存。NHE是膜上重要的轉(zhuǎn)運(yùn)Na+和H+的載體。未解離SCFA經(jīng)被動(dòng)擴(kuò)散進(jìn)入細(xì)胞后解離出H+,調(diào)節(jié)pH,引起胞質(zhì)酸化,使NHE表達(dá)上調(diào),增加Na+吸收速率,將Na+轉(zhuǎn)入胞內(nèi),H+轉(zhuǎn)出瘤胃內(nèi)腔,因此瘤胃上皮細(xì)胞吸收轉(zhuǎn)運(yùn)SCFA時(shí)引起胞質(zhì)酸化與NHE的活性增強(qiáng)存在功能性偶聯(lián)[17-18]。在牛瘤胃上皮細(xì)胞的NHE家族主要是NHE1、NHE2、NHE3和NHE8,而NHE1和NHE3分布在山羊及綿羊的瘤胃上皮細(xì)胞[19-21]。研究表明,NHE1維持鄰近顆粒層的細(xì)胞外pH,NHE1敲除動(dòng)物局部細(xì)胞外pH低于正常值[22]。因此NHE1的存在對于維持瘤胃液pH有重要作用。而MCT是介導(dǎo)瘤胃SCFA、酮體、乳酸等轉(zhuǎn)運(yùn)吸收的特異性載體。在牛瘤胃上皮細(xì)胞表達(dá)的是MCT1和MCT2。通過熒光染色將MCT1定位在瘤胃上皮的基底層,其負(fù)責(zé)將胞內(nèi)解離的SCFA,乳酸鹽和酮體共轉(zhuǎn)運(yùn)到血液中去除上皮細(xì)胞中的H+,防止因酮體及乳酸鹽過度積累引起的胞質(zhì)酸化[23-24]。
瘤胃上皮細(xì)胞內(nèi)代謝活躍,研究發(fā)現(xiàn),從瘤胃內(nèi)腔到血液中約75%的丙酸和95%的丁酸在瘤胃上皮細(xì)胞內(nèi)被代謝掉[34]。瘤胃上皮細(xì)胞不依賴于葡萄糖、酮體以及谷氨酰胺等供能,而是氧化終端發(fā)酵產(chǎn)物SCFA來獲取大部分能量。而在SCFA中,丁酸的代謝率最高,因此丁酸將是主要代謝底物[35]。被瘤胃上皮攝取后,SCFA的代謝由?;o酶A合成酶家族加入輔酶A酯生成乙酰輔酶A開始[36],然后3-羥基3-甲基戊二酰輔酶A合成酶(3-hydroxy-3-methylglutaryl-CoA synthase,HMGCS)將乙酰輔酶A轉(zhuǎn)化為HMG-CoA。HMG-CoA是瘤胃上皮的中心代謝物,合成酮體和膽固醇的前體物,分布于線粒體和細(xì)胞質(zhì)中[37-39]。HMGCS有2個(gè)亞型:位于細(xì)胞質(zhì)內(nèi)的HMGCS1和專一性位于線粒體中HMGCS2。HMGCS2調(diào)控瘤胃上皮細(xì)胞酮體合成,是反應(yīng)限速酶[40]。De Rosa等[41]發(fā)現(xiàn)25和50 μmol/L的二十二碳六烯酸(docosahexaenoic acid,DHA)、二十碳五烯酸(eicosapentaenoic acid,EPA)、花生四烯酸(arachidonic acid,AA)均能在轉(zhuǎn)錄和翻譯水平上調(diào)HMGCS2的表達(dá),25 mmol/L果糖和胰島素處理人肝腫瘤細(xì)胞(HepG2)24 h則降低mRNA和蛋白質(zhì)表達(dá)量。多不飽和脂肪酸(polyunsaturated fatty acids,PUFA)能通過與過氧化物酶體增殖激活受體α(peroxisome proliferator-activated receptor α,PPARα)結(jié)合調(diào)控脂肪從頭合成、脂肪酸氧化等多
種代謝途徑[42]。而HMGCS2啟動(dòng)子區(qū)域含有過氧化物酶體增殖反應(yīng)元件(peroxisome proliferator response elemen,PPARE),其與PPARα結(jié)合后啟動(dòng)HMGCS2的轉(zhuǎn)錄[43-44]。研究發(fā)現(xiàn),當(dāng)PPARαmRNA表達(dá)上調(diào)時(shí),HMGCS2 mRNA表達(dá)量也隨之增加[45]。因此,我們推測多PUFA可能是通過直接結(jié)合PPARα等核受體上調(diào)HMGCS2表達(dá)來調(diào)節(jié)酮體合成。反芻動(dòng)物酮體生成的主要部位包括瘤胃和肝臟。在線粒體中的酮體合成過程如圖1所示。當(dāng)瘤胃上皮生酮作用過強(qiáng),SCFA代謝紊亂,造成高血酮癥,最終引起酮病,將會嚴(yán)重危害動(dòng)物健康[48]。因此進(jìn)一步研究瘤胃上皮細(xì)胞酮體合成調(diào)控機(jī)制對預(yù)防酮病有重要意義。
表1 瘤胃上皮短鏈脂肪酸轉(zhuǎn)運(yùn)載體
除了作為酮體生成的底物之外,SCFA也可以在細(xì)胞質(zhì)和內(nèi)質(zhì)網(wǎng)中進(jìn)行膽固醇生物合成。膽固醇生物合成途徑的前部分發(fā)生在細(xì)胞質(zhì)中,SCFA在細(xì)胞質(zhì)中經(jīng)過一系列反應(yīng)生成HMG-CoA,HMG-CoA從細(xì)胞質(zhì)遷移到內(nèi)質(zhì)網(wǎng)上,因?yàn)閮?nèi)質(zhì)網(wǎng)上有羥甲基戊二酰輔酶還原酶(HMG-CoA reductase,HMGR)。遷移到內(nèi)質(zhì)網(wǎng)上的HMG-CoA被HMGR還原催化成甲羥戊酸(通常稱為甲羥戊酸途徑)[49-50]。HMGR是膽固醇生物合成的限速酶。然后甲羥戊酸脫羧轉(zhuǎn)化為類異戊二烯中間體,如法尼醇焦磷酸(farnesyl-PP,FPP)。異戊二烯中間體通過膜相關(guān)信號蛋白的附著,亞細(xì)胞定位和細(xì)胞內(nèi)運(yùn)輸來誘導(dǎo)細(xì)胞增殖,遷移和氧化應(yīng)激。膽固醇生物合成的最終分支點(diǎn)即角鯊烯合酶(FDPS)催化FPP生成角鯊烯,角鯊烯再轉(zhuǎn)化為羊毛甾醇,經(jīng)過一系列反應(yīng)最終生成為膽固醇[51]。膽固醇雖然是哺乳動(dòng)物細(xì)胞膜的主要成分,但當(dāng)細(xì)胞內(nèi)膽固醇及其代謝物(類異戊二烯)積累過多時(shí)會增大膜通透性,引發(fā)炎癥反應(yīng)[52]。研究發(fā)現(xiàn),飼喂高精飼糧會增加瘤胃上皮通透性和炎癥[53-54]。因?yàn)楦呔暭Z促進(jìn)瘤胃發(fā)酵,增加SCFA濃度,促進(jìn)瘤胃上皮細(xì)胞膽固醇生物合成,增大細(xì)胞通透性,引發(fā)炎癥。Steele等[55]研究發(fā)現(xiàn),當(dāng)持續(xù)1周飼喂高精飼糧時(shí),瘤胃液SCFA濃度顯著增加,出現(xiàn)瘤胃酸中毒,牛膽固醇合成相關(guān)基因HMGS1、HMGRmRNA表達(dá)量上調(diào),膽固醇濃度升高,引發(fā)炎癥。而隨著試驗(yàn)進(jìn)行到第3周時(shí),SCFA濃度仍顯著高于正常值,但HMGS1、HMGRmRNA表達(dá)量顯著下降,抑制膽固醇合成,瘤胃酸中毒減緩。因此,瘤胃上皮內(nèi)膽固醇的合成是受到SCFA濃度和持續(xù)時(shí)間的共同調(diào)控。短期內(nèi)SCFA增加能促進(jìn)瘤胃上皮細(xì)胞膽固醇的合成,增加瘤胃上皮通透性,引發(fā)炎癥,而當(dāng)持續(xù)時(shí)間延長時(shí),瘤胃上皮細(xì)胞則通過甾醇調(diào)節(jié)元件結(jié)合蛋白(sterol regulatory element binding protein,SREBP)通路來抑制膽固醇合成通路上相關(guān)酶的表達(dá),抑制膽固醇合成,減緩炎癥和瘤胃酸中毒[56]。SREBP是調(diào)控牛肝和乳腺中的膽固醇和脂肪基因表達(dá)的轉(zhuǎn)錄因子家族[57]。?;蚪M編碼3個(gè)SREBP亞型,即SREBP-1a、SREBP-1c和SREBP-2,其中SREBP-2優(yōu)先激活膽固醇生物合成[58]。高膽固醇濃度時(shí),在內(nèi)質(zhì)網(wǎng)的SREBP與SREBP切割活化蛋白(SREBP cleavage-activating protein,SCAP)結(jié)合,并從轉(zhuǎn)錄水平上抑制膽固醇合成相關(guān)基因表達(dá)(圖2);低膽固醇濃度時(shí),SREBP-SCAP復(fù)合物從內(nèi)質(zhì)網(wǎng)遷移到高爾基體,SREBP在發(fā)生蛋白剪切,釋放N端,啟動(dòng)核基因表達(dá),膽固醇合成作用增強(qiáng)[59-60]。因此,為了維持瘤胃上皮細(xì)胞內(nèi)膽固醇濃度的穩(wěn)定,減緩膽固醇積累導(dǎo)致的瘤胃上皮通透性增加和炎癥,需要進(jìn)一步研究SCFA在瘤胃上皮細(xì)胞膽固醇合成的分子調(diào)控機(jī)制,為有效預(yù)防及緩解瘤胃酸中毒提供依據(jù)。
Acetyl-CoA:乙酰輔酶A acetylcoenzyme A;CoA:輔酶A coenzyme A;HMGCS1:3-羥基3-甲基戊二酰輔酶A合成酶1 3-hydroxy-3-methylglutaryl-CoA synthase 1;Acetoacetyl-CoA:乙酰乙酰輔酶A acetoacetylcoenzyme A;HMG-CoA:3-羥基3-甲基戊二酰輔酶A 3-hydroxy-3-methylglutaryl-CoA;HMGR:羥甲基戊二酰輔酶還原酶 HMG-CoA reductase;mevalonate:甲羥戊酸;squalene:角鯊烯;cholesterol:膽固醇;AE:陰離子交換劑 anion exchangers;NHE:Na+/H+交換體 Na+/H+exchanger;TCA:三羧酸循環(huán) tricarboxylic acid cycle;HMG-CoA layse:HMG-CoA裂解酶 3-hydroxy-3-methylglutaryl-CoA layse;BDH1:β-羥基丁酸脫氫酶 β-hydroxybutyrate dehydrogenase;βOHB:β-羥基丁酸β-hydroxybutyrate;NAD+:氧化型煙酰胺腺嘌呤二核苷酸oxidized form of nicotinamide adenine dinucleotide;NADH:還原型煙酰胺腺嘌呤二核苷酸 reduced form of nicotinamide adenine dinucleotide;AcAc:乙酰乙酸 acetoacetate;Acetone:丙酮。下圖同 The same as below。
圖1瘤胃上皮細(xì)胞內(nèi)SCFA的轉(zhuǎn)運(yùn)吸收及代謝(結(jié)合文獻(xiàn)[46-47]繪制)
Fig.1 Absorbtion and metabolism of SCFA in rumen epithelium cells (drawed based on references[46-47])
SCFA:短鏈脂肪酸 short chain fatty acid;NADPH:還原型煙酰胺腺嘌呤二核苷酸磷酸 reduced form of nicotinamide-adenine dinucleotide phosphate;Mevalonate-PP:甲羥戊酸焦磷酸 mevalonate pyrophosphate;Farnesyl-PP:法尼醇焦磷酸 farnesyl-pyrophosphate;squalene synthetase:角鯊烯合成酶;squalene epoxidase:角鯊烯環(huán)氧酶;lanosterol:羊毛甾醇;bile acid:膽汁酸;steroid hormone:固醇激素;vitamin D:維生素D;SREBP:甾醇調(diào)節(jié)元件結(jié)合蛋白 sterol regulatory element binding protein;SCAP:SREBP切割活化蛋白 SREBP cleavage-activating protein。
圖2瘤胃上皮細(xì)胞膽固醇生物合成途徑(修改自文獻(xiàn)[51])
Fig.2 Cholesterol biosynthesis pathway in rumen epithelium cell (modified from reference [51])
由于反芻動(dòng)物瘤胃發(fā)酵的特異性,SCFA是其主要能量供應(yīng)底物,因此SCFA在瘤胃上皮的吸收代謝與機(jī)體能量代謝、健康生長密切相關(guān),深入研究并闡明機(jī)制有利于瘤胃健康的營養(yǎng)調(diào)控。目前關(guān)于瘤胃上皮細(xì)胞各種特異性載體蛋白的種類、作用機(jī)制進(jìn)行了大量的研究,但關(guān)于不同載體之間的相互作用以及不同生理狀態(tài)如熱應(yīng)激、瘤胃酸中毒等對載體的影響尚不清楚。關(guān)于SCFA在瘤胃上皮細(xì)胞的代謝轉(zhuǎn)化可以與肝臟代謝、血液循環(huán)等相結(jié)合做進(jìn)一步的研究,從整體上深入闡明瘤胃上皮SCFA的吸收代謝調(diào)控機(jī)理。
參考文獻(xiàn):
[1] ANDERSON K L,NAGARAJA T G,MORRILL J L.Ruminal metabolic development in calves weaned conventionally or early[J].Journal of Dairy Science,1987,70(5):1000-1005.
[2] 盧勁曄,黃智南,沈贊明.反芻動(dòng)物瘤胃上皮的結(jié)構(gòu)特點(diǎn)[J].黑龍江畜牧獸醫(yī),2014(16):50-52.
[3] 楊春濤,刁其玉,司丙文,等.揮發(fā)性脂肪酸在反芻動(dòng)物瘤胃上皮吸收轉(zhuǎn)運(yùn)及調(diào)節(jié)作用[J].中國畜牧雜志,2015,51(7):78-83.
[4] CONNOR E E,LI R W,BALDWIN R L,et al.Gene expression in the digestive tissues of ruminants and their relationships with feeding and digestive processes[J].Animal,2010,4(7):993-1007.
[5] NAEEM A,DRACKLEY J K,STAMEY J,et al.Role of metabolic and cellular proliferation genes in ruminal development in response to enhanced plane of nutrition in neonatal Holstein calves[J].Journal of Dairy Science,2012,95(4):1807-1820.
[6] XIANG R D,HUTTON O V,ARCHIBALD L A,et al.Epithelial,metabolic and innate immunity transcriptomic signatures differentiating the rumen from other sheep and mammalian gastrointestinal tract tissues[J].PeerJ,2016,4(3):1762-1793.
[7] GRAHAM C,SIMMONS N L.Functional organization of the bovine rumen epithelium[J].American Journal of Physiology,2005,288(1):R173-R209.
[8] DENGLER F,RACKWITZ R,BENESCH F,et al.Both butyrate incubation and hypoxia upregulate genes involved in the ruminal transport of SCFA and their metabolites[J].Journal of Animal Physiology and Animal Nutrition,2015,99(2):379-390.
[9] GAEBEL G,MARTENS H,SUENDERMANN M,et al.The effect of diet,intraruminal pH and osmolarity on sodium,chloride and magnesium absorption from the temporarily isolated and washed reticulo-rumen of sheep[J].Quarterly Journal of Experimental Physiology,1987,72(4):501-511.
[10] SHEN Z,SEYFERT H M,L?HRKE B,et al.An energy-rich diet causes rumen papillae proliferation associated with more IGF type 1 receptors and increased plasma IGF-1 concentrations in young goats[J].The Journal of Nutrition,2004,134(1):11-17.
[11] 盧勁曄,盧煒,劉靜,等.IGF-1促進(jìn)山羊瘤胃上皮細(xì)胞增殖的機(jī)制[J].南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2014,37(5):106-110.
[12] YAZDI M H,MIRZAEI-ALAMOUTI H R,AMANLOU H,et al.Effects of heat stress on metabolism,digestibility,and rumen epithelial characteristics in growing Holstein calves[J].Journal of Animal Science,2016,94(1):77-89.
[13] YADAV B,SINGH G,VERMA A K,et al.Impact of heat stress on rumen functions[J].Veterinary World,2013,6(6):992-996.
[14] GRAHAM C,GATHERAR I,HASLAM I,et al.Expression and localization of monocarboxylate transporters and sodium/proton exchangers in bovine rumen epithelium[J].American Journal of Physiology ,2007,292(2):R997-R1007.
[15] KIRAT D,SALLAM K I,KATO S.Expression and cellular localization of monocarboxylate transporters (MCT2,MCT7,and MCT8) along the cattle gastrointestinal tract[J].Cell and Tissue Research,2013,352(3):585-598.
[16] HERRMANN J,HERMES R,BREVES G.Transepithelial transport and intraepithelial metabolism of short-chain fatty acids (SCFA) in the porcine proximal colon are influenced by SCFA concentration and luminal pH[J].Comparative Biochemistry and Physiology,2011,158(1):169-176.
[17] ASCHENBACH J R,PENNER G B,STUMPFF F,et al.Ruminant nutrition symposium:role of fermentation acid absorption in the regulation of ruminal pH[J].Journal of Animal Science,2011,89(4):1092-1007.
[18] PENNER G B.The role of short-chain fatty acid (SCFA) absorption in the regulation of ruminal pH:feed science[J].Memoirs of Shiraume Gakuen College,2015,26(4):47-67.
[19] LU Z Y,YAO L,JIANG Z Q,et al.Acidic pH and short-chain fatty acids activate Na+transport but differentially modulate expression of Na+/H+exchanger isoforms 1,2,and 3 in omasal epithelium[J].Journal of Dairy Science,2016,99(1):733-745.
[20] YANG W,SHEN Z,MARTENS H.An energy-rich diet enhances expression of Na+/H+exchanger isoform 1 and 3 messenger RNA in rumen epithelium of goat[J].Journal of Animal Science,2012,90(1):307-317.
[21] RABBANI I,SIEGLING-VLITAKIS C,NOCI B,et al.Evidence for NHE3-mediated Na transport in sheep and bovine forestomach[J].American Journal of Physiology ,2011,301(2):R313-R919.
[22] BEHNE M J,MEYER J W,HANSON K M,et al.NHE1 regulates the stratum corneum permeability barrier homeostasis.Microenvironment acidification assessed with fluorescence lifetime imaging[J].Journal of Biological Chemistry,2002,277(49):47399-47406.
[23] CUFF M A,LAMBERT D W,SHIRAZI-BEECHEY S P.Substrate-induced regulation of the human colonic monocarboxylate transporter,MCT1[J].Journal of Physiology,2002,539(2):361-371.
[24] YAN L,ZHANG B,SHEN Z M.Dietary modulation of the expression of genes involved in short-chain fatty acid absorption in the rumen epithelium is related to short-chain fatty acid concentration and pH in the rumen of goats[J].Journal of Dairy Science,2014,97(9):5668-5675.
[27] CASEY J R,GRINSTEIN S,ORLOWSKI J.Sensors and regulators of intracellular pH[J].Nature Reviews Molecular Cell Biology,2010,11(1):50-61.
[29] BILK S,HUHN K,HONSCHA K U,et al.Bicarbonate exporting transporters in the ovine ruminal epithelium[J].Journal of Comparative Physiology,2005,175(5):365-374.
[30] STEWART A K ,KURSCHAT C E,ALPER S L.Role of nonconserved charged residues of the AE2 transmembrane domain in regulation of anion exchange by pH[J].Pflügers Archiv:European Journal of Physiology,2007,454(3):373-384.
[32] FIRKINS J L,HRISTOV A N,HALL M B,et al.Integration of ruminal metabolism in dairy cattle1,2[J].Journal of Dairy Science,2006,89(1S):E31-E51.
[34] SEHESTED J,DIERN?S L,MULLER P D,et al.Ruminal transport and metabolism of short-chain fatty acids (SCFA) in vitro:effect of SCFA chain length and pH [J].Comparative Biochemistry and Physiology,1999,123(4):359-368.
[35] KRISTENSEN N B,HARMON D L.Effect of increasing ruminal butyrate absorption on splanchnic metabolism of volatile fatty acids absorbed from the washed reticulorumen of steers[J].Journal of Animal Science,2004,82(7):2033-2042.
[36] ASH R,BAIRD G D.Activation of volatile fatty acids in bovine liver and rumen epithelium.Evidence for control by autoregulation[J].Biochemical Journal,1973,136(2):311-319.
[37] MARTINEZ-OUTSCHOORN U E,LIN Z,WHITAKER-MENEZES D,et al.Ketone bodies and two-compartment tumor metabolism:Stromal ketone production fuels mitochondrial biogenesis in epithelial cancer cells[J].Cell Cycle,2012,11(21):3956-3963.
[38] HEGARDT F G.Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase:a control enzyme in ketogenesis[J].Biochemical Journal,1999,338(3):569-582.
[39] KOSTIUK M A,KELLER B O,BERTHIAUME L G.Palmitoylation of ketogenic enzyme HMGCS2 enhances its interaction with PPARalpha and transcription at theHmgcs2 PPRE[J].The FASEB Journal,2010,24(6):1914-1924.
[40] HELENIUS T O,MISIOREK J O,NYSTR?M J H,et al.Keratin 8 absence down-regulates colonocyte HMGCS2 and modulates colonic ketogenesis and energy metabolism[J].Molecular Biology of the Cell,2015,26(12):2298-2324.
[41] RESCIGNO T,CAPASSO A,TECCE M F.Involvement of nutrients and nutritional mediators in mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene expression[J].Journal of Cellular Physiology 2017,232(8):1-9.
[42] JUMP D B.N-3 polyunsaturated fatty acid regulation of hepatic gene transcription[J].Current Opinion in Lipidology,2008,19(3):242-247.
[43] KINOSHITA M,SUZUKI Y,SAITO Y.Butyrate reduces colonic paracellular permeability by enhancing PPAR gamma activation[J].Biochemical and Biophysical Research Communications,2002,293(2):827-831.
[45] DE ROSA M C,CAPUTO M,ZIRPOLI H,et al.Identification of genes selectively regulated in human hepatoma cells by treatment with dyslipidemic sera and PUFAs[J].Journal of Cellular Physiology,2015,230(9):2059-2066.
[46] PUCHALSKA P,CRAWFORD P A.Multi-dimensional roles of ketone bodies in fuel metabolism,signaling,and therapeutics[J].Cell Metabolism,2017,25(2):262-284.
[47] VITURRO E,KOENNING M,KROEMER A,et al.Cholesterol synthesis in the lactating cow:induced expression of candidate genes[J].Journal of Steroid Biochemistry and Molecular Biology,2009,115(1/2):62-67.
[48] 孫玲偉,包凱,李影,等.奶牛臨床和亞臨床酮病的血漿代謝組學(xué)研究[J].中國農(nóng)業(yè)科學(xué),2014,47(8):1588-1599.
[49] MATSUHASHI T,MARUYAMA S,UEMOTO Y,et al.Effects of bovine fatty acid synthase,stearoyl-coenzyme A desaturase,sterol regulatory element-binding protein 1,and growth hormone gene polymorphisms on fatty acid composition and carcass traits in Japanese Black cattle[J].Journal of Animal Science,2011,89(1):12-22.
[50] LIAO P,HEMMERLIN A,BACH T J,et al.The potential of the mevalonate pathway for enhanced isoprenoid production[J].Biotechnology Advances,2016,34(5):697-713.
[51] FAUST P L,KOVACS W J.Cholesterol biosynthesis and ER stress in peroxisome deficiency[J].Biochimie,2014,98:75-85.
[52] ONTSOUKA E C,ALBRECHT C.Cholesterol transport and regulation in the mammary gland[J].Journal of Mammary Gland Biology and Neoplasia,2014,19(1):43-58.
[53] KHAFIPOUR E,KRAUSE D O,PLAIZIER J C.A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation[J].Journal of Dairy Science,2009,92(3):1060-1070.
[54] ZHOU J,DONG G Z,AO C J,et al.Feeding a high-concentrate corn straw diet increased the release of endotoxin in the rumen and pro-inflammatory cytokines in the mammary gland of dairy cows[J].BMC Veterinary Research,2014,10:172.
[55] STEELE M A,VANDERVOORT G,ALZAHAL O,et al.Rumen epithelial adaptation to high-grain diets involves the coordinated regulation of genes involved in cholesterol homeostasis[J].Physiological Genomics,2011,43(6):308-316.
[56] HORTON J D,GOLDSTEIN J L,BROWN M S.SREBPs:activators of the complete program of cholesterol and fatty acid synthesis in the liver[J].Journal of Clinical Investigation,2002,109(9):1125-1131.
[57] 柳童斐,宋保亮.膽固醇合成途徑的負(fù)反饋調(diào)控機(jī)制[J].中國細(xì)胞生物學(xué)學(xué)報(bào),2013(4):401-409.
[58] BROWN M S,GOLDSTEIN J L.The SREBP pathway:regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor[J].Cell,1997,89(3):331-340.
[59] TAO R Y,XIONG X W,DEPINHO R A,et al.Hepatic SREBP-2 and cholesterol biosynthesis are regulated by FoxO3and Sirt6[J].Journal of Lipid Research,2013,54(10):2745-2753.
[60] CHEN Z,DING Z,MA G S,et al.Sterol regulatory element-binding transcription factor (SREBF)-2,SREBF cleavage-activating protein (SCAP),and premature coronary artery disease in a Chinese population[J].Molecular Biology Reports,2011,38(5):2895-2901.