葛學(xué)利, 張忠孝, 商顯耀, 董建聰, 范浩杰
(上海交通大學(xué) 機(jī)械與動(dòng)力工程學(xué)院,上海 200240)
火力發(fā)電廠采用CO2捕集系統(tǒng)后,效率會(huì)下降6%~13%,發(fā)電成本也會(huì)增加20%~30%[1-2].滿足日益增長(zhǎng)的電力需求和降低發(fā)電產(chǎn)生的污染物成為必須要解決的問(wèn)題.電廠效率越高,意味著發(fā)電成本越低,污染物排放越少.在超臨界和超超臨界技術(shù)中可通過(guò)提高蒸汽壓力和溫度來(lái)提高電廠效率.目前,我國(guó)600 ℃超超臨界發(fā)電機(jī)組的數(shù)量已超過(guò)200臺(tái),該機(jī)組表現(xiàn)出可靠的安全性和較高的經(jīng)濟(jì)性.機(jī)組的煤耗可降低至270 g/(kW·h).鑒于600 ℃超超臨界發(fā)電機(jī)組設(shè)計(jì)、制造技術(shù)的成熟和運(yùn)行經(jīng)驗(yàn)的積累,700 ℃超超臨界電站技術(shù)成為發(fā)達(dá)國(guó)家的主要研究對(duì)象,如歐洲的AD700計(jì)劃,美國(guó)的A-USC(760 ℃)和日本的A-USC[3-4].近期,我國(guó)科研院所也在著力開(kāi)展該技術(shù)的理論和實(shí)驗(yàn)研究.
700 ℃超超臨界機(jī)組高溫部件的選材是該技術(shù)的核心問(wèn)題之一,對(duì)此,國(guó)內(nèi)外研究學(xué)者進(jìn)行了大量研究.林富生等[5]認(rèn)為750 ℃左右金屬壁溫的最佳候選材料是Inconel740H.張濤等[6]綜合介紹了700 ℃等級(jí)A-USC鍋爐過(guò)(再)熱器及高溫蒸汽管道采用的Inconel617、Haynes230及Inconel740等高溫鎳基合金在性能、組織結(jié)構(gòu)等方面的研究進(jìn)展.美國(guó)電力科學(xué)研究院(EPRI)對(duì)當(dāng)前主要使用的過(guò)熱器及再熱器管材進(jìn)行了比較研究,發(fā)現(xiàn)Inconel617、Inconel617B、Nimonic263和Inconel740等高溫鎳基合金均能滿足持久強(qiáng)度的要求,其中Inconel740持久強(qiáng)度最大[3].針對(duì)700 ℃超超臨界發(fā)電技術(shù)的選材問(wèn)題,目前研究人員均只關(guān)注材料自身特性方面,而對(duì)新材料與工質(zhì)間換熱特性的研究較少.
為了應(yīng)對(duì)我國(guó)高效燃煤700 ℃超超臨界發(fā)電技術(shù)中以高溫耐熱材料熱力安全為基礎(chǔ)的換熱問(wèn)題[7-9],筆者選擇CO2作為實(shí)驗(yàn)工質(zhì)(臨界溫度為31 ℃,臨界壓力為7.38 MPa),并搭建超臨界CO2換熱實(shí)驗(yàn)臺(tái),研究不同管徑鎳基合金蛇形管內(nèi)超臨界CO2(壓力為5~9 MPa,溫度為600~700 ℃)的對(duì)流換熱特性,為耐高溫鎳基合金在超高參數(shù)燃煤發(fā)電行業(yè)中的應(yīng)用提供數(shù)據(jù)支持.
筆者設(shè)計(jì)了超臨界條件下CO2在鎳基合金圓管內(nèi)的換熱情況,實(shí)驗(yàn)系統(tǒng)如圖 1所示.實(shí)驗(yàn)臺(tái)由實(shí)驗(yàn)管段、冷卻、測(cè)試、CO2供應(yīng)和電加熱等子系統(tǒng)組成.實(shí)驗(yàn)工質(zhì)為CO2,實(shí)驗(yàn)管段是內(nèi)徑分別為15 mm和10 mm的鎳基合金蛇形管,總長(zhǎng)為1 500 mm;實(shí)驗(yàn)管段在馬弗爐中均勻加熱,可實(shí)現(xiàn)加熱空間溫度的精準(zhǔn)控制,達(dá)到大空間內(nèi)等壁溫?fù)Q熱條件;實(shí)驗(yàn)數(shù)據(jù)采集單元的采集周期為1 s.為獲得在700 ℃條件下鎳基合金圓管內(nèi)超臨界CO2的對(duì)流換熱特性,實(shí)驗(yàn)中需測(cè)量的物理量包括金屬外壁面溫度,CO2的進(jìn)出口溫度、進(jìn)出口壓力和質(zhì)量流量.
如圖1所示,加熱系統(tǒng)為1臺(tái)配有智能控制系統(tǒng)的高溫箱式馬弗爐,最大加熱溫度可達(dá)1 600 ℃,爐膛尺寸為300 mm×150 mm×120 mm,加熱元件為二硅化鉬U形棒.在實(shí)驗(yàn)過(guò)程中,應(yīng)遵循逐步分段加熱原則,確保實(shí)驗(yàn)管段受熱均勻,實(shí)現(xiàn)平穩(wěn)溫升.CO2供應(yīng)系統(tǒng)主要包括CO2氣瓶、儲(chǔ)液罐和柱塞泵等,保證在實(shí)驗(yàn)管段內(nèi)壓力穩(wěn)定在設(shè)計(jì)工況.測(cè)試系統(tǒng)包括4個(gè)沿管段中間母線外壁均勻布置的K型熱電偶、流量計(jì)和數(shù)據(jù)采集系統(tǒng),分別用于測(cè)量記錄管壁溫度、CO2溫度和質(zhì)量流量,實(shí)驗(yàn)數(shù)據(jù)采集系統(tǒng)由無(wú)紙記錄儀、計(jì)算機(jī)和數(shù)據(jù)轉(zhuǎn)換處理軟件組成.壁溫采集單元為彩色無(wú)紙記錄儀.在實(shí)驗(yàn)系統(tǒng)運(yùn)行過(guò)程中,熱電偶產(chǎn)生的熱電勢(shì)通過(guò)轉(zhuǎn)換模塊轉(zhuǎn)換為數(shù)字信號(hào),由無(wú)紙記錄儀以實(shí)時(shí)數(shù)據(jù)、曲線或棒圖等的形式輸出,通過(guò)RS-232C通訊接口或U盤(pán)接口將數(shù)據(jù)傳輸?shù)接?jì)算機(jī)終端,利用數(shù)據(jù)處理軟件進(jìn)行處理,可實(shí)現(xiàn)采樣周期為1 s的高精度數(shù)據(jù)記錄.
圖1 CO2換熱實(shí)驗(yàn)臺(tái)系統(tǒng)裝置
Fig.1 Experimental apparatus for heat transfer performance of supercritical CO2fluid
實(shí)驗(yàn)步驟為:
(1) 在蛇形管上安裝并固定熱電偶,將熱電偶另一端連接至數(shù)據(jù)采集單元;沿CO2流動(dòng)方向連接系統(tǒng),設(shè)置流量計(jì)參數(shù).
(2) 冷態(tài)開(kāi)啟實(shí)驗(yàn)系統(tǒng),檢查系統(tǒng)氣密性,觀察熱電偶和流量計(jì)示數(shù)是否正常,檢查柱塞泵和減壓閥的工作狀態(tài).
(3) 開(kāi)啟工質(zhì)系統(tǒng),CO2從氣瓶流出后匯集到儲(chǔ)液罐,經(jīng)柱塞泵驅(qū)動(dòng)至實(shí)驗(yàn)壓力后進(jìn)入實(shí)驗(yàn)管段;開(kāi)啟加熱系統(tǒng),逐步升溫至實(shí)驗(yàn)工況,管壁溫度達(dá)到700 ℃,數(shù)據(jù)采集單元實(shí)時(shí)記錄管壁溫度、CO2溫度和壓力數(shù)據(jù).
(4) 調(diào)節(jié)壓力進(jìn)行不同工況的實(shí)驗(yàn).
根據(jù)等壁面溫度換熱特性,實(shí)驗(yàn)管段內(nèi)壁對(duì)流換熱系數(shù)h為:
h=q/[A(Tw-Tb)]
(1)
式中:q為熱流率,W;A為內(nèi)壁面換熱面積,m2;Tw和Tb分別為實(shí)驗(yàn)管段壁面和流體截面的平均溫度,℃.
根據(jù)CO2進(jìn)出口焓增可確定熱流率q:
q=(Hout-Hin)G
(2)
式中:G為CO2單位面積的質(zhì)量流量,kg/(m2·s);Hin和Hout分別為CO2進(jìn)、出口焓值,J/kg.
實(shí)驗(yàn)測(cè)得管壁壁溫和CO2進(jìn)出口溫度,計(jì)算出實(shí)驗(yàn)管段整體對(duì)流換熱系數(shù).圖2給出了CO2質(zhì)量流量為100 kg/h時(shí),在不同壓力下鎳基合金617實(shí)驗(yàn)管段(以下簡(jiǎn)稱617管)和普通不銹鋼321實(shí)驗(yàn)管段(以下簡(jiǎn)稱321管)的CO2出口溫度與對(duì)流換熱系數(shù)的變化.管壁溫度均維持在約700 ℃.壓力為5~7 MPa時(shí),321管CO2出口溫度約為40 ℃;壓力為8 MPa時(shí),CO2出口溫度提高至50 ℃;617管的CO2出口溫度整體比321管高3~5 K.
圖2 不同壓力下對(duì)流換熱系數(shù)和CO2出口溫度分布
Fig.2 Distribution of convective heat transfer coefficient and medium temperature at different pressures
計(jì)算得到的實(shí)驗(yàn)管段整體對(duì)流換熱系數(shù)也反映出類似規(guī)律,即壓力增大,對(duì)流換熱系數(shù)也逐漸増大.壓力為8 MPa時(shí),對(duì)流換熱系數(shù)達(dá)到峰值,此時(shí)321管的對(duì)流換熱系數(shù)為166.6 W/(m2·K),617管的對(duì)流換熱系數(shù)為174.2 W/(m2·K);617管的對(duì)流換熱系數(shù)比321管提高約4%;臨界壓力附近的對(duì)流換熱系數(shù)達(dá)到最大值,與超臨界CO2熱物性中比熱容的變化規(guī)律一致,說(shuō)明在換熱過(guò)程中比熱容起主導(dǎo)作用,壓力變化引起比熱容變化,并直接反映在換熱區(qū)對(duì)流換熱系數(shù)上.工質(zhì)熱物性變化引起的換熱變化規(guī)律均適用于321管和617管.
圖3給出了在不同CO2質(zhì)量流量下617管對(duì)流換熱系數(shù)的分布,實(shí)驗(yàn)在5~9 MPa的壓力下進(jìn)行.結(jié)果表明,在同一壓力工況下,CO2質(zhì)量流量增大,對(duì)流換熱系數(shù)也顯著增大.當(dāng)壓力為8 MPa時(shí),CO2質(zhì)量流量從40 kg/h增大至100 kg/h,對(duì)流換熱系數(shù)從95 W/(m2·K)增大至177 W/(m2·K);當(dāng)壓力為5 MPa時(shí),CO2質(zhì)量流量從40 kg/h增大至100 kg/h,對(duì)流換熱系數(shù)從44 W/(m2·K)增大至74 W/(m2·K).其原因是CO2質(zhì)量流量增大,管內(nèi)Re也增大,而Re對(duì)湍流擴(kuò)散率有直接影響,導(dǎo)致黏性底層厚度變薄,間接使溫度邊界層厚度減小,溫度梯度增大,有利于增強(qiáng)換熱.
圖3 質(zhì)量流量對(duì)對(duì)流換熱系數(shù)的影響
在相同CO2質(zhì)量流量下,低于臨界壓力時(shí)對(duì)流換熱系數(shù)隨壓力的增大而增大,壓力為8 MPa時(shí)對(duì)流換熱系數(shù)達(dá)到最大值,隨后逐漸減小.在臨界壓力區(qū),壓力為7 MPa和9 MPa時(shí)對(duì)流換熱系數(shù)呈交錯(cuò)現(xiàn)象,這與臨界區(qū)的比熱容變化規(guī)律一致.對(duì)于超超臨界機(jī)組中鎳基合金高溫受熱面來(lái)說(shuō),可采用增大質(zhì)量流量的方法來(lái)增強(qiáng)換熱.
由于超臨界流體物性急劇變化,目前尚無(wú)模型能很好地預(yù)測(cè)對(duì)流換熱系數(shù)和換熱惡化的等級(jí)[10],而基于實(shí)驗(yàn)數(shù)據(jù)的經(jīng)驗(yàn)換熱關(guān)聯(lián)式被廣泛用于超臨界流體對(duì)流換熱系數(shù)的計(jì)算.
(1) McAdams換熱關(guān)聯(lián)式
McAdams[11]根據(jù)經(jīng)典的D-B型關(guān)聯(lián)式提出了計(jì)算亞臨界壓力下湍流強(qiáng)制對(duì)流換熱系數(shù)的關(guān)聯(lián)式:
(3)
式中:Nu為努塞爾數(shù);Reb為CO2的雷諾數(shù);Prb為CO2的普朗特?cái)?shù).
式(3)的計(jì)算值與31 MPa圓管內(nèi)超臨界水的實(shí)驗(yàn)值吻合,但在臨界點(diǎn)和擬臨界點(diǎn)附近出現(xiàn)了較大誤差.其主要原因是臨界區(qū)物性急劇變化,而式(3)對(duì)物性的變化較為敏感.式(3)已成為改進(jìn)型超臨界流體對(duì)流換熱系數(shù)關(guān)聯(lián)式的基礎(chǔ).
(2) P-K型換熱關(guān)聯(lián)式
Krasnoshchekov等[12-13]提出了超臨界水和CO2的強(qiáng)制對(duì)流換熱關(guān)聯(lián)式:
(4)
(5)
(6)
將式(4)的計(jì)算值與實(shí)驗(yàn)值進(jìn)行對(duì)比,發(fā)現(xiàn)二者的誤差保持在±15%內(nèi).
Krasnoshchekov等[14]進(jìn)一步對(duì)式(4)進(jìn)行修正,將圓管橫截面物性的不均勻性列入關(guān)聯(lián)式:
(7)
(8)
式中:ρb為CO2的密度,kg/m3;ρw為管材的密度,kg/m3;Tpc為擬臨界狀態(tài)下的溫度,℃.
(3) Ornatsky換熱關(guān)聯(lián)式
Ornatsky等[15]根據(jù)超臨界壓力下5根并聯(lián)圓管的實(shí)驗(yàn)值提出了改進(jìn)關(guān)聯(lián)式:
(9)
式中:Prmin為Prw與Prb之間的較小值;Nub為CO2的努塞爾數(shù).
Jackson等[16]對(duì)式(7)進(jìn)行了修正,將密度隨溫度的變化納入關(guān)聯(lián)式,并采用了經(jīng)典的D-B型關(guān)聯(lián)式:
(10)
Wu等[17]進(jìn)一步對(duì)式(7)進(jìn)行修正,考慮了徑向溫度梯度對(duì)比熱容和密度的影響,得到適用于超臨界水和超臨界CO2強(qiáng)制對(duì)流換熱的改進(jìn)D-B型關(guān)聯(lián)式:
(11)
(12)
將實(shí)驗(yàn)值與式(3)~式(12)的計(jì)算值進(jìn)行對(duì)比,如圖4~圖7所示.實(shí)驗(yàn)參數(shù)范圍分別為:壓力為5~9 MPa,單位面積的質(zhì)量流量為50~200 kg/(m2·s),Re為5×103~1.2×105.
(1)Nu的對(duì)比
圖4和圖5分別給出了321管和617管的計(jì)算值和實(shí)驗(yàn)值.對(duì)于2種不同材質(zhì)的實(shí)驗(yàn)管段,計(jì)算值與實(shí)驗(yàn)值的誤差總體維持在±30%.對(duì)于617管,式(9)的計(jì)算值與實(shí)驗(yàn)值吻合較好,誤差區(qū)間為±10%;式(7)和式(11)的計(jì)算值整體偏低;式(10)的計(jì)算值整體偏高,且在超臨界壓力后的區(qū)域內(nèi)出現(xiàn)明顯誤差.對(duì)于321管,式(10)的計(jì)算值吻合較好;式(9)的計(jì)算值誤差起伏較大;式(11)的計(jì)算值整體偏低.
圖4 321管Nu計(jì)算值與實(shí)驗(yàn)值的對(duì)比
Fig.4 Comparison ofNuvalue between calculated results and experimental data for tube 321
圖5 617管Nu計(jì)算值與實(shí)驗(yàn)值的對(duì)比
Fig.5 Comparison ofNuvalue between calculated results and experimental data for tube 617
式(9)和式(10)的計(jì)算值呈相同的分布規(guī)律,在亞臨界區(qū)域均處于可接受的誤差范圍內(nèi),但在壓力達(dá)到超臨界區(qū)域之后,Nu出現(xiàn)一次躍升,但式(9)沿-15%的基準(zhǔn)線躍升至誤差更小的區(qū)域,而式(10)則是沿+15%的基準(zhǔn)線向上躍升至+30%以外誤差更大的區(qū)域.分析式(9)和式(10)可知,主要原因是在不同壁溫和主流體溫度的定義下,Pr存在較大差異.這是因?yàn)樵谂R界區(qū)之前,物性的變化規(guī)律較明確,適當(dāng)選用不同的修正系數(shù)或關(guān)聯(lián)式進(jìn)行計(jì)算,可保證一定的準(zhǔn)確性;臨界區(qū)和擬臨界區(qū)的物性變化復(fù)雜,采用主流體溫度作為標(biāo)準(zhǔn)定性溫度不完全適用,物性變化導(dǎo)致關(guān)聯(lián)式的計(jì)算值出現(xiàn)突變,不再具有可靠的參考價(jià)值.
(2) 對(duì)流換熱系數(shù)的對(duì)比
如圖6和圖7所示,實(shí)驗(yàn)值整體處于式(9)和式(10)的計(jì)算值之間,與D-B型關(guān)聯(lián)式吻合較好;P-K型關(guān)聯(lián)式的誤差較大,特別是式(4)的計(jì)算值波動(dòng)太大,而式(7)的計(jì)算值偏低.在亞臨界區(qū),式(9)的計(jì)算值偏小,式(10)的計(jì)算值偏大,二者均處于可接受的誤差范圍內(nèi).在7 MPa工況下,式(10)的計(jì)算值更為接近;壓力達(dá)到超臨界區(qū)后,對(duì)流換熱系數(shù)有明顯的躍升,式(9)的計(jì)算值躍升至誤差更小的區(qū)域,而式(10)的計(jì)算值則向上躍升至誤差的更大區(qū)域.二者均為D-B型關(guān)聯(lián)式,僅在定義Pr和選取系數(shù)上稍有不同,造成了在臨界區(qū)內(nèi)實(shí)驗(yàn)工況的模擬有差異.結(jié)合圖6、圖7、式(4)和式(7)分析可知,Pr定義不同導(dǎo)致的誤差遠(yuǎn)大于系數(shù)選取帶來(lái)的誤差.
圖6 321管對(duì)流換熱系數(shù)計(jì)算值與實(shí)驗(yàn)值的對(duì)比
Fig.6 Comparison of convective heat-transfer coefficient between calculated results and experimental data for tube 321
圖7 617管對(duì)流換熱系數(shù)計(jì)算值與實(shí)驗(yàn)值的對(duì)比
Fig.7 Comparison of convective heat-transfer coefficient between calculated results and experimental data for tube 617
另外,式(7)和式(11)的計(jì)算值均遠(yuǎn)小于實(shí)驗(yàn)值,由于二者均在經(jīng)典關(guān)系式的基礎(chǔ)上加入了管道截面參數(shù)項(xiàng),式(7)中密度項(xiàng)代替了導(dǎo)熱系數(shù)項(xiàng)和動(dòng)力黏度項(xiàng),式(11)中加入了比熱容項(xiàng),并增加了關(guān)聯(lián)式中對(duì)物性變化的敏感度,由于臨界區(qū)和擬臨界區(qū)工質(zhì)的物性變化劇烈,導(dǎo)致二者與實(shí)驗(yàn)值之間的誤差較大.
D-B型換熱關(guān)聯(lián)式與實(shí)驗(yàn)值吻合較好,因此將式(9)的計(jì)算值與617管、321管的實(shí)驗(yàn)值進(jìn)行對(duì)比.如圖6和圖7所示,對(duì)流換熱系數(shù)的計(jì)算值與實(shí)驗(yàn)值規(guī)律一致.在臨界區(qū)之前,對(duì)流換熱系數(shù)隨壓力的增大而增大,壓力為8 MPa時(shí)對(duì)流換熱系數(shù)達(dá)到最大值;計(jì)算值整體低于實(shí)驗(yàn)值,壓力為7 MPa時(shí),617管和321管的誤差達(dá)到最大,分別為22%和21%,存在改進(jìn)的空間.
由圖8可知,與321管相比,在700 ℃等壁溫工況下 617管對(duì)流換熱系數(shù)的計(jì)算值和實(shí)驗(yàn)值均有一定的增大,導(dǎo)熱系數(shù)方面略有優(yōu)勢(shì);在換熱特性方面,617管和321管在臨界點(diǎn)存在對(duì)流換熱系數(shù)的峰值點(diǎn),臨界區(qū)之前與傳統(tǒng)關(guān)聯(lián)式擬合較好.
圖8 對(duì)流換熱系數(shù)實(shí)驗(yàn)值與式(9)計(jì)算值的對(duì)比
Fig.8 Comparison of convective heat-transfer coefficient between experimental data and calculated results by formula (9)
由圖9可知,由于在臨界壓力區(qū),式(9)的計(jì)算值存在較大誤差,因此在對(duì)式(9)進(jìn)行分析的基礎(chǔ)上,得到了新擬合關(guān)聯(lián)式.
將式(3)、式(7)的計(jì)算值與實(shí)驗(yàn)值進(jìn)行比較發(fā)現(xiàn),實(shí)驗(yàn)值高于式(3)的計(jì)算值,低于式(7)的計(jì)算值.2個(gè)關(guān)聯(lián)式的不同之處在于常數(shù)項(xiàng)、Re和Pr的定義取值,其中影響最大的是Pr在壁溫和主流體溫度處的定義取值不同.
在臨界區(qū)之前,工質(zhì)物性的變化規(guī)律相對(duì)緩慢,且規(guī)律明晰,關(guān)聯(lián)式與實(shí)驗(yàn)值吻合較好;在臨界點(diǎn)附近,物性急劇變化,采用主流體溫度作為標(biāo)準(zhǔn)定性溫度不再完全適用,物性變化導(dǎo)致關(guān)聯(lián)式計(jì)算值出現(xiàn)突變,不再具有可靠的參考價(jià)值.在經(jīng)典關(guān)聯(lián)式的基礎(chǔ)上增加比熱容、動(dòng)力黏度等物性參數(shù)項(xiàng)的情況下,誤差更嚴(yán)重.在構(gòu)建新擬合關(guān)聯(lián)式的過(guò)程中,需格外注意涉及物性參數(shù)定義取值的項(xiàng).因此在式(9)的基礎(chǔ)上,獲得基于實(shí)驗(yàn)值的D-B型關(guān)聯(lián)式:
圖9 對(duì)流換熱系數(shù)實(shí)驗(yàn)值與式(9)計(jì)算值的誤差曲線
Fig.9 Deviation between experimental data and calculated results by formula (9) for two tubes
(13)
式(9)、式(13)的計(jì)算值和實(shí)驗(yàn)值變化如圖10所示.由圖10可知,新擬合關(guān)聯(lián)式的計(jì)算精確度有明顯提升,尤其在臨界壓力之前,計(jì)算值均維持在-2%的誤差水平.在7 MPa和8 MPa這2個(gè)臨界壓力附近,計(jì)算值的誤差也有很大改善.壓力為7 MPa時(shí),617管的誤差由原關(guān)聯(lián)式的22%下降至擬合關(guān)聯(lián)式的12%,321管的誤差則從21.0%降至10.6%;但壓力為9 MPa時(shí),617管和321管的新擬合關(guān)聯(lián)式計(jì)算精確度低于式(9).總體來(lái)講,基于式(9)改進(jìn)的新擬合關(guān)聯(lián)式有較好的計(jì)算精確度,尤其在物性規(guī)律劇烈變化的臨界區(qū),仍能保持可接受的計(jì)算精確度,這對(duì)指導(dǎo)后續(xù)實(shí)驗(yàn)有重要作用.
圖10 擬合關(guān)聯(lián)式結(jié)果對(duì)比
Fig.10 Comparison between experimental data and calculated results respectively by formula (9) and newly fitted correlation
(1) 在700 ℃等壁溫工況下,617管CO2出口溫度整體比321管高3~5 K,壓力為8 MPa時(shí)對(duì)流換熱系數(shù)達(dá)到峰值,617管的對(duì)流換熱系數(shù)比321管高出約4%.
(2) 實(shí)驗(yàn)管段整體對(duì)流換熱系數(shù)實(shí)驗(yàn)值隨著壓力的增大而增大,壓力為8 MPa時(shí)達(dá)到峰值;對(duì)流換熱系數(shù)在臨界壓力附近達(dá)到最大值,這與超臨界CO2熱物性中比熱容的變化規(guī)律一致,說(shuō)明在換熱中比熱容起主導(dǎo)作用.
(3) 對(duì)比分析實(shí)驗(yàn)值和式(9)、式(10)的計(jì)算值,得出新擬合關(guān)聯(lián)式;新擬合關(guān)聯(lián)式整體上有較好的計(jì)算精確度,特別是在臨界壓力區(qū),壓力為7 MPa時(shí),617管的誤差從原關(guān)聯(lián)式的22%降至擬合關(guān)聯(lián)式的12%,321管的誤差從21.0%降低到10.6%,這對(duì)指導(dǎo)后續(xù)實(shí)驗(yàn)有重要作用.
[1] GAMBINI M, VELLINI M. CO2emission abatement from fossil fuel power plants by exhaust gas treatment[J].JournalofEngineeringforGasTurbinesandPower, 2003, 125(1): 365-373.
[2] SINGH D, CROISET E, DOUGLAS P L, et al. Techno-economic study of CO2capture from an existing coal-fired power plant: MEA scrubbing vs. O2/CO2recycle combustion[J].EnergyConversionandManagement, 2003, 44(19): 3073-3091.
[3] VISWANATHAN R, SARVER J, TANZOSH J M. Boiler materials for ultra-supercritical coal power plants—steamside oxidation[J].JournalofMaterialsEngineeringandPerformance, 2006, 15(3): 255-274.
[4] NICOL K. Status of advanced ultra-supercritical pulverised coal technology[R]. London: IEA Clean Coal Center, 2013.
[5] 林富生, 謝錫善, 趙雙群, 等. 我國(guó)700 ℃超超臨界鍋爐過(guò)熱器管用高溫合金選材探討[J].動(dòng)力工程學(xué)報(bào), 2011, 31(12): 960-968.
LIN Fusheng, XIE Xishan, ZHAO Shuangqun, et al. Selection of superalloys for superheater tubes of domestic 700 ℃ A-USC boilers[J].JournalofChineseSocietyofPowerEngineering, 2011, 31(12): 960-968.
[6] 張濤, 衛(wèi)志剛, 田力男, 等.700 ℃等級(jí)超超臨界燃煤鍋爐用金屬材料應(yīng)用分析[J].內(nèi)蒙古電力技術(shù), 2015, 33(5): 20-25.
ZHANG Tao, WEI Zhigang, TIAN Li'nan, et al. Metal materials application analysis of 700 ℃ level advanced ultra-supercritical coal-fired boiler[J].InnerMongoliaElectricPower, 2015, 33(5): 20-25.
[7] 周榮燦, 范長(zhǎng)信.超超臨界火電機(jī)組材料研究及選材分析[J].中國(guó)電力, 2005, 38(8): 41-47.
ZHOU Rongcan, FAN Changxin. Review of material research and material selection for ultra-supercritical power plants[J].ElectricPower, 2005, 38(8): 41-47.
[8] 張曉魯.關(guān)于加快發(fā)展我國(guó)先進(jìn)超超臨界燃煤發(fā)電技術(shù)的戰(zhàn)略思考[J].中國(guó)工程科學(xué), 2013, 15(4): 91-95.
ZHANG Xiaolu. Some consideration about the future development strategy of advanced ultra supercritical coal-fired power generation technology[J].EngineeringSciences, 2013, 15(4): 91-95.
[9] 張大龍, 張海, 呂俊復(fù), 等. 大型超(超)臨界煤粉鍋爐爐膛傳熱計(jì)算[J].動(dòng)力工程學(xué)報(bào), 2014, 34(8): 589-593.
ZHANG Dalong, ZHANG Hai, Lü Junfu, et al. Calculation on in-furnace heat transfer of large (ultra)supercritical coal-fired boilers[J].JournalofChineseSocietyofPowerEngineering, 2014, 34(8): 589-593.
[10] PIORO I L, KHARTABIL H F, DUFFEY R B. Heat transfer to supercritical fluids flowing in channels—empirical correlations (survey)[J].NuclearEngineeringandDesign, 2004, 230(1/3): 69-91.
[11] McADAMS W H. Heat transmission[M].3rd ed. New York: McGraw-Hill, 1954.
[12] KRASNOSHCHEKOV E A, PROTOPOPOV V S. Heat transfer at supercritical region in flow of carbon dioxide and water in tubes[J].ThermalEngineering, 1959, 12: 26-30.
[13] KRASNOSHCHEKOV E A, PROTOPOPOV V S. About heat transfer in flow of carbon dioxide and water at supercritical region of state parameters[J].ThermalEngineering, 1960(10): 94.
[14] KRASNOSHCHEKOV Y A, PROTOPOPOV V S. Heat exchange in the supercritical region during the flow of piped carbonic acid and water[M]. La Canada, CA, United States: Scientific Translation Service, 1967.
[15] ORNATSKY A P, GLUSHCHENKO L F, SIOMIN E T, et al. The research of temperature conditions of small diameter parallel tubes cooled by water under supercritical pressures[C]//InternationalHeatTransferConference4. Paris, France: [s.n.], 1970.
[16] JACKSON J D, FEWSTER J. Forced convection data for supercritical pressure fluids[J].HeatTransf.FluidFlowServ., 1975:21540.
[17] WU Tianhua, XU Zeyuan, JACKSON J D. Mixed convection heat transfer to water flowing through a vertical passage of annular cross section: part 2[J].ChemicalEngineeringResearchandDesign, 2002, 80(3): 246-251.