曾民德
2001年Unger把過(guò)量的游離脂肪酸(FFA)由脂肪組織(AT)異位集聚于非AT(NAT)引起細(xì)胞損傷現(xiàn)象稱為脂肪毒,胰島素抵抗(IR)和脂凋亡是其兩個(gè)特征性表型。近來(lái),研究認(rèn)為脂毒性是NAFLD的多重打擊的主軸,其多臂表型介導(dǎo)了NAFLD進(jìn)展及代謝綜合征(MS)發(fā)生[1-5]。此假設(shè)日益受到重視,成為當(dāng)前研究的熱點(diǎn)。
1.1 脂滴(LD)是脂肪肝(FL)形成的根[6-8]FL不僅是肝細(xì)胞脂質(zhì)貯聚,且有LD形成。LD為高動(dòng)力性多功能細(xì)胞器。初生LD在內(nèi)質(zhì)網(wǎng)(ER)以甘油三酯(TG)和膽固醇酯為核心,環(huán)繞磷脂單層形成,隨著其成長(zhǎng)成熟,LD合成脂質(zhì)、外被蛋白(PLINS)、跨膜轉(zhuǎn)運(yùn)蛋白、酶蛋白、轉(zhuǎn)錄因子、組蛋白及其他LD蛋白,構(gòu)成膜脂質(zhì)雙層結(jié)構(gòu)的細(xì)胞器。胞質(zhì)的LD與其他細(xì)胞器對(duì)話,細(xì)胞核LD誘導(dǎo)核受體(NR)及其信號(hào)改變。PNPLA3基因表達(dá)于LD。PLINS、細(xì)胞死亡誘致的DNA碎片效應(yīng)物(CIDE)、LD蛋白組分及脂質(zhì)的異常增多均可誘發(fā)LD增大、融合和異位。脂毒性反應(yīng)程度與LD組分、大小、數(shù)量、形態(tài)和分布的改變有關(guān)。
1.2 FL成為脂質(zhì)異位的起源[9-12,16]FL通過(guò)脂質(zhì)從頭合成(DNL)、LD降解及脂質(zhì)轉(zhuǎn)運(yùn)蛋白的更位介導(dǎo)脂質(zhì)肝外異位。DNL以乙酰CoA為起始底物,轉(zhuǎn)化為葡萄糖生成脂質(zhì)。胰島素(INS)和葡萄糖激活CoA羧化酶(ACC)、固醇調(diào)節(jié)元件結(jié)合蛋白(SREBP)、肝 X 受體(LXR)/膽汁酸受體(FXR)/過(guò)氧化物酶體增殖物活化受體(PPAR)反應(yīng)主軸增加DNL。ER膜蛋白INS誘導(dǎo)基因(Insig)與SREBP裂解激活蛋白(Scap)和SREBP形成復(fù)合物,IR和ER應(yīng)激(ERS)誘致ER膜損傷,使SREBP由復(fù)合物中離解出來(lái)。許多信號(hào)分子通路參與調(diào)節(jié) DNL,包括腺苷酸活化蛋白激酶(AMPK)、脂素 1(Lipin-1)、脂聯(lián)素(APN)、沉默信息調(diào)節(jié)因子 1(SIRT-1)、叉頭盒蛋白 O(FOXO)、PPAR、內(nèi)源性大麻素系統(tǒng)(ECS)、瘦素(LEP)、視黃醇結(jié)合蛋白4(RBP-4)等。由于匯管區(qū)周圍肝細(xì)胞存在選擇性IR,其DNL增加較肝小葉中央?yún)^(qū)肝細(xì)胞更顯著。LD可通過(guò)降解及自噬釋放脂質(zhì)。LD表達(dá)脂肪TG脂酶(ATGL)/PNPLA2、羧基脂酶、CIDEB、溶酶體脂酶 /鳥苷三磷酸酶RABT等降解酶催化脂解。IR、TNF-α、氧應(yīng)激(OS)-PPAR 通路、APN/LEP 失衡、APN- 肝激酶 B(LKB)、鈣 /鈣調(diào)節(jié)依賴性蛋白激酶(CaMKK)通路、缺氧誘導(dǎo)因子(HIF)、兒茶酚胺、胰高糖素活性改變等均參與增加脂解活性。DNL與脂解不能維持精細(xì)平衡,驅(qū)動(dòng)脂質(zhì)轉(zhuǎn)運(yùn)蛋白更位分布,以致小窩蛋白、FA移位酶(FAT/CD36)、FA轉(zhuǎn)運(yùn)蛋白(FATP)、FA結(jié)合蛋白(FABP)、固醇載體蛋白(SCP)等在NAT表達(dá)增加,促進(jìn)脂質(zhì)異位。
1.3 毒性脂質(zhì)類別[13-15](1)長(zhǎng)鏈乙酰CoA;(2)FA/反式FA(TFA):FFA反映脂解,但不能反映是來(lái)自毒性飽和FA(SFA)或非毒性不飽和FA組分,SFA中棕櫚酸(PA)是代表性脂毒分子,也是DNL標(biāo)志物;(3)類花生酸(AA)衍生物:ω-6FA經(jīng)脂氧化酶(LOX)產(chǎn)生AA,環(huán)氧化酶(COX)使AA衍生前列腺素、血栓素及白三烯;(4)中性脂質(zhì):TG和二酰甘油(DAG);(5)膽固醇:游離膽固醇(FC),低密度脂蛋白膽固醇(LDL-C)、氧化類固醇;(6)鞘脂(GLS):神經(jīng)酰胺(Cer)、鞘磷脂(SM);(7)磷酸甘油脂(GPLS):磷脂酰(PC)、溶血磷脂酰膽堿(LPC)、磷脂酰乙醇胺(PE)及磷脂酰肌醇(PI)。
2.1 IR[11,16-18]FL可引起INS廓清減低,高INS血癥,與DNL增加呈惡性循環(huán)。毒性脂質(zhì)通過(guò)降低INS敏感性信號(hào)環(huán)路,即INS受體底物(IRS)-磷脂酰肌醇3激酶(PI3K)-蛋白激酶 B或 C(PKB或 PKC)-FOXO-哺乳動(dòng)物 TOR激酶(mTOR)分子通路誘發(fā)IR。約63%肝性IR由DAG-PKC通路引起,DAG激活PKC減弱IRS-PI3K信號(hào),增加糖異生和由葡萄糖轉(zhuǎn)運(yùn)子(GLUT)釋放葡萄糖。PA、Cer和FC則是通過(guò)抑制PKB(即AKT)減弱下游INS信號(hào)。Cer能透過(guò)血腦屏障引起下丘腦神經(jīng)元退行性改變,誘發(fā)腦IR。毒性脂質(zhì)可經(jīng)炎癥信號(hào)JNK-NFκB、細(xì)胞因子信號(hào)3抑制物(SOCS3)-JAK/STAT通路下調(diào)IRS-PI3K軸,誘發(fā)IR。
2.2 β細(xì)胞功能不全[19-21]FL可重疊存在“脂肪胰”。IR聯(lián)同β細(xì)胞功能不全促使β細(xì)胞衰竭,發(fā)生糖尿病。脂毒性β細(xì)胞功能不全發(fā)生機(jī)制可能為:(1)ER對(duì)前INS原基因轉(zhuǎn)錄減少,Insig表達(dá)減低;(2)β細(xì)胞脂凋亡及脫分化使β細(xì)胞減少,伴非β細(xì)胞增多;(3)INS兩分泌相障礙:初相為ATP依賴性葡萄糖刺激的INS分泌,二相為線粒體(Mt)信號(hào)依賴性擴(kuò)大分泌。FOXO活性減低,細(xì)胞內(nèi)鈣丟失,解偶聯(lián)蛋白 2(UCP-2)、蛋白磷酸酶 2A(PPA2)、磷脂酶 A2(PLA2)、膜糖蛋白PC-1、膜結(jié)合小分子G蛋白R(shí)ac1表達(dá)增高及Mt功能不全均可誘致INS分泌障礙;(4)胰島淀粉樣多肽(IAPP)沉著:β細(xì)胞合成IAPP協(xié)同INS分泌,脂負(fù)荷誘致IAPP沉著破壞β細(xì)胞并激發(fā)OS及炎癥反應(yīng);(5)促INS/抗INS因子失衡:APN/LEP失衡、成纖維細(xì)胞生長(zhǎng)因子21(FGF21)/FGF19失衡、胰高糖素樣肽-1(GLP-1)、PPAR共激活劑(PGI-1α)、硒蛋白 P(Sepp-1)活性降低;促炎細(xì)胞因子、趨化因子、胎球蛋白A、抵抗素、內(nèi)脂素(Visfatin)等表達(dá)增高。
Mt主要功能為對(duì)三羧酸循環(huán)氧化磷酸化(OXPHOS)產(chǎn)生ATP并調(diào)節(jié)細(xì)胞內(nèi)鈣穩(wěn)態(tài)。OXPHOS中Mt DNA編碼的呼吸鏈(MRC)在傳遞電子時(shí)發(fā)生電子泄漏,產(chǎn)生活性氧(ROS),致ATP生成減少伴UCP2表達(dá)增加。ROS是細(xì)胞增殖、分化、存活、代謝、炎癥反應(yīng)、鐵平衡和DNA修復(fù)的細(xì)胞傳導(dǎo)分子。OS為促氧化與抗氧化活性失衡,ROS增多及Mt基質(zhì)產(chǎn)生的還原型谷胱甘肽(MtGSH)和NADPH依賴性硫氧還蛋白(TRX)抗氧化系統(tǒng)活性減低,激發(fā)OS,引起OXPHOS損傷、脂質(zhì)過(guò)氧化及MtDNA損傷。持久OS使Mt適應(yīng)性反應(yīng)逐漸失代償,引發(fā)Mt功能不全,其機(jī)制可能為:(1)脂毒上調(diào)促氧化NADPH氧化酶(NOX)及NO合成酶(NOS)誘致ROS兼活性氧(RNS)協(xié)同生成;(2)FA 氧化(FAO)增高:短中鏈FA在Mt β氧化,由于DNL產(chǎn)生的丙二酰CoA可抑制棕櫚?;D(zhuǎn)移酶(CPT)阻礙長(zhǎng)鏈 FA(LCFA)進(jìn)入Mt β 氧化,過(guò)氧化物酶體對(duì) LCFA、ER對(duì)極長(zhǎng)鏈 FA、Mt和 ER表達(dá)的Cyp2E1/4A介導(dǎo)的β和ω氧化均升高,誘致MRC活性持續(xù)下降和脂質(zhì)過(guò)氧化增高;(3)膜脂筏簇集反應(yīng):PA誘致Mt外膜蛋白Sab與JNK相互作用,JNK磷酸化Sab破壞Mt膜;Cer激活鞘脂酶(ASM)介導(dǎo)膜蛋白寡聚化,誘致TNFα/Fas表達(dá);LC誘導(dǎo)PPA2、PLA2及酪氨酸激酶(PTP)滅活離子泵;(4)鐵負(fù)荷:Cyp2E1、UPR、鐵調(diào)素增高,溶酶體破壞等促進(jìn)鐵負(fù)荷,誘致Mt DNA變性及Fe2+-硫基酶損傷MRC活性;(5)ROS誘導(dǎo)ROS釋放(RIRR):鈣負(fù)荷引起Mt外膜通透性轉(zhuǎn)移孔(MPTP)開放、Mt內(nèi)膜陰離子通道形成(IMAC),Mt-Mt融合等,促使ROS擴(kuò)散至鄰近Mt,擴(kuò)大ROS產(chǎn)生;(6)Mt-ER之間形成關(guān)聯(lián)膜(MAMS):ER的肌漿網(wǎng)鈣-ATP酶(SERCA)泵功能破壞,使ER的鈣經(jīng)MAMS流入Mt,促進(jìn)ROS產(chǎn)生;(7)抗氧化系統(tǒng)功能下降:毒性脂質(zhì)可阻止胞質(zhì)GSH轉(zhuǎn)運(yùn)入Mt,致MtGSH缺失;可促進(jìn)TRX相互作用蛋白(TXNIP)增高,降低MtTRX水平;可誘致HIF、干擾素、TNFα表達(dá),誘致APN/LEP失衡和FGF21/FGF19失衡;可誘致核呼吸因子(NRF)、抗氧化反應(yīng)元件(ARE)、血紅素加氧酶1(HO-1)活性降低而降低MRC多肽含量。
ER主要功能為加工蛋白質(zhì),調(diào)節(jié)脂質(zhì)代謝及貯存鈣。LD在ER生成和成熟。ER富含膽固醇,其磷脂膜很敏感于脂質(zhì)飽和度的增加,誘致OS和非折疊蛋白反應(yīng)(UPR)。ER腔內(nèi)存在高氧化型GSH(GSSH)/GSH比值內(nèi)環(huán)境而誘致蛋白折疊時(shí)形成二硫鍵,產(chǎn)生ROS,其形成的ROS占肝細(xì)胞產(chǎn)生的ROS來(lái)源的20%。二硫鍵同工酶PDI結(jié)合于膜固有的78KD的葡萄糖調(diào)節(jié)蛋白GRP78,膜損傷使PDI分離出來(lái),在產(chǎn)生ROS的同時(shí),也使膜SERCA泵損傷,丟失貯存鈣。持續(xù)性ER脂負(fù)荷、ROS聚集、鈣丟失、糖基化、分泌蛋白和突變蛋白增多,使UPR增加,激活ERS,通過(guò)表達(dá)激酶樣ER激酶(PERK)、肌醇需求酶 1(IRE1)和活化轉(zhuǎn)錄因子 6(ATF6)3 個(gè)感應(yīng)蛋白,由它們誘導(dǎo)ERS標(biāo)志物C/ERP同源蛋白(CHOP)、X盒結(jié)合蛋白 1(XBP1)和真核翻譯起始因子 2α(eIF2α)的表達(dá),介導(dǎo) Insig、IRS-AKT-糖原合成激酶(GSK)通路及 FOXO活性下調(diào),激活 SREBP、ER氧化酶 1α(ERO1α)、P53、ECS、JNK/NFκB、TNF 受 體 相 關(guān) 因 子(TRAF)、凋亡信號(hào)激酶及半胱天冬酶(Caspase)等引起ERS相關(guān)性損傷性反應(yīng)。
5.1 損傷相關(guān)分子模式(DAMPs)的無(wú)菌性炎癥 DAMPs是應(yīng)激、損傷及死亡細(xì)胞釋放的炎癥誘導(dǎo)物。毒性脂質(zhì)本身是DAMPs分子,DAMPs家族包括高遷移率族蛋白B1(HMGB1)、熱休克蛋白、透明質(zhì)酸、纖維蛋白原、鐵蛋白、Mt產(chǎn)物的ATP、甲基肽Mt DNA等[31-34]。近來(lái)提出脂毒性細(xì)胞外囊泡(EVs)是新型DAMPs分子來(lái)源,EVs包括溶酶體釋放的外泌體(EXO)、漿膜釋放的微粒(MP)及凋亡釋放的凋亡體。EXO和MP各含不同的脂質(zhì)、蛋白質(zhì)、RNA、趨化因子配體和Hh配體;凋亡體含組蛋白、DNA片段、補(bǔ)體C3和血小板反應(yīng)蛋白等,都可能成為DAMPs分子。OS激活巨噬細(xì)胞/庫(kù)普弗細(xì)胞(KC)釋放的HMGB1,是DAMPs核心標(biāo)志物,它激活Toll樣受體4(TLR4)/接頭分子MyD88信號(hào)通路,誘導(dǎo)炎癥感受細(xì)胞對(duì)話釋放促炎介質(zhì)。肝內(nèi)炎癥感受細(xì)胞包括肝細(xì)胞、T和B細(xì)胞、NK/NKT細(xì)胞、肝竇內(nèi)皮細(xì)胞(SEC)、樹突狀細(xì)胞(DC)、肝星狀細(xì)胞(HSC)、KC、血小板及嗜中性白細(xì)胞。肝內(nèi)炎癥感受細(xì)胞表達(dá)TLR4和脂多糖/DAMPs,均為TLR4配體,TLR4信號(hào)誘導(dǎo)細(xì)胞因子、趨化因子、黏附因子、干擾素、ROS、COX等表達(dá),其中JNK-NFκB-單核細(xì)胞趨化蛋白(MCP-1 或者 CCL2)可能是軸心通路[32,39,40]。
5.2 KC的極化與免疫反應(yīng) 脂負(fù)荷的KC極化是肝內(nèi)炎癥使動(dòng)因素[33-35]。KC極化M1表型占優(yōu)勢(shì)于M2型,M1型為促炎性Th1反應(yīng)型,M2型為抗炎性Th2反應(yīng)型。M1型TLR4很敏感于低水平脂多糖/DAMPs的激活,釋放TNFα、IL-6及CCL2等促炎因子,并誘導(dǎo)肝細(xì)胞、淋巴細(xì)胞及KC產(chǎn)生炎癥體。炎癥體由胞質(zhì)的NOD樣受體NLRP3、接頭分子凋亡相關(guān)斑點(diǎn)樣蛋白(ASC)和效應(yīng)分子Procaspase組成[41]。炎癥體的激活可釋放IL-1β、IL-18、IL-33及Caspase1,并募集白細(xì)胞浸潤(rùn)。PA、Cer、EC、胎球蛋白 A、細(xì)胞外 ATP、ROS、尿酸結(jié)晶、EVs均可參與激活TLR-炎癥體通路。IL-17軸有多功能免疫調(diào)節(jié)作用[33,34,38]。CD4+T 細(xì)胞極化產(chǎn)生 Th17 細(xì)胞 /T 調(diào)節(jié)細(xì)胞(Treg)失衡,分泌IL-17的Th17表達(dá)增高,而分泌TGFβ及IL-10等抑制因子的Treg表達(dá)降低,IL-17激活細(xì)胞因子、趨化因子、集落刺激因子并募集粒細(xì)胞浸潤(rùn)。IL-17對(duì)Th1和Th2反應(yīng)都有激活作用,后者可參與誘致肝纖維化反應(yīng)。
6.1 自噬[42-45]為溶酶體降解集聚的錯(cuò)疊蛋白質(zhì)、脂質(zhì)及無(wú)功能的細(xì)胞器,通過(guò)形成表達(dá)微管相關(guān)蛋白輕鏈3(LC3)的自噬體,再由自噬體與溶酶體融合經(jīng)溶酶體酶予以消化。脂毒性自噬表現(xiàn)選擇性Mt自噬和LD自噬兩類型。適度自噬可對(duì)被降解底物再利用并重新組建細(xì)胞器,促進(jìn)細(xì)胞存活,但脂毒性自噬功能減低,并由此誘致LD增多及成熟,Mt功能不全、ERS加重、炎癥和細(xì)胞死亡。自噬功能減低可能來(lái)自:(1)自噬相關(guān)基因(Atg)及自噬調(diào)控因子Beclin-1轉(zhuǎn)錄缺陷:轉(zhuǎn)錄因子 EB(TFEB)及 PI3K-Beclin-1 通路下調(diào);(2)凋亡抑制自噬:凋亡上調(diào)Bcl2、Caspase及P53,降低Atg和Beclin-1活性;(3)自噬體-溶酶體融合缺陷及溶酶體酶水平低下:可由HIF、ROS和胞質(zhì)鈣增高誘發(fā);(4)mTOR激活:AMPK、SIRT1、FOXO、磷酸酶張力蛋白同系物(PTEN)及非勻稱51樣激酶(ULK1)等活性低下可激活mTOR,抑制自噬。
6.2 凋亡[37,45]Mt表達(dá)的B細(xì)胞瘤2(Bcl2)蛋白家族3個(gè)成員調(diào)控凋亡,即抗凋亡的Mcl-1/Bcl-XL;促凋亡的Bax/Bak;細(xì)胞死亡信使Bcl2同源域BH3/Puma。凋亡外在性通路由Fas/FasL、TNFα/TNFR、TNF相關(guān)凋亡誘導(dǎo)配體(TRAIL)和受體(TRAIL-R)激活介導(dǎo),TRAIL-R的激活發(fā)生較早,其激活牽連JNK/FOXO依賴性Bim和Puma上調(diào),促進(jìn)凋亡;內(nèi)在性通路由Mt、ER、溶酶體等細(xì)胞器應(yīng)激介導(dǎo),CHOP、JNK、ROS及P53等上調(diào)起重要作用。凋亡內(nèi)外性通路匯聚于Mt實(shí)施擴(kuò)增損傷。Mt凋亡輔助激活物(SMAC)等入胞質(zhì)激活Caspase及凋亡體形成。自噬可通過(guò)由LC3與Fas形成的復(fù)合物中分離出Fas:由Atg裂解產(chǎn)物誘導(dǎo)鈣蛋白酶Calpain激活Caspase;由自噬損傷調(diào)節(jié)物DRAM及其介導(dǎo)的P53/Bax通路促進(jìn)凋亡。
脂毒性多臂表型是程序化自穩(wěn)態(tài)適應(yīng)性反應(yīng)(Adapt)。各種表型的Adapt具有雙刃劍作用。早期適度的FAO、ROS、UCP-2、UPR、JAK-STAT 等上調(diào)可抗 FL;TG 貯集可阻抑毒性脂質(zhì)中間產(chǎn)物的衍生;PI3K表達(dá)可維持INS信號(hào);NFκB可抑制TNFα;HIF可抗凋亡;自噬可促細(xì)胞存活等都是Adapt保護(hù)機(jī)制。持久的LD-Mt/ER對(duì)話失調(diào)是發(fā)生適應(yīng)失代償?shù)墓拯c(diǎn),形成的損傷擴(kuò)大襻誘致脂毒性肝病及MS的發(fā)生發(fā)展。臨床應(yīng)加強(qiáng)應(yīng)用高分辨率顯微鏡和顯微分光術(shù)觀察LD動(dòng)力學(xué)變化,建立檢測(cè)Adapt利弊度量評(píng)估系統(tǒng),并相應(yīng)制定干預(yù)的應(yīng)答指導(dǎo)原則(RGT),以預(yù)測(cè)判斷有/無(wú)應(yīng)答反應(yīng),以提高靶向干預(yù)的效果。
[1]Neuschwander-Tetri BA.Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis:the central role of nontriglyceride fatty acid metabolites.Hepatology,2010,52:774-788.
[2]Unger RH,Scherer PE.Gluttony,sloth and the metabolic syndrome:a roadmap to lipotoxicity.Trends EndocrinolMetab,2010,21:345-352.
[3]Ibrahim SH,Kohli R,Gores GJ.Mechanisms of lipotoxicity in NAFLD and clinical implications.J Pediatr Gastroenterol Nutr,2011,53:131-140.
[4]Fuchs M,Sanyal AJ.Lipotoxicity in NASH.J Hepatol,2012,56:291-293.
[5]Zambo V,Simon-Szabo L,Szelenyi P,et al.Lipotoxicity in the liver.World J Hepatol,2013,5:550-557.
[6]Mashek DG,Khan SA,Sathyanarayan A,etal.Hepaticlipid droplet biology:Getting to the root of fatty liver.Hepatology,2015,62:964-967.
[7]Welte MA.As the fat flies:The dynamic lipid droplets of Drosophila embryos.Biochim Biophys Acta,2015,1851:1156-1185.
[8]WelteMA.Expandingrolesforlipid droplets.CurrBiol,2015,25:R470-481.
[9]Saponaro C,Gaggini M,Carli F,et al.The subtle balance between lipolysis and lipogenesis:A critical pointin metabolic homeostasis.Nutrients,2015,7:9453-9474.
[10]Sanders FW,Griffin JL.De novo lipogenesis in the liver in health and disease:more than just a shunting yard for glucose.Biol Rev Camb Philos Soc,2016,91:452-468.
[11]Ress C,Kaser S.Mechanisms of intrahepatic triglyceride accumulation.World J Gastroenterol,2016,22:1664-1673.
[12]Berlanga A,Guiu-Jurado E,Porras JA,et al.Molecular pathways in non-alcoholic fatty liver disease.Clin Exp Gastroenterol,2014,7:221-239.
[13]Gorden DL,Myers DS,Ivanova PT,et al.Biomarkers of NAFLD progression:a lipidomics approach to an epidemic.J Lipid Res,2015,56:722-736.
[14]楊蕊旭,胡春秀,宓余強(qiáng),等.非酒精性脂肪性肝病患者血清脂質(zhì)組學(xué)研究.中華肝臟病雜志,2017,25:122-127.
[15]Garcia-RuizC,MoralesA,F(xiàn)ernandez-ChecaJC.Glycosphingolipids and cell death:one aim,many ways.Apoptosis,2015,20:607-620.
[16]Birkenfeld AL,Shulman GI.Nonalcoholic fatty liver disease,hepatic insulin resistance,and type 2 diabetes.Hepatology,2014,59:713-723.
[17]Loria P,Lonardo A,Anania F.Liver and diabetes.A vicious circle.Hepatol Res,2013,43:51-64.
[18]Pajvani UB,Accili D.The new biology of diabetes.Diabetologia,2015,58:2459-2468.
[19]Ogihara T,Mirmira RG.An islet in distress:beta cell failure in type 2 diabetes.J Diabetes Investig,2010,1:123-133.
[20]Gooding JR,Jensen MV,Newgard CB.Metabolomics applied to the pancreatic islet.Arch Biochem Biophys,2016,589:120-130.
[21]MacDonaldMJ,AdeL,NtambiJM,etal.Characterization of phospholipids in insulin secretory granules and mitochondria in pancreatic beta cells and their changes with glucose stimulation.J Biol Chem,2015,290:11075-11092.
[22]Rolo AP,Teodoro JS,Palmeira CM.Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis.Free Radic Biol Med,2012,52:59-69.
[23]Mello T,Zanieri F,Ceni E,et al.Oxidative stress in the healthy and wounded hepatocyte:A cellular organelles perspective.Oxid Med Cell Longev,2016,2016:8327410.
[24]Di Meo S,Reed TT,Venditti P,et al.Role of ROS and RNS sources in physiological and pathological conditions.Oxid Med Cell Longev,2016,2016:1245049.
[25]Begriche K,Massart J,Robin MA,et al.Mitochondrial adaptations and dysfunctions in nonalcoholic fatty liver disease.Hepatology,2013,58:1497-1507.
[26]Win S,Than TA,Le BH,et al. Sab (Sh3bp5)dependence of JNK mediated inhibition of mitochondrial respiration in palmitic acid induced hepatocyte lipotoxicity. J Hepatol,2015,62:1367-1374.
[27]Frohman MA.Role of mitochondrial lipids in guiding fission and fusion.J Mol Med(Berl),2015,93:263-269.
[28]Dara L,Ji C,Kaplowitz N.The contribution of endoplasmic reticulum stress to liver diseases.Hepatology,2011,53:1752-1763.
[29]Leamy AK,Egnatchik RA,Shiota M,et al.Enhanced synthesis of saturated phospholipids is associated with ER stress and lipotoxicity in palmitate treated hepatic cells.J Lipid Res,2014,55:1478-1488.
[30]Egnatchik RA,Leamy AK,Jacobson DA,et al.ER calcium release promotes mitochondrial dysfunction and hepatic cell lipotoxicity in response to palmitate overload.Mol Metab,2014,3:544-553.
[31]Alisi A,Carsetti R,Nobili V.Pathogen-or damage-associated molecular patterns during nonalcoholic fatty liver disease development.Hepatology,2011,54:1500-1502.
[32]Farrell GC,van Rooyen D,Gan L,et al.NASH is an inflammatory disorder:Pathogenic,prognostic and therapeutic implications.Gut Liver,2012,6:149-171.
[33]PeverillW,Powell LW,Skoien R.Evolvingconcepts in the pathogenesis of NASH:beyond steatosis and inflammation.Int J Mol Sci,2014,15:8591-8638.
[34]Marra F,Lotersztajn S.Pathophysiology of NASH:perspectives for a targeted treatment.Curr Pharm Des,2013,19:5250-5269.
[35]Duwaerts CC,Maher JJ.Mechanisms of liver injury in non-alcoholic steatohepatitis.Curr Hepatol Rep,2014,13:119-129.
[36]Povero D,F(xiàn)eldstein AE.Novel molecular mechanisms in the development of non-alcoholic steatohepatitis.Diabetes Metab J,2016,40:1-11.
[37]Hirsova P,Gores GJ.Death receptor-mediated cell death and proinflammatorysignalingin nonalcoholicsteatohepatitis.Cell Mol Gastroenterol Hepatol,2015,1:17-27.
[38]Giles DA,Moreno-Fernandez ME,Divanovic S.IL-17 axis driven inflammation in non-alcoholic fatty liver disease progression.Curr Drug Targets,2015,16:1315-1323.
[39]Sharifnia T,Antoun J,Verriere TG,et al.Hepatic TLR4 signaling in obese NAFLD.Am J Physiol Gastrointest Liver Physiol,2015,309:G270-278.
[40]Liu XL,Ming YN,Zhang JY,et al.Gene-metabolite network analysis in different nonalcoholic fatty liver disease phenotypes.Exp Mol Med,2017,49:e283.
[41]Sui YH,Luo WJ,Xu QY,et al.Dietary saturated fatty acid and polyunsaturated fatty acid oppositely affect hepatic NOD-like receptor protein 3 inflammasome through regulating nuclear factorkappa B activation.World J Gastroenterol,2016,22:2533-2544.
[42]Czaja MJ,Ding WX,Donohue TM,et al.Functions of autophagy in normal and diseased liver.Autophagy,2013,9:1131-1158.
[43]Schneider JL,Cuervo AM.Liver autophagy:much more than just taking out the trash.Nat Rev Gastroenterol Hepatol,2014,11:187-200.
[44]Rambold AS,Cohen S,Lippincott-Schwartz J.Fatty acid trafficking in starved cells:regulation by lipid droplet lipolysis,autophagy,and mitochondrial fusion dynamics.Dev Cell,2015,32:678-692.
[45]Wang K.Autophagy and apoptosis in liver injury.Cell Cycle,2015,14:1631-1642.