王雪潔 馮京海
(中國(guó)農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,動(dòng)物營(yíng)養(yǎng)學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100193)
家禽的腸道包括十二指腸、空腸、回腸、盲腸和直腸,是營(yíng)養(yǎng)物質(zhì)消化、吸收的主要位點(diǎn)。家禽的腸道約占體重的1.5%,但其長(zhǎng)度約是體長(zhǎng)的6倍。腸道內(nèi)腔環(huán)形皺襞以及腸絨毛使小腸表面積擴(kuò)大了20~30倍,有效地增強(qiáng)了小腸的吸收功能[1]。同時(shí)腸道也是家禽能量消耗的主要組織,飼料中6.0%~8.0%的能量由家禽腸道消耗[2]。另外,家禽腸道中棲息著大量微生物,其中包括大量由飼料和飲水進(jìn)入的病源微生物,因此腸道上皮組織也是家禽抵御病源菌的重要屏障[3]。維持腸道正常的結(jié)構(gòu)和功能對(duì)于家禽的生長(zhǎng)和健康十分關(guān)鍵。熱應(yīng)激影響家禽的健康和產(chǎn)長(zhǎng)性能,研究發(fā)現(xiàn)熱應(yīng)激導(dǎo)致肉雞生長(zhǎng)性能顯著下降[4],以及禽類(lèi)解偶聯(lián)蛋白mRNA表達(dá)量下降[5]。同時(shí)熱應(yīng)激還影響肉仔雞免疫器官的發(fā)育,損傷小腸形態(tài)結(jié)構(gòu)[6],改變盲腸菌群多樣性[7]。熱應(yīng)激是影響家禽腸道結(jié)構(gòu)和功能的一個(gè)重要因素。熱應(yīng)激影響家禽腸道的形態(tài)以及腸黏膜的完整性。熱應(yīng)激影響腸道的結(jié)構(gòu)可能與多種因素有關(guān),例如熱應(yīng)激引起的采食量下降、腸道血流量減少等。本文針對(duì)熱應(yīng)激影響家禽腸道結(jié)構(gòu)的研究進(jìn)行總結(jié),并從采食量、血流量、微生物等方面探討熱應(yīng)激影響家禽腸道的機(jī)制,以期加深對(duì)于熱應(yīng)激影響家禽腸道健康的認(rèn)識(shí)。
環(huán)境高溫影響家禽的腸道絨毛高度。Deng等[8]發(fā)現(xiàn),34 ℃熱應(yīng)激12 d可導(dǎo)致蛋雞回腸和盲腸絨毛高度縮短。Song等[9]觀察到33 ℃每天應(yīng)激10 h,連續(xù)應(yīng)激20 d,肉雞的空腸絨毛高度縮短。張少帥等[6]發(fā)現(xiàn),31 ℃應(yīng)激14 d顯著降低了空腸和回腸的絨毛高度。其他研究也在肉雞[10-11]和豬[12-14]上獲得相似發(fā)現(xiàn)。然而Quinteriro-Filho等[15]發(fā)現(xiàn),31 ℃應(yīng)激10 h對(duì)肉雞空腸絨毛高度沒(méi)有顯著影響。Burkholder等[16]發(fā)現(xiàn),30 ℃應(yīng)激24 h對(duì)肉雞回腸和盲腸的絨毛高度無(wú)顯著影響。這可能是由于環(huán)境溫度較低或應(yīng)激持續(xù)時(shí)間較短所致。Hao等[17]發(fā)現(xiàn),36 ℃應(yīng)激5 h對(duì)肉雞空腸絨毛高度沒(méi)有顯著影響,但應(yīng)激10 h后絨毛高度與隱窩深度的比值顯著降低。另外,不同腸段對(duì)于高溫的敏感性可能存在差異。30 ℃應(yīng)激14 d顯著降低了肉雞空腸遠(yuǎn)端絨毛高度,但不影響近端絨毛高度[18]。
環(huán)境高溫影響家禽腸道隱窩深度的報(bào)道不一。Song等[9]觀察到高溫導(dǎo)致肉雞的空腸隱窩深度加深。Quinteriro-Filho等[15]發(fā)現(xiàn),高溫對(duì)肉雞空腸隱窩深度沒(méi)有顯著影響。而B(niǎo)urkholder等[16]發(fā)現(xiàn),高溫引起肉雞回腸和盲腸的隱窩深度變淺。Al-Fataftah等[10]同樣發(fā)現(xiàn),高溫導(dǎo)致肉雞腸道隱窩深度下降。另外在豬上也同樣發(fā)現(xiàn),高溫導(dǎo)致腸道隱窩變淺[12-13]。高溫對(duì)家禽腸道隱窩深度的不同影響可能與熱應(yīng)激的強(qiáng)度和持續(xù)時(shí)間有關(guān)。Pearce等[14]證明,隨熱應(yīng)激時(shí)間延長(zhǎng),豬腸道隱窩深度先加深,然后逐漸變淺。
腸道絨毛的高度受到成熟上皮細(xì)胞凋亡脫落、幼稚上皮細(xì)胞遷移以及隱窩干細(xì)胞增殖的共同影響。環(huán)境高溫降低家禽腸道絨毛高度可能與促進(jìn)成熟上皮細(xì)胞的凋亡有關(guān)。Yu等[13]在電子顯微鏡下觀察到,高溫造成豬空腸絨毛頂端損傷,上皮細(xì)胞脫落,導(dǎo)致絨毛高度縮短。Yu等[19]的體外試驗(yàn)也發(fā)現(xiàn),提高培養(yǎng)溫度可導(dǎo)致腸上皮細(xì)胞(IEC-6)的凋亡增加。腸道隱窩深度可能與隱窩內(nèi)干細(xì)胞的增殖活性有關(guān)。Yamauchi等[20]發(fā)現(xiàn),腸道隱窩干細(xì)胞的增殖可能對(duì)高溫更加敏感。熱應(yīng)激初期家禽可能通過(guò)代償性的促進(jìn)隱窩內(nèi)干細(xì)胞的增殖活性,以恢復(fù)絨毛頂端上皮細(xì)胞的脫落。隨著家禽逐漸適應(yīng)熱應(yīng)激,隱窩深度可能恢復(fù),而熱應(yīng)激進(jìn)一步持續(xù)可能由于營(yíng)養(yǎng)攝入減少等原因?qū)е赂杉?xì)胞增殖抑制,隱窩變淺。
環(huán)境高溫影響家禽腸道的絨毛高度和隱窩深度,不僅抑制腸道影響營(yíng)養(yǎng)物質(zhì)的消化、吸收[21],還會(huì)影響腸道黏膜的完整性,增加病原微生物感染的幾率。黃淑成等[22]研究報(bào)道,38 ℃應(yīng)激10 h后肉雞血漿中內(nèi)毒素的含量呈極顯著的升高。Pearce等[14]也發(fā)現(xiàn),35 ℃高溫下豬血漿中內(nèi)毒素的含量顯著升高。Hall等[23]和Lim等[24]在小鼠上也有相似發(fā)現(xiàn)。內(nèi)毒素進(jìn)入體內(nèi)后刺激免疫系統(tǒng),導(dǎo)致血液中白細(xì)胞介素-1(IL-1)、腫瘤壞死因子(TNF)-α等細(xì)胞因子的含量升高[25-26]。Deng等[8]發(fā)現(xiàn),34 ℃下蛋雞血漿中TNF-α、IL-1的含量顯著升高。Bouchama等[27]在人上也有相似發(fā)現(xiàn)。內(nèi)毒素是來(lái)源于革蘭氏陰性菌細(xì)胞壁脂多糖的大分子復(fù)合物,其相對(duì)分子質(zhì)量約為1×106~20×106,正常情況下只有微量的脂多糖通過(guò)腸道上皮細(xì)胞間的緊密連接或受體介導(dǎo)的胞吞跨細(xì)胞膜轉(zhuǎn)運(yùn)進(jìn)入動(dòng)物體內(nèi)[26],因此高溫導(dǎo)致家禽血液中內(nèi)毒素和細(xì)胞因子含量的升高,間接表明腸道的完整性受損。Song等[9]利用尤斯灌流室(Ussing chamber)直接證實(shí),33 ℃熱暴露20 d導(dǎo)致肉雞空腸黏膜通透性顯著增加,表現(xiàn)為跨上皮電阻值(TER)下降,大分子物質(zhì)的滲透性增強(qiáng)。在小鼠和豬上也有相似發(fā)現(xiàn)[14,28-29]。Dokladny等[30]體外研究發(fā)現(xiàn),提高培養(yǎng)溫度導(dǎo)致Caco-2細(xì)胞之間的緊密連接受損。Yu等[13]通過(guò)電子顯微鏡也觀察到,熱應(yīng)激導(dǎo)致豬空腸細(xì)胞緊密連接形態(tài)發(fā)生改變。上述研究結(jié)果均表明高溫降低了腸道黏膜的完整性。
高溫降低腸道黏膜的完整性可能與肥大細(xì)胞有關(guān)。Deng等[8]發(fā)現(xiàn),高溫增加了蛋雞腸道上皮組織中肥大細(xì)胞的數(shù)量。肥大細(xì)胞釋放的生物活性物質(zhì)如類(lèi)胰蛋白酶和組胺等可以增強(qiáng)上皮組織的通透性[31-32]。高溫影響?zhàn)つさ耐暾钥赡芘c緊密連接蛋白的表達(dá)和分布有關(guān)。Ikari等[33]體外研究發(fā)現(xiàn),高溫抑制緊密連接蛋白ZO-1蛋白的表達(dá),并且誘導(dǎo)ZO-1蛋白由細(xì)胞膜向細(xì)胞質(zhì)轉(zhuǎn)移。Dokladny等[30]也發(fā)現(xiàn),提高培養(yǎng)溫度降低了ZO-1蛋白的表達(dá)。但Dokladny等[34]發(fā)現(xiàn),高溫上調(diào)了Occludin蛋白的表達(dá),推測(cè)可能與腸道上皮代償性的保護(hù)反應(yīng)有關(guān)。Pearce等[14]發(fā)現(xiàn)高溫影響豬腸道ZO-1、Occludin、Claudin 3等緊密連接蛋白mRNA的表達(dá),表現(xiàn)為先降低后升高的趨勢(shì),進(jìn)一步證實(shí)了這一推測(cè)。另外,環(huán)境高溫提高家禽血液中IL-1、TNF-α等細(xì)胞因子的含量[8],影響肌球蛋白輕鏈激酶的表達(dá)[14],進(jìn)一步引起肌球蛋白輕鏈磷酸化,調(diào)控肌動(dòng)蛋白細(xì)胞骨架的收縮,導(dǎo)致緊密連接打開(kāi),增加小腸滲透性[35-38],這可能也是高溫?fù)p傷腸道黏膜完整性的機(jī)制之一。
高溫影響腸上皮黏膜的完整性,增加了病原菌感染的幾率。Burkholder等[16]觀察到,30 ℃熱暴露24 h會(huì)增加肉雞腸道中沙門(mén)氏菌的附著。Quinteiro-Filho等[39-40]發(fā)現(xiàn)熱應(yīng)激提高沙門(mén)氏菌在肉雞盲腸和嗉囊上的定植,以及移位進(jìn)入肉雞的脾臟、肝臟和骨髓中,表明高溫降低了肉雞對(duì)沙門(mén)氏菌感染的抵抗。另外,由于上皮完整性的受損,內(nèi)毒素進(jìn)入家禽的循環(huán)系統(tǒng),進(jìn)一步激活局部和系統(tǒng)免疫,使能量和營(yíng)養(yǎng)物質(zhì)由生長(zhǎng)轉(zhuǎn)向產(chǎn)生急性期蛋白和其他免疫調(diào)控因子,從而抑制畜禽生長(zhǎng)[41-42],這可能是高溫影響家禽健康和生長(zhǎng)的關(guān)鍵原因。
環(huán)境高溫對(duì)于腸道結(jié)構(gòu)的影響可能與高溫降低采食量有關(guān)。張彩霞等[43]發(fā)現(xiàn),限飼70%顯著降低了肉雞十二指腸絨毛高度。但劉路路等[44]發(fā)現(xiàn),同樣限飼70%并沒(méi)有顯著影響黃羽肉雞十二指腸、空腸和回腸的絨毛高度和隱窩深度,這可能因?yàn)辄S羽肉雞生長(zhǎng)速度較慢,對(duì)于短時(shí)間限飼不敏感。Yamauchi等[45]發(fā)現(xiàn),饑餓應(yīng)激會(huì)導(dǎo)致蛋雞十二指腸和空腸絨毛高度降低。Nuez等[46]發(fā)現(xiàn),60%限飼顯著降低了仔豬小腸絨毛高度和隱窩深度。Ferraris等[47]總結(jié)了限飼或營(yíng)養(yǎng)不足對(duì)于腸道的影響,認(rèn)為限飼嚴(yán)重影響腸道黏膜的結(jié)構(gòu)和轉(zhuǎn)運(yùn)功能,增加腸道對(duì)于大分子的滲透性,導(dǎo)致腸道絨毛的萎縮。Garriga等[18]研究了高溫對(duì)肉雞腸道結(jié)構(gòu)和功能的影響,同時(shí)利用采食量配對(duì)的方法研究采食量降低的效應(yīng)。研究發(fā)現(xiàn),采食配對(duì)組同樣降低了肉雞空腸遠(yuǎn)端的絨毛高度。Pearce等[14]在豬上的研究也發(fā)現(xiàn)了相似結(jié)果,且采食配對(duì)組脂多糖的滲透率有升高趨勢(shì)。這些研究結(jié)果表明,熱應(yīng)激對(duì)于腸道結(jié)構(gòu)的影響部分是由于采食量下降引起的。
環(huán)境高溫對(duì)于腸道結(jié)構(gòu)的影響可能與動(dòng)物體溫升高有關(guān)。體外研究發(fā)現(xiàn),提高培養(yǎng)溫度顯著抑制上皮細(xì)胞IEC-6的增殖,誘導(dǎo)上皮細(xì)胞的凋亡[19],影響Caco-2細(xì)胞之間的緊密連接[27]。熱應(yīng)激導(dǎo)致豬[13]和大鼠[19]的直腸溫度升高。推測(cè)直腸溫度升高可能影響腸道上皮細(xì)胞的增殖和緊密連接,誘導(dǎo)上皮細(xì)胞凋亡,從而影響家禽腸道結(jié)構(gòu)。另外,Bouchama等[27]觀察到中暑病人直腸溫度升高,血液中TNF、IL-1和內(nèi)毒素含量均顯著升高,而體溫下降后TNF、IL-1和內(nèi)毒素的含量也隨之下降,這一發(fā)現(xiàn)間接表明體溫升高可能與腸道結(jié)構(gòu)變化有關(guān)。
高溫環(huán)境下,動(dòng)物為了增加散熱,提高體表的血流量,導(dǎo)致腸道等組織的血流量下降[48-49]。血流量長(zhǎng)時(shí)間減少可能引起腸道上皮細(xì)胞缺氧[23]、ATP耗竭、乳酸積聚、細(xì)胞功能紊亂,最終導(dǎo)致上皮細(xì)胞壞死和脫落,降低腸道絨毛高度,損害腸道上皮的完整性[38,48]。
環(huán)境高溫對(duì)于腸道的影響可能與腸道微生物有關(guān)。彭騫騫等[7]采用16S rDNA PCR-變性梯度凝膠電泳(DGGE)技術(shù),發(fā)現(xiàn)31 ℃持續(xù)高溫影響肉雞盲腸菌群的結(jié)構(gòu)和多樣性。隨熱應(yīng)激持續(xù)時(shí)間延長(zhǎng),對(duì)蛋雞十二指腸、空腸和回腸優(yōu)勢(shì)細(xì)菌菌群組成的影響越顯著,同時(shí)腸道絨毛高度和隱窩深度下降也越明顯[50]。熱應(yīng)激減少肉雞腸道中腸桿菌科的數(shù)量,增加鏈球菌屬和葡萄球菌屬的數(shù)量[51],增加沙門(mén)氏菌等病原菌在腸道中的定植[16,39-40]。腸道中的病原菌可以刺激腸道免疫細(xì)胞和上皮細(xì)胞分泌炎性細(xì)胞因子如TNF、IL-1等,進(jìn)一步引起肌球蛋白輕鏈磷酸化,導(dǎo)致小腸上皮緊密連接打開(kāi),增加小腸滲透性[35-36]。Song等[9]研究發(fā)現(xiàn),高溫降低了腸道中乳酸桿菌和雙歧桿菌的數(shù)量,增加大腸桿菌和梭菌的數(shù)量,而高溫環(huán)境下飼喂益生菌,增加了肉雞腸道中乳酸菌和雙歧桿菌數(shù)量,同時(shí)也提高了肉雞腸道絨毛高度,促進(jìn)緊密連接蛋白的表達(dá),表明高溫對(duì)肉雞腸道結(jié)構(gòu)和功能的影響可能與腸道微生物組成變化有關(guān)。目前有關(guān)高溫影響腸道微生物組成的研究相對(duì)較少,對(duì)于高溫通過(guò)微生物影響腸道結(jié)構(gòu)和功能的機(jī)制還不清楚。
綜上所述,熱應(yīng)激影響家禽腸道的結(jié)構(gòu),降低腸黏膜的完整性,抑制腸道免疫功能。熱應(yīng)激對(duì)家禽腸道的影響可能和采食量降低、體溫升高、腸道血流量減少以及腸道微生物改變有關(guān)。熱應(yīng)激影響家禽腸道的結(jié)構(gòu)和功能,進(jìn)一步影響家禽的生長(zhǎng)和健康。
參考文獻(xiàn):
[1] 徐昌芬,陳永珍,王曉冬.組織胚胎學(xué)[M].南京:東南大學(xué)出版社,2006:91-92.
[2] SPRATT R S,MCBRIDE B W,BAYLEY H,et al.Energy metabolism of broiler breeder hens.2.Contribution of tissues to total heat production in fed and fasted hens[J].Poultry Science,1990,69(8):1348-1356.
[3] SANSONETTI P.War and peace at mucosal surfaces[J].Nature Reviews Immunology,2004,4(12):954-964.
[4] 胡春紅,張敏紅,馮京海,等.偏熱刺激對(duì)肉雞休息行為、生理及生產(chǎn)性能的影響[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2015,27(7):2070-2076.
[5] 甄龍,石玉祥,張敏紅,等.持續(xù)偏熱環(huán)境對(duì)肉雞生長(zhǎng)性能、糖脂代謝及解偶聯(lián)蛋白mRNA表達(dá)的影響[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2015,27(7):2060-2069.
[6] 張少帥,甄龍,馮京海,等.持續(xù)偏熱處理對(duì)肉仔雞免疫器官指數(shù)、小腸形態(tài)結(jié)構(gòu)和黏膜免疫指標(biāo)的影響[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2015,27(12):3887-3894.
[7] 彭騫騫,王雪敏,張敏紅,等.持續(xù)偏熱環(huán)境對(duì)肉雞盲腸菌群多樣性的影響[J].中國(guó)農(nóng)業(yè)科學(xué),2016,49(1):186-194.
[8] DENG W,DONG X F,TONG J M,et al.The probioticBacilluslicheniformisameliorates heat stress-induced impairment of egg production,gut morphology,and intestinal mucosal immunity in laying hens[J].Poultry Science,2012,91(3):575-582.
[9] SONG J,XIAO K,KE Y L,et al.Effect of a probiotic mixture on intestinal microflora,morphology,and barrier integrity of broilers subjected to heat stress[J].Poultry Science,2014,93(3):581-588.
[10] AL-FATAFTAH A R,ABDELQADER A.Effects of dietaryBacillussubtilison heat-stressed broilersperformance,intestinal morphology and microfloracomposition[J].Animal Feed Science and Technology,2014,198:279-285
[11] MITCHELL M A,CARLISLE A J.The effect of chronic exposure to elevated environmental temperature on intestinal morphology and nutrient absorption in the domestic fowl (Gullusdomesticus)[J].Comparative Biochemistry and Physiology Part A:Physiology,1992,101(1):137-142.
[12] LIU F,YIN J,DU M,et al.Heat-stress-induced damage to porcine small intestinal epithelium associated with downregulation of epithelial growth factor signaling[J].Journal of Animal Science,2009,87(6):1941-1949.
[13] YU J,YIN P,LIU F H,et al.Effect of heat stress on the porcine small intestine:a morphological and gene expression study[J].Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology,2010,156(1):119-128.
[14] PEARCE S C,MANI V,WEBER T E,et al.Heat stress and reduced plane of nutrition decreases intestinal integrity and function in pigs[J].Journal of Animal Science,2013,91(11):5183-5193.
[15] QUINTERIRO-FILHO W M,RIBEIRO A,FERRAZ-DE-PAULA V,et al.Heat s stress impairs performance parameters,induces intestinal injury,and decreases macrophage activity in broiler chickens[J].Poultry Science,2010,89(9):1905-1914.
[16] BURKHOLDER K M,THOMPSON K L,EINSTEIN M E,et al.Influence of stressors on normal intestinal microbiota,intestinal morphology,and susceptibility toSalmonellaenteritidis colonization in broilers[J].Poultry Science,2008,87(9):1734-1741.
[17] HAO Y,GU X H,WANG X L.Overexpression of heat shock protein 70 and its relationship to intestine under acute heat stress in broilers:1.Intestinal structure and digestive function[J].Poultry Science,2012,91(4):781-789.
[18] GARRIGA C,HUNTER R R,AMAT C,et al.Heat stress increases apical glucose transport in the chicken jejunum[J].American Journal of Physiology Regulatory Integrative and Comparative Physiology,2006,290(1):R195-R201.
[19] YU J,YIN P,YIN J D,et al.Involvement of ERK1/2 signalling and growth-related molecules’expression in response to heat stress-induced damage in rat jejunum and IEC-6 cells[J].International Journal of Hyperthermia,2010,26(6):538-555.
[20] YAMAUCHI K E,YAMAMOTO K,ISHIKI Y.Morphological alterations of the intestinal villi and absorptive epithelial cells in each intestinal part in fasted chickens[J].Japanese Poultry Science,1995,32(4):241-251.
[21] XU Z R,HU C H,XIA M S,et al.Effects of dietary fructooligosaccharide on digestive enzyme activities,intestinal microflora and morphology of male broilers[J].Poultry Science,2003,82(6):1030-1036.
[22] 黃淑成,張義博,黃永宣,等.熱應(yīng)激對(duì)肉雞血清內(nèi)毒素含量和肝臟中TLR4 mRNA表達(dá)的影響[J].中國(guó)獸醫(yī)雜志,2015,51(12):27-29,32.
[23] HALL D M,BUETTNER G R,OBERLEY L W,et al.Mechanisms of circulatory and intestinal barrier dysfunction during whole body hyperthermia[J].American Journal of Physiology Heart and Circulatory Physiology,2001,280(2):H509-H521.
[24] LIM C L,WILSON G,BROWN L,et al.Pre-existing inflammatory state compromises heat tolerance in rats exposed to heat stress[J].American Journal of Physiology Regulatory Integrative and Comparative Physiology,2007,292(1):R186-R194.
[25] DUBOSE D A,BALCIUS J,MOREHOUSE D.Heat stress and/or endotoxin effects on cytokine expression by human whole blood[J].Shock,2002,17(3):217-221.
[26] MANI V,WEBER T E,BAUMGARD L H,et al.Growth and development symposium:endotoxin,inflammation and intestinal function in livestock[J].Journal of Animal Science,2012,90(5):1452-1465.
[27] BOUCHAMA A,PARHAR R S,EL-TAZIGI A,et al.Endotoxemia and release of tumor necrosis factor and interleukin 1 alpha in acute heatstroke[J].Journal of Applied Physiology,1991,70(6):2640-2644.
[28] LAMBERT G P,GISOLFI C V,BERG D J,et al.Selected contribution:hyperthermia-induced intestinal permeability and the role of oxidative and nitrosative stress[J].Journal of Applied Physiology,2002,92(4):1750-1761.
[29] PEARCE S C,MANI V,BODDICKER R L,et al.Heat stress reduces barrier function and alters intestinal metabolism in growing pigs[J].Journal of Animal Science,2012,90(4S):257-259.
[30] DOKLADNY K,MOSELEY P L,MA T Y.Physiologically relevant increase in temperature causes an increase in intestinal epithelial tight junction permeability[J].American Journal of Physiology Gastrointestinal of Liver Physiology,2006,290(2):G204-G212.
[31] SANTOS J,BENJAMIN M,YANG P C,et al.Chronic stress impairs rat growth and jejunal epithelial barrier function:role of mast cell[J].American Journal of Physiology Gastrointestinal and Liver Physiology,2000,278(6):G847-G854.
[32] S?DERHOLM J D,PERDUE M H.Stress and the gastrointestinal tract Ⅱ.Stress and intestinal barrier function[J].American Journal of Physiology Gastrointestinal and Liver Physiology,2001,280(1):G7-G13.
[33] IKARI A,NAKANO M,SUKETA Y,et al.Reorganization of ZO-1 by sodium-dependent glucose transporter activation after heat stress in LLC-PK1 cells[J].Journal of Cellular Physiology,2005,203(3):471-478.
[34] DOKLADNY K,YE D M,KENNEDY J C,et al.Cellular and molecular mechanisms of heat stress-induced up-regulation of occludin protein expression:regulatory role of heat shock factor-1[J].The American Journal Pathology,2008,172(3):659-670.
[35] TURNER J R,RILL B K,CARLSON S L,et al.Physiological regulation of epithelial tight junctions is associated with myosin light-chain phosphorylation[J].American Journal of Physiology Cell Physiology,1997,273(4):C1378-C1385.
[36] MORIEZ R,SALVADOR-CARTIER C,THEODOROU V,et al.Myosin light chain kinase is involved in lipopolysaccharide-induced disruption of colonic epithelial barrier and bacterial translocation in rats[J].The American Journal of Pathology,2005,167(4):1071-1079.
[37] YANG P C,HE S H,ZHENG P Y.Investigation into the signal transduction pathway via which heat stress impairs intestinal epithelial barrier function[J].Journal of Gastroenterology and Heptaology,2007,22(11):1823-1831.
[38] LAMBERT G P.Stress-induced gastrointestinal barrier dysfunction and its inflammatory effects[J].Journal of Animal Science,2009,87(14S):E101-E108.
[39] QUINTEIRO-FILHO W M,CALEFIA A S,CRUZA D S G,et al.Heat stress decreases expression of the cytokines,avian defensins 4 and 6 and Toll-like receptor 2 in broiler chickens infected withSalmonellaenteritidis[J].Veterinary Immunology and Immunopathology,2017,186:19-28.
[40] QUINTEIRO-FILHO W M,GOMES A V S,PINHEIRO M L,et al.Heat stressimpairs performance and induces intestinal inflammation in broiler chickens infected withSalmonellaenteritidis[J].Avian Pathology,2012,41(5):421-427.
[41] JOHNSON R W.Inhibition of growth by pro-inflammatory cytokines:an integrated view[J].Journal of Animal Science,1997,75(5):1244-1255.
[42] SPURLOCK M E.Regulation of metabolism and growth during immune challenge:an overview of cytokine function[J].Journal of Animal Science,1997,75(7):1773-1783.
[43] 張彩霞,陳文,黃艷群,等.限飼對(duì)哈巴德肉雞腸道結(jié)構(gòu)的影響[J].江西農(nóng)業(yè)大學(xué)學(xué)報(bào),2010,32(4):677-682.
[44] 劉路路,祁東風(fēng),閆冰雪,等.能量限制對(duì)三黃雞補(bǔ)償生長(zhǎng)及腸道結(jié)構(gòu)的影響[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2016,28(1):92-101.
[45] YAMAUCHI K,KAMISOYAMA H,ISSHIKI Y.Effects of fasting and refeeding on structures of the intestinal villu and epithelial cell in White Leghorn hens[J].British Poultry Science,1996,37(5):909-921.
[47] FERRARIS R P,CAREY H V.Intestinal transport during fasting and malnutrition[J].Annual Review of Nutrition,2000,20(1):195-219.
[48] ROWELL L B.Human cardiovascular adjustments to exercise and thermal stress[J].Physiology Reviews,1974,54(1):75-159.
[49] 余進(jìn).豬和大鼠小腸黏膜熱應(yīng)激損傷修復(fù)機(jī)制的研究[D].碩士學(xué)位論文.北京:北京農(nóng)學(xué)院,2010.
[50] 李永洙,陳常秀,金澤林,等.熱應(yīng)激環(huán)境下育成雞腸道菌群多樣性及黏膜結(jié)構(gòu)的相關(guān)性分析[J].中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2016,21(1):71-80.
[51] SUZUKI K,HARASAWA R,YOSHITAKE Y,et al.Effects of crowding and heat stress on intestinal flora,body weight gain,and feed efficiency of growing rats and chicks[J].The Japanese Journal of Veterinary Science,1983,45(3):331-338.
動(dòng)物營(yíng)養(yǎng)學(xué)報(bào)2018年4期