亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于Sentinel-1雙極化雷達(dá)影像的土壤含鹽量反演

        2018-02-28 06:06:38
        關(guān)鍵詞:后向鹽堿化散射系數(shù)

        馬 馳

        ?

        基于Sentinel-1雙極化雷達(dá)影像的土壤含鹽量反演

        馬 馳

        (遼寧省交通高等??茖W(xué)校,沈陽 110122)

        該文以松嫩平原土地鹽堿化區(qū)域-大慶市為研究區(qū),Sentinel-1雙極化雷達(dá)影像為數(shù)據(jù)源,結(jié)合研究區(qū)土壤采樣的全鹽含量測量值,反演研究區(qū)表層土壤含鹽量。首先,在研究區(qū)進(jìn)行土壤采樣,并在實(shí)驗(yàn)室化驗(yàn)土壤樣品的全鹽含量,利用S1TBX軟件對(duì)雷達(dá)影像進(jìn)行噪聲處理、輻射校正、幾何校正;然后通過分析雷達(dá)影像不同極化組合的后向散射系數(shù)與土壤含鹽量之間的關(guān)系,確定最優(yōu)的極化組合方式;最后,利用回歸分析的方法建立土壤含鹽量的反演模型并進(jìn)行精度評(píng)價(jià)。研究結(jié)果顯示:(VV2+VH2)/(VV2-VH2)極化組合的后向散射系數(shù)可以較好的分離不同含鹽量的土壤,建立起來的反演模型,決定系數(shù)2達(dá)到0.872,均方根誤差RMSE為0.988。該研究可以滿足大區(qū)域土地鹽堿化監(jiān)測的需要,并為Sentinel-1 雷達(dá)數(shù)據(jù)在土壤成分提取等方面研究提供了參考。

        遙感;土壤;鹽分測量;反演;Sentinel-1

        0 引 言

        土壤鹽堿化易發(fā)生于干旱、半干旱地區(qū)。主要由于灌溉過程不當(dāng)或排水不暢導(dǎo)致地下水位上升至地表,水分蒸發(fā)后鹽分在地表累積,土壤中鹽分含量過高(超過0.3%),從而形成土壤環(huán)境災(zāi)害[1-3]。隨著氣候變化和人類對(duì)土壤資源的不當(dāng)利用,中國一些地區(qū)土壤不同程度的退化[4-5]。松嫩平原西部是中國最大蘇打鹽堿土區(qū)[6-7],土壤含鹽量的升高造成了農(nóng)作物不同程度的減產(chǎn)甚至絕收,嚴(yán)重影響了區(qū)域農(nóng)業(yè)生產(chǎn)和土地資源的可持續(xù)利用。因此,及時(shí)監(jiān)測土壤含鹽量對(duì)合理利用土地資源、防止區(qū)域土地鹽堿化進(jìn)一步惡化具有重要意義。

        遙感技術(shù)具有數(shù)據(jù)獲取快速、投入成本少、監(jiān)測范圍廣等優(yōu)點(diǎn),在土壤成分預(yù)測等方面的研究已經(jīng)表現(xiàn)出巨大潛力[8-10]。近年來,國內(nèi)外諸多學(xué)者相繼展開了利用遙感技術(shù)監(jiān)測土地鹽堿化的研究[11-12]。在鹽堿化土壤信息提取方面,經(jīng)歷了由定性分類到定量反演的過程,如張佩民等[13]利用MSS和ETM遙感影像采用人機(jī)交互解譯的方法提取了青藏高原兩期鹽堿土信息,并分析了近30 a來研究區(qū)土地鹽堿化的時(shí)空變化規(guī)律,王爽等[14]將TM遙感影像與ASD光譜儀野外光譜測量數(shù)據(jù)相結(jié)合,并聯(lián)合土壤含鹽量實(shí)測數(shù)據(jù)建立反演模型提取新疆渭干河-庫車河三角洲綠洲地區(qū)土壤鹽堿化信息;在遙感影像的選取上,經(jīng)歷了從多光譜到高光譜的發(fā)展過程,如王耿明等[15]利用ASTER多光譜遙感影像建立了松遼平原土壤含鹽量的多元預(yù)測模型,朱高飛等[16]利用HJ1A高光譜影像對(duì)瑪納斯縣鹽堿土區(qū)土壤含鹽量進(jìn)行了預(yù)測。

        由于微波遙感技術(shù)具有全天時(shí)、全天候的觀測能力,對(duì)云霧、雨雪及地表植被等具有一定的穿透能力,彌補(bǔ)了可見光遙感的局限性,可以更好的識(shí)別地表地物、提取地表信息,在土壤成分信息提取等方面具有較大潛力與優(yōu)勢[17-19]。Sentinel-1是歐空局于2014年4月發(fā)射的雙極化雷達(dá)成像衛(wèi)星,能夠獲取連續(xù)的、全天候地表雷達(dá)影像,為土壤成分信息獲取等方面的研究提供了新的數(shù)據(jù)源[20-21]。然而,利用Sentinel-1 SAR影像提取土壤含鹽量的研究還鮮有報(bào)道。本文利用Sentinel-1 SAR影像數(shù)據(jù),以大慶市為研究對(duì)象,結(jié)合土壤實(shí)地采樣的化驗(yàn)數(shù)據(jù),反演研究區(qū)土壤含鹽量,以期為區(qū)域土地鹽堿化的防治與土壤環(huán)境恢復(fù)提供數(shù)據(jù)支持。

        1 材料與方法

        1.1 研究區(qū)概況

        研究區(qū)位于松嫩平原中部、杜爾伯特縣南部、大慶市全部、肇州縣與肇源縣北部、安達(dá)市西部,124°~125°24′ E、45°36′~46°48′ N,氣候?qū)侔敫珊荡箨懶约撅L(fēng)氣候:春季干旱多大風(fēng)、夏季溫?zé)岫嘤?、秋季晴朗多寒潮、冬季寒冷少雪,多年平均降水?00~550 mm,且由東南向西北遞減。徐白山等[22-23]研究表明,松嫩平原鹽堿化土壤的平均含水量為15%~20%。研究區(qū)內(nèi)地勢平坦,平均海拔130 m~200 m,中西部地區(qū)湖沼眾多,容易形成土壤鹽堿化災(zāi)害[24]。

        1.2 土壤采樣及測量

        作者于2015年6月15日至16日深入研究區(qū)進(jìn)行土壤采樣(圖1),采樣點(diǎn)選在視野開闊并無樹木等遮擋的裸土區(qū)域,在20 m×20 m范圍內(nèi)地表0~20 cm深度采集4點(diǎn)土壤、混合約1 kg作為一個(gè)土樣放入采集袋,共采集土壤樣品64個(gè),并用手持GPS接收機(jī)測量采樣點(diǎn)經(jīng)緯度坐標(biāo)用以獲取雷達(dá)影像中對(duì)應(yīng)采樣點(diǎn)的后向散射系數(shù)。將土壤樣品在實(shí)驗(yàn)室自然風(fēng)干,剔除植物根須和小石塊等雜質(zhì),研磨并過1 mm篩。將土樣按水土5:1比例提取浸取液,并采用干殘?jiān)y量每個(gè)土樣的全鹽含量。

        圖1 采樣點(diǎn)分布圖

        1.3 雷達(dá)影像的獲取與處理

        選擇2015年6月14日獲得的標(biāo)準(zhǔn)雙極化Sentinel-1 SAR影像1景,雷達(dá)影像的工作波段為C波段,極化方式為VH和VV,影像成像方式為干涉寬幅模式(interferometric wide swath,IW)。雷達(dá)影像獲取時(shí)間與土壤采樣時(shí)間接近同步,有利于真實(shí)反映地表信息。由于本文選取的Sentinel-1 SAR影像產(chǎn)品為Level 1級(jí)干涉寬幅影像,需要對(duì)雷達(dá)影像進(jìn)行數(shù)據(jù)預(yù)處理,主要包括:影像噪聲處理、輻射校正、影像精幾何校正等,影像處理選擇歐空局開發(fā)的Sentinel-1數(shù)據(jù)處理軟件(S1TBX)。具體步驟為:1)合成孔徑雷達(dá)的成像機(jī)制使得SAR影像出現(xiàn)大量隨機(jī)分布的斑點(diǎn)噪聲,嚴(yán)重影響其在土壤含鹽量反演中的精度。為了抑制斑點(diǎn)噪聲的影響,本文利用S1TBX軟件的Speckle Filtering功能模塊對(duì)選擇的雷達(dá)影像進(jìn)行斑點(diǎn)噪聲處理。經(jīng)過試驗(yàn),將濾波器設(shè)置為Refined Lee,閾值設(shè)置為5 000;2)利用Radiometric-Calibrate模塊對(duì)雷達(dá)影像進(jìn)行輻射校正,將影像的灰度值轉(zhuǎn)化為地表地物的雷達(dá)后向散射系數(shù);3)合成孔徑雷達(dá)側(cè)視成像的機(jī)理使得SAR影像帶有很大的幾何畸變,需對(duì)其進(jìn)行幾何精校正。本文利用Terrain Correction功能模塊的Range Doppler 方法,參考研究區(qū)1:5萬地形圖,對(duì)Sentinel-1 SAR影像進(jìn)行幾何精校正。

        1.4 模型建立及其驗(yàn)證

        參考前人制定的鹽堿土分類原則[25-26],將研究區(qū)鹽堿化土壤分為輕度鹽堿化土壤(土壤含鹽量1~3 g/kg)、中度鹽堿化土壤(土壤含鹽量3~5 g/kg)、重度鹽堿化土壤(土壤含鹽量5~7 g/kg)以及鹽堿土(土壤含鹽量大于7 g/kg)。選擇均勻覆蓋研究區(qū)的52個(gè)土樣作為建模樣本,12個(gè)土樣作為檢驗(yàn)樣本(表1)。土壤樣品個(gè)數(shù)及含鹽量的描述統(tǒng)計(jì)表中顯示,建模組與檢驗(yàn)組中各種類型鹽堿化土壤樣本分布較均勻,土壤含鹽量的平均值和標(biāo)準(zhǔn)差相近,有利于提高研究區(qū)土壤含鹽量反演精度。

        表1 土壤樣品個(gè)數(shù)及含鹽量的描述統(tǒng)計(jì)

        諸多學(xué)者的研究結(jié)果表明,將雷達(dá)影像波段進(jìn)行適當(dāng)?shù)慕M合可以有效削弱影像中噪聲對(duì)地物后向散射系數(shù)的影響,提高雷達(dá)影像后向散射系數(shù)與土壤含鹽量的相關(guān)性[27-29]。本文通過前期試驗(yàn),選取代表性的VV+VH、VV/VH、(VV+VH)/(VV-VH)、(VV2+VH2)/(VV2-VH2)等4種極化組合方式,計(jì)算4種極化組合的后向散射系數(shù),將建模樣本含鹽量的化驗(yàn)值與其在Sentinel-1 SAR影像上對(duì)應(yīng)的后向散射系數(shù)(極化組合的后向散射系數(shù))在SPSS軟件中進(jìn)行回歸分析,建立研究區(qū)土壤含鹽量的反演模型;利用土壤含鹽量的反演模型與檢驗(yàn)樣本在Sentinel-1 SAR影像上的后向散射系數(shù)(極化組合的后向散射系數(shù))計(jì)算檢驗(yàn)樣本土壤含鹽量的反演值,與其實(shí)測值比較,獲得土壤含鹽量的反演誤差式(1)及相對(duì)誤差式 (2),衡量反演模型的反演精度。

        2 結(jié)果與分析

        2.1 土壤含鹽量的后向散射系數(shù)分析

        為了分離不同程度的鹽堿化土壤,根據(jù)采樣點(diǎn)含鹽量的化驗(yàn)值與不同含鹽量土壤在雷達(dá)影像上對(duì)應(yīng)的后向散射系數(shù)進(jìn)行分析可知,Sentinel-1 SAR影像同極化方式(VV)對(duì)土壤含鹽量的響應(yīng)明顯高于不同極化方式(VH)。VV極化方式的后向散射系數(shù)隨著土壤含鹽量的升高而增大;除重度鹽堿化(含鹽量5.8 g/kg)外,VH極化方式的后向散射系數(shù)隨著土壤含鹽量的升高總體上呈增大趨勢(表2)。

        表2 典型地物不同極化及極化組合的后向散射系數(shù)

        由表2可知,對(duì)于水體及4個(gè)不同含鹽量的土壤樣品,VV+VH極化組合方式后向散射系數(shù)總體上呈上升趨勢,對(duì)于水體、輕度鹽堿土有較好的區(qū)分能力,但中度鹽堿化與重度鹽堿化土壤的后向散射系數(shù)相對(duì)于土壤含鹽量的變化率僅為1.1%,難以很好的分離中度與重度鹽堿化土壤;VV/VH極化組合方式的后向散射系數(shù)在水體至輕度鹽堿化土壤呈上升趨勢,輕度鹽堿化土壤至鹽堿土呈下降趨勢,難以分離水體;(VV+VH)/(VV-VH)極化組合方式可以很好提取水體,但不同含鹽量土壤的后向散射系數(shù)沒有明確的規(guī)律性,難以分離不同含鹽量的土壤;(VV2+VH2)/(VV2-VH2)極化組合方式,其后向散射系數(shù)隨土壤含鹽量的升高而減小,后向散射系數(shù)相對(duì)于土壤含鹽量的變化率最小值為15.5%,且各種鹽堿化程度的分離性較好,不易產(chǎn)生混淆。因此,本文選擇(VV2+VH2)/(VV2-VH2)極化組合方式作為研究區(qū)土壤含鹽量提取指數(shù)。

        2.2 反演模型建立

        將采集的64個(gè)土壤樣品分為2部分:隨機(jī)選取52個(gè)作為建模樣本,利用回歸分析的方法建立土壤含鹽量反演模型,剩下的12個(gè)土壤樣品用于反演模型的檢驗(yàn),并選擇(VV2+VH2)/(VV2-VH2)極化組合建立土壤含鹽量的反演模型,探究Sentinel-1 SAR影像后向散射系數(shù)與研究區(qū)土壤含鹽量的關(guān)系(圖2)。

        圖2 土壤含鹽量與(VV2+VH2)/(VV2-VH2)相關(guān)性

        由圖2可知,土壤含鹽量與極化組合方式具有良好的相關(guān)關(guān)系,其決定系數(shù)2達(dá)到了0.872,均方根誤差RMSE為0.988。

        式中為極化組合(VV2+VH2)/(VV2-VH2),為土壤含鹽量(g/kg)。

        2.3 模型的檢驗(yàn)與精度分析

        根據(jù)不同含鹽量的土壤在雷達(dá)影像中表現(xiàn)出的后向散射系數(shù),利用土壤含鹽量的反演模型(式(3)),反演研究區(qū)土壤含鹽量,結(jié)果見圖3。

        圖3 土壤含鹽量反演結(jié)果

        由圖3可知,輕度鹽堿化主要分布在研究區(qū)中部與東部地區(qū),大慶市南部、大同區(qū)北部與東部;中度鹽堿化、重度鹽堿化主要分布于研究區(qū)西部與南部,河流與胡沼周圍分布較集中。對(duì)研究區(qū)進(jìn)行野外調(diào)查及土壤采樣過程中發(fā)現(xiàn),大慶市西部與南部地勢低平,河流與湖沼眾多,氣候干旱,地下水位較高且排水不暢,使鹽分聚集在土壤表層導(dǎo)致土壤鹽堿化。

        為了驗(yàn)證以(VV2+VH2)/(VV2-VH2)極化組合為自變量建立的研究區(qū)土壤含鹽量反演模型的精度,利用12個(gè)檢測樣本對(duì)應(yīng)的雷達(dá)圖像的后向散射系數(shù)計(jì)算土壤含鹽量的反演值。將檢驗(yàn)樣本含鹽量的實(shí)測值與反演值一起建立散點(diǎn)圖(圖4)。圖中顯示:利用反演模型獲得的研究區(qū)表層土壤含鹽量的反演值與實(shí)測值極為接近,檢驗(yàn)樣本含鹽量的反演值與實(shí)測值最小相對(duì)誤差為0.91%,最大相對(duì)誤差為4.87%;研究區(qū)土壤含鹽量的反演值與實(shí)測值較均勻的分布于1:1直線兩側(cè),其決定系數(shù)R達(dá)到0.98,均方根誤差RMSE=0.412,說明本文采用的土壤含鹽量反演方法適用于研究區(qū)土壤含鹽量的反演,并獲得了較好的預(yù)測效果。

        圖4 土壤含鹽量反演值與實(shí)測值比較

        3 討 論

        利用雙極化雷達(dá)Sentinel-1影像數(shù)據(jù)進(jìn)行土壤含鹽量的估測研究前人尚未開展。本文試驗(yàn)以(VV2+VH2)/ (VV2-VH2)極化組合方式作為研究區(qū)土壤含鹽量提取指數(shù),建立了研究區(qū)土壤含鹽量的反演模型。

        本文為了獲得較精確的結(jié)果采取以下措施:1)為了獲得研究區(qū)未受植被、冰雪影響的地表地物后向散射系數(shù),本文選擇2015年6月14日成像的Sentinel-1 SAR數(shù)據(jù)(該時(shí)刻研究區(qū)地表無冰凍與冰雪,綠色植被較少);2)在土壤采樣過程中,采樣點(diǎn)均勻分布于研究區(qū),能夠代表研究區(qū)內(nèi)土壤含鹽量的空間分布特征,且建模樣本和檢驗(yàn)樣本均包含鹽堿化土壤的所有類型,提高了反演模型的精度與適用性;3)為消除(削弱)遙感影像在成像過程中大氣水汽、塵埃等對(duì)成像的吸收與散射影響,將Sentinel-1 SAR影像進(jìn)行輻射校正,獲得了較真實(shí)的地表地物的后向散射系數(shù),提高了反演模型的精度與穩(wěn)定性;4)將Sentinel-1 SAR影像的2個(gè)波段進(jìn)行適當(dāng)組合,以消除影像中噪聲的影響,并選擇(VV2+VH2)/(VV2-VH2)極化組合建立研究區(qū)土壤含鹽量的反演模型,以獲得較高的反演精度。

        然而,利用反演模型獲得的檢驗(yàn)樣本含鹽量的反演值與實(shí)測值仍然存在一定誤差,其主要原因:1)Sentinel-1 SAR影像的成像時(shí)間與研究區(qū)土壤采樣時(shí)間仍存在一定差異,對(duì)反演模型的精度必將造成一定影響,在條件允許時(shí)可選擇與采樣時(shí)間同步的影像數(shù)據(jù)以提高模型的反演精度;2)國內(nèi)外一些學(xué)者的研究結(jié)果顯示,雷達(dá)影像在表現(xiàn)地表地物信息時(shí),在一定程度上將受到土壤中水分的影響[30-31]。而本文未能有效分析土壤中水分對(duì)含鹽量反演精度的影響,在今后的研究中需予以考慮,使研究內(nèi)容得以完善。

        本文建立的反演模型是針對(duì)于松嫩平原建立的,具有一定的地域性限制,是否適合其他地區(qū)還需驗(yàn)證。本文使用的Sentinel-1 IW影像幅寬達(dá)250 km,重訪周期為12 d,可以實(shí)現(xiàn)短時(shí)間內(nèi)對(duì)大區(qū)域土地鹽堿化的時(shí)空分布監(jiān)測,達(dá)到了省時(shí)省力省費(fèi)用的目的。

        4 結(jié) 論

        本文試驗(yàn)利用Sentinel-1雙極化雷達(dá)數(shù)據(jù)反演大慶市中南部地區(qū)土壤含鹽量,并獲得以下結(jié)論:

        1)多極化雷達(dá)影像的不同極化組合有助于區(qū)分不同含鹽量的鹽堿化土壤,而Sentinel-1雷達(dá)極化組合(VV2+VH2)/(VV2-VH2)適用于與松嫩平原鹽堿土區(qū)時(shí)相一致的影像數(shù)據(jù),可作為研究區(qū)土壤含鹽量的指示器。

        2)通過建模樣本建立起來的土壤含鹽量反演模型可以很好的實(shí)現(xiàn)研究區(qū)土壤含鹽量的預(yù)測工作,模型的決定系數(shù)2達(dá)到了0.872,均方根誤差RMSE=0.988,檢測樣本含鹽量的反演值與實(shí)測值相對(duì)誤差均較小,表明該模型具有較高的反演精度。

        3)土壤含鹽量的反演結(jié)果表明,研究區(qū)內(nèi)輕度鹽堿化主要分布于大慶市南部、大同區(qū)東部與北部,中度鹽堿化、重度鹽堿化主要分布于研究區(qū)中部與西部,河流與湖沼周圍分布較集中。

        [1] 屈永華,段小亮,高鴻永,等. 內(nèi)蒙古河套灌區(qū)土壤鹽分光譜定量分析研究[J]. 光譜學(xué)與光譜分析,2009,29(5):1362-1366.

        Qu Yonghua, Duan Xiaoliang, Gao Hongyong, et al. Quantitative retrieval of soil salinity using hyperspectral data in the region of inner Mongolia Hetao Irrigation district[J]. Pectroscopy and Spectral Analysis, 2009, 29(5): 1362-1366. (in Chinese with English abstract)

        [2] 劉全明,成秋明,王學(xué),等. 河套灌區(qū)土壤鹽漬化微波雷達(dá)反演[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(16):109-114.

        Liu Quanming, Cheng Qiuming, Wang Xue, et al. Soil salinity inversion in Hetao Irrigation district using microwave radar[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(16): 109-114. (in Chinese with English abstract)

        [3] 孫永猛,丁建麗,瞿娟,等. 應(yīng)用電磁感應(yīng)和遙感的新疆綠洲區(qū)域尺度鹽漬土識(shí)別[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(20):180-187.

        Sun Yongmeng, Ding Jianli, Qu Juan, et al. Saline soil identification based on electromagnetic induction and remote sensing in Xinjiang Oasis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(20): 180-187. (in Chinese with English abstract)

        [4] 張成雯,唐家奎,于新菊,等. 黃河三角洲土壤含鹽量定量遙感反演[J]. 中國科學(xué)院研究生院學(xué)報(bào),2013,30(2):220-227.

        Zhang Chengwen, Tang Jiakui, Yu Xinju, et al. Quantitative retrieval of soil salt content based on remote sensing in the Yellow River delta[J]. Journal of Graduate University of Chinese Academy of Sciences, 2013, 30(2): 220-227. (in Chinese with English abstract)

        [5] 姚遠(yuǎn),丁建麗,張芳,等. 基于遙感的塔里木盆地北緣綠洲干濕季土地鹽漬化監(jiān)測[J]. 應(yīng)用生態(tài)學(xué)報(bào),2013,24(11):3213-3221. Yao Yuan, Ding Jianli, Zhang Fang, et al. Monitoring of soil salinization in Northern Tarim Basin, Xinjiang of China in dry and wetseasons based on remote sensing[J]. Chinese Journal of Applied Ecology, 2013, 24(11): 3213-3221. (in Chinese with English abstract)

        [6] 魯純. 利用HJ1A- HSI數(shù)據(jù)定量反演松遼平原土壤含鹽量[J].吉林農(nóng)業(yè)大學(xué)學(xué)報(bào),2013,35(5):577-582.

        Lu Chun. Quantitative inversion of salinity based on hyper-spectral data in Songliao Plain[J]. Journal of Jilin Agricultural University, 2013, 35(5): 577-582. (in Chinese with English abstract)

        [7] 殷厚民,胡建,王青青,等. 松嫩平原西部鹽堿土旱作改良研究進(jìn)展與展望[J]. 土壤通報(bào),2017,48(1):236-242.

        Yin Houmin, Hu Jian, Wang Qingqing, et al. Advance and prospect of the research on improvement by dry farming measures of saline-alkali soils in western Songnen Plain of China[J]. Chinese Journal of Soil Science, 2017, 48(1): 236-242. (in Chinese with English abstract)

        [8] 姜洋,李艷,劉東. 基于TM影像屬性和形態(tài)特征的土地覆被制圖方法[J]. 地球信息科學(xué)學(xué)報(bào),2014,16(1):117-125.

        Jiang Yang, Li Yan, Liu Dong. Land cover mapping method based on TM image attribute characteristics and morphological characteristics journal[J]. Geo-information Science, 2014, 16(1): 117-125. (in Chinese with English abstract)

        [9] Farifteh J, Vander Meer F, Atzberger C, et al. Quantitative analysis of salt-affected soil reflectance spectra: A comparison of two adaptive methods (PLSR and ANN)[J]. Remote Sensing of Environment, 2007, 110(1): 59-78.

        [10] Wang H, Hsieh Y P, Harwell M A, et al. Modeling soil salinity distribution along topographic gradients in tidal salt marshes in Atlantic and Gulf coastal regions[J]. Ecological Modelling, 2007, 201(3/4): 429-439.

        [11] 喬木,周生斌,盧磊,等. 近25 a來塔里木盆地灌區(qū)土壤鹽漬化時(shí)空變化特點(diǎn)與改良治理對(duì)策[J]. 干旱區(qū)地理,2011,34(4):604-613.

        Qiao Mu, Zhou Shengbin, Lu Lei, et al. Temporal and spatial changes of soil salinization and improved countermeasures of Tarim Basin Irrigation District in recent 25 a[J]. Arid Land Geography, 2011,34(4): 604-613. (in Chinese with English abstract)

        [12] 丁建麗,姚遠(yuǎn),王飛. 干旱區(qū)土壤鹽漬化特征空間建模[J].生態(tài)學(xué)報(bào),2014,34(16):4620-4631.

        Ding Jianli, Yao Yuan, Wang Fei. Detecting soil salinization in arid regions using spectral feature space derived from remote sensing data[J]. Acta Ecologica Sinica, 2014, 34(16): 4620-4631. (in Chinese with English abstract)

        [13] 張佩民,張振德,李曉琴,等. 青藏高原荒漠化遙感信息提取及演變分析[J]. 干旱區(qū)地理,2006,29(5):710-717.

        Zhang Peimin, Zhang Zhende, Li Xiaoqin, et al. Desertification remote sensing information extraction from Qinhai-Tibet Plateau and evolution analysis[J]. Arid Land Geography, 2006, 29(5): 710-717. (in Chinese with English abstract)

        [14] 王爽,丁建麗,王璐,等. 基于地表光譜建模的區(qū)域土壤鹽漬化遙感監(jiān)測研究[J]. 干旱區(qū)地理,2016,39(1):190-198.

        Wang Shuang, Ding Jianli, Wang Lu, et al. Remote sensing monitoring of soil salinization based on surface spectral modeling[J]. Arid Land Geography, 2016, 39(1): 190-198. (in Chinese with English abstract)

        [15] 王耿明,李達(dá),王忠忠,等. 松遼平原鹽堿土含鹽量的遙感反演研究[J]. 水土保持研究,2009,16(3):235-237. Wang Gengming, Li Da, Wang Zhongzhong, et al. Research on remote sensing inversion of salt content in saline-alkali soil in Songliao Plain[J]. Research of Soil and Water Conservation, 2009, 16(3): 235-237. (in Chinese with English abstract)

        [16] 朱高飛,范燕敏,盛建東,等. 基于HJ1A-HSI超光譜影像的縣域耕地土壤鹽漬度預(yù)測研究[J]. 中國農(nóng)學(xué)通報(bào),2014,30(8):289-294.

        Zhu Gaofei, Fan Yanmin, Sheng Jiandong, et al. Estimation of soil salinity in cltivated land at county scale based on HJ1A-HSI hyperspectral image[J]. Chinese Agricultural Science Bulletin, 2014, 30(8): 289-294. (in Chinese with English abstract)

        [17] Bindlish R, Barros A P. Parameterization of vegetation backscatter in radar-based, soil moisture estimation[J]. Remote Sensing of Environment, 2001,76(1): 130-137. (in Chinese with English abstract)

        [18] Frate D, Schiavon G. Retrieving soil moisture and agricultural variables by microwave radiometry using neural networks[J]. Remote Sensing of Environment, 2003, 84(2): 174-183. (in Chinese with English abstract)

        [19] 馬紅章,柳欽火,聞建光,等. 裸露地表土壤水分的L波段被動(dòng)微波最佳角度反演算法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(11):24-29.

        Ma Hongzhang, Liu Qinhuo, Wen Jianguang, et al. Optimum angle inversion algorithm of bare soil moisture base on L-band passive microwave remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(11): 24-29. (in Chinese with English abstract)

        [20] 楊魁,楊建兵,江冰茹. Sentinel-1衛(wèi)星綜述[J]. 城市勘測,2015(2):24-27.

        Yang Kui, Yang Jianbing, Jiang Bingru. Sentinel-1 satellite overview[J]. Urban Geotechnical Investigation & Surveying, 2015(2): 24-27. (in Chinese with English abstract)

        [21] 曾玲方,李霖,萬麗華. 基于Sentinel-1衛(wèi)星SAR數(shù)據(jù)的洪水淹沒范圍快速提取[J]. 地理信息世界,2015,22(5):100-107.

        Zeng Lingfang, Li Lin, Wan Lihua. SAR-based fast flood mapping using sentinel-1 imagery[J]. Geomatics World, 2015, 22(5): 100-107. (in Chinese with English abstract)

        [22] 徐白山,田鋼,曾昭發(fā),等. 白城地區(qū)鹽堿地土壤性質(zhì)與地質(zhì)雷達(dá)信息應(yīng)用研究[J]. 水土保持通報(bào),2002,22(4):9-12.

        Xu Baishan, Tian Gang, Zeng Zhaofa, et al. Application of GPR information to salinizated soil properties study in Baicheng area of Jilin Province[J]. Bulletin of Soil and Water Conservation, 2002, 22(4): 9-12. (in Chinese with English abstract)

        [23] 楊帆,王志春,王云賀,等. 松嫩平原蘇打鹽漬土土壤水分特征研究[J]. 地理科學(xué),2015,35(3):340-345.

        Yang Fan, Wang Zhichun, Wang Yunhe, et al. Soil water characteristic of saline-sodic soil in Songnen Plain[J]. Scientia Geographica Sinica, 2015, 35(3): 340-345. (in Chinese with English abstract)

        [24] 馬馳. 松嫩平原土地鹽堿化研究[J]. 吉林農(nóng)業(yè)大學(xué)學(xué)報(bào),2014,36(3):333-337.

        Ma Chi. Research on soil salinization in Songnen Plain[J]. Journal of Jilin Agricultural University, 2014, 36(3): 333-337. (in Chinese with English abstract)

        [25] 祝壽泉,王遵親. 鹽潰土分類原則及其分類系統(tǒng)[J]. 土壤,1989(2):106-109.

        Zhu Shouquan, Wang Zunqin. Classification principle and classification system of salt break soil[J]. Soils, 1989(2): 106-109. (in Chinese with English abstract)

        [26] 俞仁培. 土壤堿化及其防治[M]. 北京:農(nóng)業(yè)出版社,1984.

        [27] 李彪,王耀強(qiáng). 土壤鹽漬化雷達(dá)反演模擬研究[J]. 干旱區(qū)資源與環(huán)境,2015,29(8):180-184.

        Li Biao, Wang Yaoqiang. Radar inversion and simulation of salty soil salinization[J]. Journal of Arid Land Resources and Environment, 2015, 29(8): 180-184. (in Chinese with English abstract)

        [28] 彭立,楊武年,黃瑾. 川西高原多時(shí)相干涉雷達(dá)土地覆蓋分類研究[J]. 西南大學(xué)學(xué)報(bào):自然科學(xué)版,2016,38(5):125-132.

        Peng Li, Yang Wunian, Huang Jin. Study of land cover classification using multi-temporal InSAR data in west plateau of Sichuan[J]. Journal of Southwest University: Natural Science Edition, 2016, 38(5): 125-132. (in Chinese with English abstract)

        [29] 依力亞斯江·努爾麥麥提,塔西甫拉提·特依拜,丁建麗,等. 基于多種極化分解方法和全極化合成孔徑雷達(dá)數(shù)據(jù)的干旱區(qū)鹽漬化監(jiān)測[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(23):145-153.

        Ilyas Nurmemet, Tashpolat Tiyip, Ding Jianli, et al. Monitoring soil salinization in arid area using Pol SAR data and polarimetric decomposition method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015,31(23): 145-153. (in Chinese with English abstract)

        [30] 何連,秦其明,任華忠,等. 利用多時(shí)相Sentinel-1 SAR數(shù)據(jù)反演農(nóng)田地表土壤水分[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(3):144-148.

        He Lian, Qin Qiming, Ren Huazhong, et al. Soil moisture retrieval using multi-temporal Sentinel-1 SAR data in agricultural areas[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 144-148. (in Chinese with English abstract)

        [31] 游代安,趙少華,史園莉. 一種利用雙時(shí)相 ASAR 數(shù)據(jù)監(jiān)測土壤濕度的方法[J]. 環(huán)境與可持續(xù)發(fā)展,2015,40(6):103-107.

        You Dai’an, Zhao Shaohua, Shi Yuanli. A method of soil moisture monitoring with Bi-temporal ASAR imagery[J]. Environment and Sustainable Development, 2015, 40(6): 103-107. (in Chinese with English abstract)

        Quantitative retrieval of soil salt content based on Sentinel-1 dual polarization radar image

        Ma Chi

        (,110122,)

        The soil in midwest of Songnen Plain is becoming increasingly more salinized, which highlights the importance of rapid and precise monitoring and evaluation on salinization of soil. With great advantages, the microwave remote sensing becomes an emerging method with huge potential in detecting composition of soil. With the Sentinel-1 image covering the region with salinized soil in Songnen Plain as data source, combined with the assay data of total salt content in the sampled soil from the region of interest, the technology and method of soil salinization information extraction are investigated based on dual polarization radar image. Firstly, 64 soil samples are collected in the study area, and the total salt content of soil samples is tested in the laboratory. Fifty-two soil samples are taken as modeling samples, and 12 samples are taken as test samples. Saline-alkaline soil is divided into light salinization soil (with salt content of 1-3 g/kg), medium salinization soil (with salt content of 3-5 g/kg), heavy salinization soil (with salt content of 5-7 g/kg) and saline-alkaline soil (with salt content > 7 g/kg). The Speckle Filtering of S1TBX software is used to filter Sentinel-1 image to eliminate the influence of noise in the image on information extraction. Radiometric calibration is made for image using Radiometric-Calibrate tool to eliminate the absorption and scattering of atmospheric aerosol for imaging process so as to obtain the true back scattering coefficient of topographical surface feature. The image is subjected to geometrical correction by Terrain Correction tool. Then, by analyzing the quantitative relations between radar image VH and VV polarization modes, back scattering coefficient of polarization combination of VV+VH, VV/VH, (VV+VH)/(VV-VH), and (VV2+VH2)/(VV2-VH2), and soil salt content, the optimized polarization combination mode of the inversion model is determined. Lastly, the prediction model for soil salinity in the region of interest is established using multiple regression technique, and the relative error and root mean square error (RMSE) between predicted value and actual value of salinity in test sample of soil are compared to evaluate the precision of inversion model. The inversion model of soil salinity is used to inverse topsoil salinity in region of interest and the inversion result chart of soil salinity is drawn for the region of interest. The findings are: The back scattering coefficient of Sentinel-1 image VH polarization mode is strongly responsive to medium salinization soil, heavy salinization soil and saline-alkaline soil, and the back scattering coefficient of VV polarization mode is strongly responsive to all degrees of saline-alkaline soil; the back scattering coefficient of polarization mode of (VV2+VH2)/(VV2-VH2) can well separate non-salinized soil, light salinization soil, medium salinization soil, heavy salinization soil and saline-alkaline soil. The coefficient of determination2for the established model reaches 0.872, and the RMSE is 0.988. Model checking results show that, the maximal relative error between predicted value and actual value of sample’s salinity is 4.87%, and the minimum relative error is only 0.91%. In the scatter plot, inverse value and measured value of sample salt content after checking are evenly distributed on both sides of 1:1 straight line, and coefficient of determination2is up to 0.98, and RMSE is 0.412, showing that the inversion model has a high precision in prediction of soil salt content in the research area. The graphical result of the inversion shows that: light salinization soil is widely distributed in the research area; medium salinization soil is mainly distributed in the western and southern Daqing City and western and northern Datong District, and concentrates around the rivers and lakes in the research area; heavy salinization soil, saline-alkaline soil and medium salinization soil are incidentally distributed, and mainly distributed in western and southern Datong District. This method can meet the need for monitoring soil salinization in large region, and provide reference for research on extraction of composition of soil based on Sentinel-1 radar data.

        remote sensing; soil; salinity measurement; inversion; Sentinel-1

        10.11975/j.issn.1002-6819.2018.02.021

        S127; TP79

        A

        1002-6819(2018)-02-0153-06

        2017-08-15

        2018-01-07

        國家自然科學(xué)基金項(xiàng)目(41371332)資助;中國地質(zhì)調(diào)查局項(xiàng)目(1212010911084)資助

        馬 馳,男,遼寧省義縣人,博士,副教授,主要從事RS與GIS應(yīng)用研究。Email:machi1001@sina.com

        馬 馳. 基于Sentinel-1雙極化雷達(dá)影像的土壤含鹽量反演[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(2):153-158. doi:10.11975/j.issn.1002-6819.2018.02.021 http://www.tcsae.org

        Ma Chi. Quantitative retrieval of soil salt content based on Sentinel-1 dual polarization radar image[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 153-158. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.02.021 http://www.tcsae.org

        猜你喜歡
        后向鹽堿化散射系數(shù)
        松嫩鹽堿退化草地土壤理化性質(zhì)及離子變化規(guī)律分析
        等離子體層嘶聲波對(duì)輻射帶電子投擲角散射系數(shù)的多維建模*
        隨機(jī)波動(dòng)格點(diǎn)方程的后向緊隨機(jī)吸引子①
        隨機(jī)Kuramoto-Sivashinsky格點(diǎn)方程的后向緊隨機(jī)吸引子①
        甘肅省鹽堿化區(qū)域地下水合理埋深分析與確定
        甘肅科技(2021年19期)2021-11-25 04:51:14
        北部灣后向散射系數(shù)的時(shí)空分布與變化分析
        無界域上非自治Navier-Stokes方程的后向緊動(dòng)力學(xué)
        鹽城灌東區(qū)域鹽堿地綜合治理的新途徑
        松遼平原土地鹽堿化動(dòng)態(tài)監(jiān)測與遙感分析
        一類具有飽和發(fā)生率和治療的SIS傳染病模型的后向分支及動(dòng)力學(xué)行為
        亚洲丁香婷婷久久一区二区| 最新手机国产在线小视频| 国产最新一区二区三区| 日韩精品在线一二三四区| 亚洲性无码一区二区三区| 欧美日韩中文国产一区| 亚洲片在线视频| 一本色道久久88加勒比—综合| 亚洲av乱码一区二区三区林ゆな| 波多野结衣av手机在线观看| 妺妺窝人体色www在线直播| 亚洲精品色播一区二区| 99精品久久99久久久久 | 欧美日韩色另类综合| 久久久久中文字幕无码少妇| 亚洲视频在线中文字幕乱码| 中文字幕一区二区三区久久网| 亚洲av无码一区二区乱孑伦as| 91呻吟丰满娇喘国产区| 性一交一乱一乱一视频亚洲熟妇| 麻豆精品一区二区av白丝在线| 最新亚洲人成网站在线观看| 久久99热精品这里久久精品| 中文字幕久区久久中文字幕| 精品人妻码一区二区三区剧情| 国产成人综合久久亚洲精品| 国产在线观看黄| 精品蜜桃av免费观看| 亚洲av香蕉一区区二区三区| 久久久久亚洲av无码专区| 日韩不卡无码三区| 精品一区二区三区婷婷| 巨胸喷奶水www视频网站| 久久免费大片| 美女把内衣内裤脱了给男人舔| 亚洲成av人综合在线观看| 精品久久久久久中文字幕| 欧美人与动牲交片免费| 日本av天堂一区二区三区| 巨胸喷奶水www视频网站| 亚洲中文字幕无码卡通动漫野外|