亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        一類條件為abc=1型不等式的證法探究

        2018-02-26 01:08:36安徽省岳西縣湯池中學
        中學數(shù)學教學 2018年1期
        關鍵詞:換元柯西奧林匹克

        安徽省岳西縣湯池中學

        蘇岳祥 楊續(xù)亮 (郵編:246620)

        在《數(shù)學通訊》(上半月刊)的問題征解,《中等數(shù)學》數(shù)學奧林匹克問題,《數(shù)學教學》問題與解答以及各級數(shù)學競賽試題中,經(jīng)常出現(xiàn)abc=1條件的三元不等式證明試題,筆者對含有“abc=1”的條件不等式的證明進行了深入的探究,總結出五種證明不等式的方法.

        1 運用公式直接證明

        =3.

        例2(2015年摩爾多瓦數(shù)學奧林匹克試題)已知a、b、c是滿足abc=1的正實數(shù),

        證明因為(a+b)(a-b)2+(b+c)(b-c)2+(c+a)(c-a)2≥0,

        所以2(a3+b3+c3)≥a(b2+c2)+b(c2+a2)+c(a2+b2)≥6.因此

        評注證明時對不等式進行了分拆,局部運用均值不等式或者柯西不等式.

        2 常數(shù)“1”的代換

        證明注意到a5+b5-a2b2(a+b)=(a2-b2)(a3-b3)≥0.

        評注利用1=abc代換時,考慮到代數(shù)式的齊次式特征,實現(xiàn)有效的等價代換.

        3 結構化換元

        3.1 倒數(shù)換元

        由于(x+y+z)2=x2+y2+z2+2(yz+zx+xy)≥3(yz+zx+xy),

        例5(2008年全國高中數(shù)學聯(lián)賽山東省預賽試題)設實數(shù)x>0,y>0,z>0,且xyz=1.

        故不等式得證.

        無獨有偶,在2016年遼寧省競賽也有這樣一道試題:

        評注這種代換可以解決第41解IMO試題.

        評注換元以后得到了第四屆中國西部數(shù)學奧林匹克第8題 求證: 對任意的正實數(shù)a、b、c都有

        由柯西不等式可得

        3.5 a=x3,b=y3,c=z3換元

        證明令a=x3,b=y3,c=z3(x,y,z>0),

        由(y4-z4)(y-z)≥0得y5+z5≥y4z+z4y=yz(y3+z3),

        又有6x8+y8+z8≥8x6yz=8x5,x8+6y8+z8≥8xy6z=8y5,x8+y8+6z8≥8xyz6=8z5,

        以上三式相加可得

        x8+y8+z8≥x5+y5+z5.

        4 其它變換

        因此要證原不等式成立,只需要證明

        故所證不等式變?yōu)?/p>

        整理可得

        10x6-54x4+61x3-27x+10≥0,

        而當0

        10x6-54x4+61x3-27x+10

        =(x-1)2(10x4+20x3-24x2-7x+10)

        ≥0,

        從而原不等式成立.

        即a+b+c-1=ab+bc+ca,故

        =a2+b2+c2

        =(a+b+c)2-2(ab+bc+ca)

        =(a+b+c)2-2(a+b+c-1)

        =(a+b+c-1)2≥1,得證.

        5 待定系數(shù)法

        又由均值不等式可得

        以上三式相加可得.

        評注例11實質(zhì)上是波羅的海數(shù)學競賽試題的題源.

        設a、b、c為正實數(shù),且abc=1,求證

        化簡可得.

        猜你喜歡
        換元柯西奧林匹克
        因式分解的整體思想及換元策略
        柯西積分判別法與比較原理的應用
        柯西不等式在解題中的應用
        柯西不等式的變形及應用
        “換元”的巧妙之處
        柯西不等式的應用
        三角換元與基本不等式的“爭鋒”
        三角換元與基本不等式的“爭鋒”
        頭腦奧林匹克
        頭腦奧林匹克
        亚洲日韩国产av无码无码精品| 91精品在线免费| 亚洲国产精品色一区二区| av男人的天堂亚洲综合网| 亚洲愉拍99热成人精品热久久| 中文字幕亚洲无线码| 日韩在线视频不卡一区二区三区| 日韩av中文字幕波多野九色 | 日韩精品国产一区二区| 久久人妻一区二区三区免费| 日本精品无码一区二区三区久久久 | 久久亚洲国产成人精品性色| 开心婷婷五月激情综合社区| 99久久国内精品成人免费| 亚洲人妻精品一区二区三区| 久久精品国产免费观看三人同眠| 欧美一区二区三区视频在线观看| 另类内射国产在线| 亚洲男人的天堂网站| 99re6久精品国产首页| 男女啪啪动态视频在线观看| 亚洲av日韩av女同同性| 三上悠亚av影院在线看| 欧美日韩国产在线人成dvd| 麻豆成人久久精品二区三区91| 欧美性色欧美a在线播放| 国产在线视频一区二区三区| 久久道精品一区二区三区| 免费看片的网站国产亚洲| 熟妇人妻无码中文字幕老熟妇| 国产精品99久久免费| 亚洲免费视频一区二区三区 | 日本天堂免费观看| 久久99精品久久久久久| 免费福利视频二区三区| 精品国产精品久久一区免费式 | 午夜a福利| 国产大屁股熟女流白浆一区二区| 在线视频中文字幕一区二区三区| 男女性杂交内射妇女bbwxz| 天天躁人人躁人人躁狂躁|