劉 倩,傅 纓,熊耀斌,資曉飛,李 媛
(1.南昌大學(xué)a.研究生院醫(yī)學(xué)部2015級(jí); b.第二附屬醫(yī)院中醫(yī)科;2.江西省醫(yī)學(xué)科學(xué)院生物化學(xué)研究室,南昌330006)
隨著城市化水平的進(jìn)程加快,人類生存環(huán)境不斷惡化以及人們不良的生活方式,糖尿病和腫瘤已經(jīng)成為危害人類健康的兩大類疾病,糖尿病持續(xù)的高血糖與代謝紊亂等導(dǎo)致全身組織器官的損害及功能障礙,甚至繼發(fā)惡性腫瘤,嚴(yán)重影響患者生存。在一份糖尿病和腫瘤的共識(shí)報(bào)告[1]中指出兩者共有的潛在危險(xiǎn)因素包括衰老、性別、種族、肥胖、身體活動(dòng)、飲食、酒精和吸煙,但是尚未建立明確的聯(lián)系。糖尿病和腫瘤均表現(xiàn)為炎癥反應(yīng)性疾病,因此找到兩者之間的內(nèi)在聯(lián)系、共同的危險(xiǎn)因素、具體發(fā)病機(jī)制并尋找有效的治療方法意義重大。小檗堿(BBR,又名黃連素)作為歷史悠久的臨床抗菌劑,應(yīng)用廣泛,現(xiàn)代藥理學(xué)指出其具有抗癌、抑制組織代謝現(xiàn)代藥理學(xué)作用,證明這種天然產(chǎn)物及其衍生物對(duì)糖尿病和癌癥具有高活性?,F(xiàn)綜合兩者與炎癥的相互關(guān)系,將小檗堿抑制核因子的轉(zhuǎn)錄活性、雙向調(diào)節(jié)促炎因子和抗炎因子發(fā)揮降糖和抗腫瘤作用作一綜述。
糖尿病是一種常見的代謝性疾病,新興證據(jù)表明糖尿病的發(fā)生與氧化應(yīng)激、炎癥反應(yīng)密切相關(guān),炎癥與糖尿病之間具有潛在病理生理學(xué)聯(lián)系。糖尿病患者體內(nèi)過量的營(yíng)養(yǎng)因子如葡萄糖和游離脂肪酸(FFA)導(dǎo)致氧化應(yīng)激反應(yīng),過程中產(chǎn)生過量的活性氧(ROS),激活細(xì)胞信號(hào)核因子κB(NF-κB)途徑,免疫細(xì)胞和脂肪細(xì)胞異常產(chǎn)生的炎性細(xì)胞因子如如白細(xì)胞介素-6(IL-6)、腫瘤壞死因子-α(TNF-α)等遷移、浸潤(rùn)、聚集,干擾胰島素信號(hào)通路導(dǎo)致患者細(xì)胞不能對(duì)產(chǎn)生的胰島素的缺陷或不足水平作出反應(yīng)[2]。NF-κB通路在控制炎癥中起關(guān)鍵作用,在糖尿病狀態(tài)下,升高的炎癥因子激活I(lǐng)kB激酶β(IKB-β),IKB-β通過磷酸化降解使NF-κB與其抑制物IKB在胞漿中分離,轉(zhuǎn)位的NF-κB一方面促進(jìn)炎癥因子的表達(dá),又干擾胰島素信號(hào)轉(zhuǎn)導(dǎo)途徑[3]。小檗堿作為降血糖藥物始于1980年用于治療糖尿病患者腹瀉,發(fā)現(xiàn)具有胰島素敏化活性。BBR抗炎活性的機(jī)制涉及多種細(xì)胞激酶和信號(hào)傳導(dǎo)途徑,如AMP活化蛋白激酶(AMPK)、絲裂原活化蛋白激酶(MAPK)和NF-κB途徑[4]。研究者在1型和2型糖尿病體內(nèi)體外實(shí)驗(yàn)中均觀察到BBR通過降低促炎細(xì)胞因子發(fā)揮降血糖作用。
1型糖尿病是由T細(xì)胞介導(dǎo)的β細(xì)胞破壞和嚴(yán)重的胰島炎癥引起的,與多種內(nèi)臟器官特別是胰腺、腎、肝和脾中1型輔助T(Th1)淋巴細(xì)胞誘導(dǎo)的過度炎癥相關(guān)的慢性自身免疫疾病。Th1和Th17是兩種類型的炎性T細(xì)胞,它們分別通過產(chǎn)生干擾素-γ3(IFN-γ3)和白介素-17(IL-17)在許多自身免疫性疾病的發(fā)展中起重要作用。Chueh等[5]分別給予非肥胖1型糖尿病(NOD)小鼠50、150和500 mg·kg-1小檗堿14周連續(xù)管飼,小檗堿顯著減少促炎(IL-1β、IL-6、TNF-α)/抗炎(IL-10)和/或Th1/Th2細(xì)胞因子在NOD小鼠的脾、肝和腎中的表達(dá)比(P<0.05),減輕了脾、肝和腎的自發(fā)性炎癥。Wang[6]進(jìn)一步指出這種調(diào)節(jié)作用通過TLR4非依賴性c-Jun N末端激酶(JNK)/NF-κB通路改善了脂多糖(LPS)誘導(dǎo)的β細(xì)胞損傷,恢復(fù)胰島素的分泌功能。toll樣受體(TLR)是涉及感染時(shí)檢測(cè)微生物的跨膜蛋白,并且在宿主免疫防御中起關(guān)鍵作用,肥胖個(gè)體中的外周血單核細(xì)胞(PBMC)上TLR4依賴性炎癥反應(yīng)是調(diào)節(jié)炎癥標(biāo)記的核心[7]。因而Zhou等[8]在高脂血癥糖尿病大鼠給予小檗堿治療后觀察到β細(xì)胞線粒體空泡化和腫脹、內(nèi)質(zhì)網(wǎng)的擴(kuò)張及萎縮減少,小檗堿通過此途徑促進(jìn)抗氧化酶活性和減少脂質(zhì)過氧化幫助β細(xì)胞再生。ELISA法測(cè)定抗炎細(xì)胞因子IL-10和促炎細(xì)胞因子IL-6以及TNF-α,小檗堿在非細(xì)胞毒性劑量下調(diào)節(jié)促炎和抗炎因子的比例,在預(yù)防和修復(fù)方面顯示出比其他化合物(阿侖普林、杏仁苷、克他丁和柚皮素)強(qiáng)的抗炎潛力[9]。這種修復(fù)損傷的作用減少了促炎細(xì)胞因子和β細(xì)胞本身誘導(dǎo)的胰島炎癥,參與到胰島素信號(hào)轉(zhuǎn)導(dǎo)過程,增加胰島素的表達(dá),可望靶向Th1和Th17分化為預(yù)防和治療自身免疫性糖尿病的潛在藥理靶點(diǎn)。
慢性炎癥誘導(dǎo)的胰島素抵抗是2型糖尿病發(fā)生發(fā)展的重要機(jī)制,胰島素抵抗是2型糖尿病的潛在特征,越來越多的研究者注意到炎癥和胰島素抵抗之間的聯(lián)系。小檗堿通過有效抑制炎癥標(biāo)志物如TNF-α、IL-1β、IL-6等的產(chǎn)生,脂肪細(xì)胞3T3-L1中瘦素和脂肪生成因子甘油三酯的分泌減少[10],糖尿病的雄性Wistar大鼠血液中的膽固醇、三酰基甘油含量也降低,通過介導(dǎo)的糖原合成增加和恢復(fù)甘油三酯的分泌,改善葡萄糖內(nèi)環(huán)境和胰島素抵抗[11]。在肥胖小鼠模型中,Jeong等[12]觀察到脂肪組織促炎癥基因下調(diào),小檗堿抑制巨噬細(xì)胞中活性氧的水平改善糖尿病中的代謝紊亂。Shang等[13]也觀察到小檗堿治療2周后,血清中IL-6、TNF-α含量降低,更降低體質(zhì)量和附睪脂肪含量,推測(cè)小檗堿可以在不影響IKK-β表達(dá)的情況下,抑制炎癥信號(hào)蛋白IKK-β磷酸化的激活,減輕機(jī)體炎癥狀態(tài),改善肥胖小鼠的糖代謝異常,增加胰島素的敏感性。小檗堿修改胰島素受體底物-1(IRS-1)和下游Akt(T308)的絲氨酸殘基(Ser)和蘇氨酸殘基(Thr)磷酸化改善胰島素信號(hào)級(jí)聯(lián),改善胰島素抵抗[14]。Xing等[15]研究者建立的非酒精性脂肪性肝病(NAFLD)實(shí)驗(yàn)?zāi)P椭?,空腹血糖和胰島素水平升高、肝脂肪變性和炎癥,大鼠發(fā)展為胰島素抵抗,結(jié)果表明小檗堿可以通過上調(diào)IRS-2,胰島素信號(hào)通路的關(guān)鍵分子的mRNA和蛋白水平來改善NAFLD的胰島素抵抗。胰島素和IGF-1與細(xì)胞表面的胰島素受體、胰島素樣生長(zhǎng)因子-1受體(IGF-1R)等結(jié)合后,將激活下游有絲分裂信號(hào)通路,如PI3K/Akt通路和有絲分裂蛋白激酶MAPK通路等[16]。NF-κB是ERK/MAPK信號(hào)通路的下游之一,可以調(diào)節(jié)炎癥因子的表達(dá)水平,小檗堿在NF-κB轉(zhuǎn)錄作用下降低脂肪生成因子改善2型糖尿病胰島素抵抗,有效降低血脂和血糖水平。
慢性炎癥是腫瘤生長(zhǎng)過程中不可或缺的參與者,促進(jìn)腫瘤細(xì)胞的增殖、存活和遷移。慢性炎癥被認(rèn)為與細(xì)胞癌發(fā)生有關(guān),大約20%的人類癌癥與由感染、暴露于刺激物或自身免疫疾病引起的慢性炎癥有關(guān)[17]。體內(nèi)TNF-α、IL-6、IL-8、IL-1、集落刺激因子(CSF)和巨噬細(xì)胞遷移抑制因子(MIF)等炎性細(xì)胞因子的異常表達(dá)在調(diào)節(jié)腫瘤細(xì)胞的惡性轉(zhuǎn)化中參與癌的發(fā)生和進(jìn)展[18]。TNF-α作為炎癥因子中的一員,被認(rèn)為可能參與癌癥的進(jìn)展和擴(kuò)散,并誘導(dǎo)腫瘤的出血性壞死[19]。結(jié)腸癌細(xì)胞系模型中IL-8不僅提供增殖優(yōu)勢(shì),而且促進(jìn)結(jié)腸癌細(xì)胞的轉(zhuǎn)移潛能[20]。這些炎癥產(chǎn)物打開了轉(zhuǎn)錄信號(hào)條件,形成一個(gè)紊亂復(fù)雜增殖信號(hào)網(wǎng)絡(luò)的腫瘤微環(huán)境,由炎性細(xì)胞協(xié)調(diào)并且參與到腫瘤的發(fā)生發(fā)展過程中[21]。轉(zhuǎn)錄因子激活蛋白1(AP-1)和NF-κB在炎癥和癌發(fā)生中起關(guān)鍵作用,有研究[22]表明小檗堿通過AP-1和NF-κB依賴性途徑抑制小鼠巨噬細(xì)胞系LPS誘導(dǎo)的單核細(xì)胞趨化蛋白1(MCP-1/CCL2)的產(chǎn)生,MCP-1/CCL2結(jié)合在內(nèi)皮細(xì)胞表面,趨化和激活細(xì)胞活性參與慢性炎性疾病。小檗堿同時(shí)治療炎癥和癌癥可以產(chǎn)生優(yōu)異的治療效果,能夠調(diào)節(jié)炎癥細(xì)胞和核因子的轉(zhuǎn)錄,抑制細(xì)胞增殖并對(duì)癌細(xì)胞具有細(xì)胞毒性[23]。小檗堿常規(guī)用于消化系統(tǒng)感染性疾病,抗腫瘤作用也多表現(xiàn)在消化系統(tǒng)腫瘤中,如肝癌和腸癌,其廣泛的抗炎和免疫調(diào)節(jié)性質(zhì)具有治療腫瘤補(bǔ)充藥物的潛在應(yīng)用價(jià)值。
小檗堿通過激活A(yù)MPK和抑制NF-κB途徑下調(diào)幾種肝炎性炎癥基因,包括TNF-α、IL-6和血清淀粉樣蛋白A3(SAA3),改變脂質(zhì)代謝[24]。當(dāng)小檗堿聯(lián)合用于治療肝細(xì)胞瘤時(shí),也觀察到協(xié)同抗腫瘤作用,這種組合效應(yīng)為小檗堿在癌癥化療輔助中提供了新價(jià)值。長(zhǎng)春新堿因其毒性作用在肝癌治療中的應(yīng)用受限,與小檗堿組合使用可以顯著誘導(dǎo)肝癌細(xì)胞生長(zhǎng)抑制,降低長(zhǎng)春新堿對(duì)非腫瘤細(xì)胞的毒性[25]。小檗堿和吳茱萸堿的聯(lián)合應(yīng)用可以上調(diào)TNF-α的表達(dá)水平,增強(qiáng)肝癌SMMC-7721細(xì)胞的凋亡水平[26]。大多數(shù)合成的化合物也顯示出比小檗堿對(duì)肝癌SMMC-7721更強(qiáng)的抗癌活性,在這些衍生物中,化合物8和9對(duì)SMMC-7721細(xì)胞系顯示出最強(qiáng)的抑制活性[27]。小檗堿抑制肝癌細(xì)胞的侵襲和轉(zhuǎn)移,有潛在治療效果。小檗堿同樣通過抑制細(xì)胞中Rho/ROCK信號(hào)通路,下調(diào)NF-κB活性。Xie等[28]報(bào)道小檗堿改善糖尿病大鼠腎臟纖維化,Wang等[29]報(bào)道小檗堿還能抑制肝細(xì)胞癌細(xì)胞的遷移、侵襲。另有研究[30]表明小檗堿通過上調(diào)ROS產(chǎn)生,抑制基質(zhì)金屬蛋白酶-9(MMP-9)的表達(dá)對(duì)肝癌HepG2細(xì)胞產(chǎn)生抗侵襲作用,對(duì)正常肝細(xì)胞并不產(chǎn)生損害。這也將彌補(bǔ)常規(guī)化療的由于高肝毒性不能治愈轉(zhuǎn)移性肝癌的短板,使研究者開始注意到許多植物來源試劑抑制肝細(xì)胞瘤細(xì)胞侵襲的有效性和安全性。
黏膜屏障的維持是腸上皮緊密連接的關(guān)鍵功能,小檗堿抗結(jié)直腸癌的作用在于調(diào)節(jié)腸炎癥細(xì)胞因子和轉(zhuǎn)錄保護(hù)腸上皮屏障,減輕促炎細(xì)胞因子誘導(dǎo)的腸上皮緊密連接損傷。小檗堿顯著預(yù)防促炎細(xì)胞因子減少,恢復(fù)腸道疾病狀態(tài)的屏障功能[31]。小檗堿可預(yù)防TNF-α誘導(dǎo)NF-κB和IkBa的磷酸化拮抗細(xì)胞模型和大鼠結(jié)腸中的TNF-α介導(dǎo)的屏障缺陷[32]。IL-8是一種自分泌促炎因子,誘導(dǎo)內(nèi)皮細(xì)胞遷移,促進(jìn)腫瘤血管的生成和腫瘤的生長(zhǎng)、轉(zhuǎn)移,小檗堿可抑制IL-8產(chǎn)生,利于黏膜愈合的生成[33]。同樣是化療藥物組合來增強(qiáng)化學(xué)敏感性,小檗堿劑量依賴性抑制NF-κB活化來提高伊立替康對(duì)結(jié)腸癌細(xì)胞凋亡水平,增強(qiáng)對(duì)5-氟尿嘧啶和多柔比星的化療作用[34]。小檗堿不僅顯示生長(zhǎng)抑制作用并誘導(dǎo)凋亡,降低結(jié)腸癌細(xì)胞增殖指數(shù),而且還可以防止結(jié)腸直腸癌的形成。COX-2存在于炎癥部位,在結(jié)腸腫瘤中大量表達(dá),COX-2在癌癥形成中起關(guān)鍵作用。有研究[35-36]發(fā)現(xiàn)小檗堿可抑制結(jié)腸癌lovo細(xì)胞的生長(zhǎng)并誘導(dǎo)其凋亡,該機(jī)制通過抑制COX-2的mRNA和蛋白表達(dá)水平來降低lovo細(xì)胞增殖指數(shù)。這些發(fā)現(xiàn)表明小檗堿抑制腫瘤血管生成和腫瘤生長(zhǎng)、轉(zhuǎn)移,增加化療藥物抗性,意味著抑制炎癥因子過表達(dá)是抗結(jié)腸部位腫瘤的重要治療靶標(biāo)。
近年來,小檗堿在體內(nèi)、體外實(shí)驗(yàn)中均顯示出預(yù)防及治療各系統(tǒng)癌癥的功效,這與廣泛的藥理活性有關(guān)。Youn等[37]在與藥物或放射治療聯(lián)合使用時(shí),其表現(xiàn)出減低其他藥物的毒副作用和增強(qiáng)放射療法的效果,小檗堿可以放大小劑量順鉑對(duì)宮頸癌HeLa細(xì)胞的毒性,在5和10 mmol·L-1濃度誘導(dǎo)自噬增強(qiáng)了體內(nèi)和體外模型中輻射的肺癌細(xì)胞毒性,這種協(xié)同效應(yīng)被推薦作為輻射補(bǔ)充劑用作治療肺癌的輔助療法[38]。d-檸檬烯與小檗堿組合對(duì)誘導(dǎo)人胃癌細(xì)胞系MGC803細(xì)胞內(nèi)ROS生成,阻滯細(xì)胞周期發(fā)揮協(xié)同抗癌作用,比其單獨(dú)用藥效果明顯[39]。在乳腺癌的藥物治療中,與多柔比星比較,小檗堿誘導(dǎo)細(xì)胞周期阻滯,表現(xiàn)出更有效地抑制乳腺癌厭氧抗性細(xì)胞的生長(zhǎng),厭氧生物抗性細(xì)胞比它們各自的貼壁細(xì)胞系更具侵襲性[40]。信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活因子3(STAT3)是具有致癌潛能的轉(zhuǎn)錄因子,促進(jìn)細(xì)胞的生長(zhǎng)、血管生成,Tsang等[41]發(fā)現(xiàn)小檗堿有效抑制無胸腺裸鼠中EBV陽性鼻咽癌細(xì)胞系(C666-1)的瘤生長(zhǎng),抑制IL-6活化STAT3的作用。p53是最常見的突變腫瘤抑制基因,Katiyar等[42]用小檗堿同時(shí)處理人肺癌細(xì)胞(表達(dá)野生型p53的A549和作為p53缺陷型的H1299)導(dǎo)致細(xì)胞增殖的抑制和凋亡性細(xì)胞死亡的增加,小檗堿對(duì)A549細(xì)胞誘導(dǎo)的細(xì)胞毒性效應(yīng)比H1299細(xì)胞更敏感。小檗堿抑制癌細(xì)胞增殖、誘導(dǎo)凋亡表現(xiàn)與其抑制NF-κB通路、抗氧化密切相關(guān),也為其成為高效低毒的多系統(tǒng)抗癌藥物開辟一個(gè)新的用藥依據(jù)。
目前外源性使用降血糖或抗腫瘤藥物的潛在毒性和副作用也越來越引起人們的關(guān)注。Chang等[43]通過降糖藥物對(duì)比研究,發(fā)現(xiàn)使用胰島素、磺酰脲和格列奈類藥物總體癌癥發(fā)生風(fēng)險(xiǎn)顯著增加,并發(fā)肝、結(jié)腸直腸、肺、胃和胰腺等較高風(fēng)險(xiǎn)相關(guān)的癌癥。同樣在動(dòng)物研究[44]中可見高劑量的抗腫瘤藥物可致高血糖。因此尋找更加安全的降糖和抗腫瘤的藥物勢(shì)在必行。小檗堿的抗炎活性在糖尿病和腫瘤治療中顯示出色的治療效果,這些數(shù)據(jù)為基于小檗堿具有降糖作用的新型抗癌藥物的開發(fā)提供有用的信息。一些抗炎藥物,如趨化因子拮抗劑、糖皮質(zhì)激素和非甾體抗炎藥藥物,已在臨床上用作輔助抗癌治療。與傳統(tǒng)非甾體抗炎藥不同,小檗堿具有整體調(diào)節(jié)的優(yōu)點(diǎn),其可通過NF-κB信號(hào)通路抑制IL-β、TNF-α等炎癥因子的產(chǎn)生,從而調(diào)節(jié)炎癥因子的表達(dá)水平,對(duì)減輕身體代謝異常、抑制腫瘤惡性進(jìn)程,包括聯(lián)合用藥和輔助用藥減低降糖藥物的毒副作用可獲得令人滿意的效果。
糖尿病和腫瘤的發(fā)病、預(yù)防和治療已成為全球公共衛(wèi)生關(guān)注的主要問題,臨床上糖尿病患者繼發(fā)腫瘤的很多,在中國(guó)甚至世界范圍內(nèi)并沒有對(duì)兩者并發(fā)的疾病進(jìn)行登記和流行病學(xué)調(diào)查,預(yù)后和死亡率也被低估。兩者免疫功能障礙并相互導(dǎo)致患病風(fēng)險(xiǎn),發(fā)病是否有具體生物學(xué)聯(lián)系,是糖尿病本身還是糖尿病的特定代謝紊亂(如高血糖、胰島素抵抗、高胰島素血癥)增加了相關(guān)類型癌癥的風(fēng)險(xiǎn)?高胰島素血癥通常伴隨著循環(huán)血中胰島素樣生長(zhǎng)因子(IGF)水平的升高,而IGF能促進(jìn)體內(nèi)多種器官組織細(xì)胞增殖,包括肝臟、胰腺、結(jié)腸、卵巢和乳腺,這些器官都是2型糖尿病患者合并腫瘤的高發(fā)位點(diǎn)。近年來糖尿病和腫瘤多報(bào)道均表現(xiàn)為炎癥反應(yīng)性疾病,在本綜述中發(fā)現(xiàn)兩類疾病確實(shí)存在共同的炎癥因子干擾胰島素的信號(hào)通路,系統(tǒng)地總結(jié)了關(guān)于小檗堿通過細(xì)胞激酶和信號(hào)傳導(dǎo)途徑,如AMP活化蛋白激酶(AMPK)、絲裂原活化蛋白激酶(MAPK)和NF-κB等途徑產(chǎn)生降糖和抗腫瘤效力,力求找到兩者之間的內(nèi)在聯(lián)系、共同的危險(xiǎn)因素、具體發(fā)病機(jī)制并尋找有效的治療方法。小檗堿抗炎活性作用于糖尿病并發(fā)腫瘤的詳細(xì)機(jī)制和共同途徑的進(jìn)一步研究,有助于闡明小檗堿對(duì)糖尿病并發(fā)多系統(tǒng)腫瘤的藥理學(xué)作用,著眼于小檗堿結(jié)構(gòu)修飾利于提高生物利用度和代謝穩(wěn)定性,促進(jìn)小檗堿作為合并疾病用藥的開發(fā)與運(yùn)用。最近,已經(jīng)合成了13-烷基取代的小檗堿,已經(jīng)顯示比小檗堿對(duì)某些細(xì)菌物種和人類癌細(xì)胞系更具活性,具有良好的前景[45]。當(dāng)常規(guī)用藥不明顯時(shí),小檗堿降糖和抗腫瘤用藥的安全性和可考性讓研究者重新認(rèn)知這一藥物,而通過小檗堿的干預(yù)是否可以調(diào)節(jié)微環(huán)境中共同的炎癥因子和信號(hào)通路或許可成為糖尿病合并腫瘤治療方案提供一個(gè)新的突破口。其臨床應(yīng)用和安全性在科學(xué)實(shí)驗(yàn)中的證據(jù),也便于指導(dǎo)臨床醫(yī)生在臨床實(shí)踐中更適當(dāng)和合理地使用小檗堿。
[1] Giovannucci E,Harlan D M,Archer M C,et al.Diabetes and Cancer:A consensus report[J].Ca A Cancer J Clin,2010,60(4):207-221.
[2] Li Z,Geng Y N,Jiang J D,et al.Antioxidant and anti-inflammatory activities of berberine in the treatment of diabetes mellitus[J].Evid Based Complement Alternat Med,2014,52(4):532-538.
[3] Shoelson S E,Lee J,Yuan M.Inflammation and the IKK beta/I kappa B/NF-kappa B axis in obesity- and diet-induced insulin resistance[J].Int J Obes Relat Disord,2003,(27 ):S49-S52.
[4] Furukawa S,Fujita T,Shimabukuro M,et al.Increased oxidative stress in obesity and its impact on metabolic syndrome[J].J Clin Invest,2004,114(12):1752-1761.
[5] Chueh W H,Lin J Y.Protective effect of isoquinoline alkaloid berberine on spontaneous inflammation in the spleen,liver and kidney of non-obese diabetic mice through downregulating gene expression ratios of pro-/anti-inflammatory and Th1/Th2 cytokines[J].Food Chem,2012,131(4):1263-1271.
[6] Wang Y.Attenuation of berberine on lipopolysaccharide-induced inflammatory and apoptosis responses in β-cells via TLR4-independent JNK/NF-κB pathway[J].Pharm Biol,2014,52(4):532-538.
[7] Ahmad R,Al Mass A,Atizado V,et al.Elevated expression of the toll like receptors 2 and 4 in obese individuals:Its significance for obesity-induced inflammation[J].J Inflamm,2012,9(1):48.
[8] Zhou J Y,Zhou S W,Tang J L,et al.Protective effect of berberine on beta cells in streptozotocin- and high-carbohydrate/high-fat diet-induced diabetic rats[J].Eur J Pharmacol,2009,606(1/3):262-368.
[9] Lin W C,Lin J Y.Five bitter compounds display different anti-inflammatory effects through modulating cytokine secretion using mouse primary splenocytes in vitro[J].J Agric Food Chem,2011,59(1):184-192.
[10] Choi B H,Ahn I S,Kim Y H,et al.Berberine reduces the expression of adipogenic enzymes and inflammatory molecules of 3T3-L1 adipocyte[J].Exp Mol Med,2006,38(6):599-605.
[11] Chen Y,Wang Y,Zhang J,et al.Berberine improves glucose homeostasis in streptozotocin-induced diabetic rats in association with multiple factors of insulin resistance[J].ISRN Endocrinol,2011,2011:519371.
[12] Jeong H W,Hsu K C,Lee J W,et al.Berberine suppresses proinflammatory responses through AMPK activation in macrophages[J].Am J Physiol Endocrinol Metab,2009,296(4):E955-E964.
[13] Shang W,Liu J,Yu X,et al.Effects of berberine on serum levels of inflammatory factors and inflammatory signaling pathway in obese mice induced by high fat diet[J].Chin J Chin Mat Med,2010,35(11):1474-1477.
[14] Lou T,Zhang Z,Xi Z,et al.Berberine inhibits inflammatory response and ameliorates insulin resistance in hepatocytes[J].Inflammation,2011,34(6):659-667.
[15] Xing L J,Zhang L,Liu T,et al.Berberine reducing insulin resistance by up-regulating IRS-2 mRNA expression in nonalcoholic fatty liver disease (NAFLD) rat liver[J].Eur J Pharmacol,2011,668(3):467-471.
[16] Radcliff K,Tang T B,Lim J,et al.Insulin-like growth factor-I regulates proliferation and osteoblastic differentiation of calcifying vascular cells via extracellular signal-regulated protein kinase and phosphatidylinositol 3-kinase pathways[J].Circ Res,2005,96(4):398-400.
[17] Crusz S M,Balkwill F R.Inflammation and cancer:advance and new agents[J].Nat Rev Clin Oncol,2015,12(10):584-596.
[18] Wang R H.Pathological change of HEP-G2 cells induced by radioactive particle 125 I combined with berberine[J].Chin J Curr Adv Gen Surg,2012,15:841-844.
[19] Balkwill F.Tumour necrosis factor and cancer[J].Nat Rev Cancer,2009,9:361-371.
[20] Ning Y,Manegold P C,Hong Y K,et al.Interleukin-8 is associated with proliferation,migration,angiogenesis and chemosensitivity in vitro and in vivo in colon cancer cell line models[J].Int J Cancer,2011,128(9):2038-2049.
[21] Mbeunkui F,Johannn D J.Cancer and the tumor microenvironment:a review of an essential relationship[J].Am J Med Genet,2009,63(4):571-582.
[22] Remppis A,Bea F,Greten H J,et al.Rhizoma Coptidis inhibits LPS-induced MCP-1/CCL2 production in murine macrophages via an AP-1 and NF-kappaB-dependent pathway[J].Mediators Inflamm,2010,2010:194896.
[23] Ortiz L M,Lombardi P.Berberine,an epiphany against cancer[J].Molecules,2014,19(8):12349-12367.
[24] Kim W S,Lee Y S,Cha S H,et al.Berberine improves lipid dysregulation in obesity by controlling central and peripheral AMPK activity[J].Am J Physiol Endocrinol Metab,2009,296(4):E812-E819.
[25] Wang L,Wei D,Han X,et al.The combinational effect of vincristine and berberine on growth inhibition and apoptosis induction in hepatoma cells[J].J Cell Biochem,2014,115(4):721-730.
[26] Wang X N,Han X,Xu L N,et al.Enhancement of apoptosis of human hepatocellular carcinoma SMMC-7721 cells through synergy of berberine and evodiamine[J].Phytomedicine,2008,15(12):1062-1068.
[27] Jin X,Yan L,Li H J,et al.Novel triazolyl berberine derivatives prepared via CuAAC click chemistry:synthesis,anticancer activity and structure-activity relationships[J].Anticancer Agents Med Chem,2014,15(1):89-98.
[28] Xie X,Chang X,Chen L,et al.Berberine ameliorates experimental diabetes-induced renal inflammation and fibronectin by inhibiting the activation of RhoA/ROCK signaling[J].Mol Cell Endocrinol,2013,381(1/2):56-65.
[29] Wang N,Feng Y,Lau EP,et al.F-actin reorganization and inactivation of rho signaling pathway involved in the inhibitory effect of Coptidis Rhizoma on hepatoma cell migration[J].Integr Cancer Ther,2010,9(4):354-364.
[30] Liu B,Wang G S,Yang J,et al.Berberine inhibits human hepatoma cell invasion without cytotoxicity in healthy hepatocytes[J].PLoS One,2011,6(6):e21416.
[31] Li N,Gu L,Qu L L,et al.Berberine attenuates proinflammatory cytokine-induced tight junction disruption in an in vitro model of intestinal epithelial cell[J].Eur J Pharm Sci,2010,40(1):1-8.
[32] Amasheh M,Fromm A,Krug S M,et al.TNF alpha-induced and berberine-antagonized tight junction barrier impairment via tyrosine kinase,Akt and NF kappa B singaling[J].J Cell Sci,2010,123(23):4145-4155.
[33] Lai Y,Shen Y,Liu X H,et al.Interleukin-8 induces the endothelial cell migration through the activation of phosphoinositide 3-kinase-Rac1/RhoA pathway[J].Int J Biol Sci,2011,7(6):782-791.
[34] Yu M,Tong X,Qi B,et al.Berberine enhances chemosensitivity to irinotecan in colon cancer via inhibition of NF-κB[J].Mol Med Rep,2014,9(1):249-254.
[35] Wu K,Yang J X,Zhou Q X.Study on the effects of berberine on colon carcinoma in vitro[J].Chin Pharm,2010,21:1360-1361.
[36] Wu K,Yang J X,Zhou Q X.Preventive effect of berberine on experimental colon cancer and relationship with cyclooxygenase-2 expression[J].Chin Chin Mat Med,2010,35(20):2768-2773.
[37] Youn M J,So H S,Cho H J,et al.Berberine,a natural product,combined with cisplatin enhanced apoptosis through a mitochondria/caspase-mediated pathway in HeLa cells[J].Biol Pharm Bull,2008,31(5):789-795.
[38] Peng P L,Kuo W H,Tseng H C,et al.Synergistic tumor-killing effect of radiation and berberine combined treatment in lung cancer:the contribution of autophagic cell death[J].Int J Radiat Oncol Biol Phys,2008,70(2):529-542.
[39] Zhang X Z,Wang N,Liu D W,et al.Synergistic inhibitory effect of berberine and d-linmonene on human gastric carcinoma cell line MGC803[J].J Med Food,2014,17(9):955-962.
[40] Kim J B,Yu J H,Ko E,et al.The alkaloid Berberine inhibits the growth of Anoikis-resistant MCF-7 and MDA-MB-231 breast cancer cell lines by inducing cell cycle arrest[J].Phytomedicine,2010,17(6):436-440.
[41] Tsang C M,Cheung Y C,Lui V W,et al.Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts[J].BMC Cancer,2013,13(1):619.
[42] Katiyar S K,Meeran S M,Katiyar N,et al.p53 cooperates berberine-induced growth inhibition and apoptosis of non-small cell human lung cancer cells in vitro and tumor xenograft growth in vivo[J].Mol Carcinog,2009,48(1):24-37.
[43] Chang C H,Lin J W,Wu L C,et al.Oral insulin secretagogues,insulin,and cancer risk in type 2 diabetes mellitus[J].J Clin Endocrinol Metab,2012,97(7):E1170-E1175.
[44] Wang Y,Aggarwal S K.Effects of cisplatin and taxol on inducible nitric oxide synthase,gastrin and somatostatin in gastrointestinal toxicity[J].Anticancer Drugs,1997,8(9):853-858.
[45] Zou K,Li Z,Zhang Y,et al.Advances in the study of berberine and its derivatives:a focus on anti-inflammatory and anti-tumor effects in the digestive system[J].Acta Pharmacol Sin,2016,38(2):157-167.