常露程,趙兵令,劉 穎,白 云,李經(jīng)緯,李莉鑫,王海東
(山西農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,太谷 030801)
SOX基因家族是擁有一個(gè)或多個(gè)高遷移率組轉(zhuǎn)錄因子SRY相關(guān)的HMG盒,參與神經(jīng)調(diào)節(jié)、骨組織的發(fā)育等多種早期胚胎發(fā)育過(guò)程[1]。SOX家族根據(jù)HMG的保守程度又分為8組:A~H組,而SRY sex determining region Y-box 5 (SOX5)是SOXD中的一個(gè)基因[2]。SOX5在軟骨細(xì)胞、神經(jīng)細(xì)胞、以及黑色素細(xì)胞中都有重要的調(diào)節(jié)作用[3-5],在黑色素瘤細(xì)胞中SOX5通過(guò)調(diào)節(jié)小眼畸形相關(guān)轉(zhuǎn)錄因子(Microphthalmia-associated transcription factor,MITF)來(lái)調(diào)控黑色素瘤細(xì)胞的增殖[6]。MITF與轉(zhuǎn)錄因子EB、TFE3和TFEG一起構(gòu)成了MIT家族[7],而MITF是MIT家族中唯一對(duì)正常黑色素細(xì)胞發(fā)育有重要作用的因子[8]。MITF基因是多啟動(dòng)子結(jié)構(gòu),至少有9種不同的啟動(dòng)子-外顯子單元指導(dǎo)MITF的啟動(dòng)[9],而只有M啟動(dòng)子(MITF-M)在黑素細(xì)胞中選擇性表達(dá)[10]。MITF-M是黑色素細(xì)胞特異性調(diào)節(jié)因子,在黑色素瘤和色素沉著過(guò)度疾病中具有關(guān)鍵作用[11-13]。MITF-M直接調(diào)控相關(guān)色素基因的轉(zhuǎn)錄,包括酪氨酸酶(Tyrosinase,TYR)[14]、酪氨酸酶相關(guān)蛋白(Tyrosinase-related protein 1,TYRP1)[15]、Tyrosinase-related protein 2 (TYRP2)、前黑素體蛋白(Premelanosome protein,PMEL-17)[16](也稱(chēng)PMEL)和Ocular albanism 1 (OA1)[17-18]等。TYR、TYRP1和TYRP2 3種主要色素沉著相關(guān)酶被認(rèn)為是MITF轉(zhuǎn)錄的靶基因且已被人所熟知[7,19]。PMEL依賴(lài)性MITF表達(dá),其蛋白質(zhì)和mRNA水平受MITF的轉(zhuǎn)錄調(diào)控[16,20]。并且PMEL是負(fù)責(zé)在黑素體內(nèi)色素細(xì)胞功能所必需,缺乏或突變PMEL表達(dá)的動(dòng)物均顯示不同程度的色素沉著不足[21]。T.Z.Chen等[22]提出OA1可能通過(guò)調(diào)節(jié)MITF的水平以及黑素體的數(shù)量、大小、能動(dòng)性和成熟,參與毛色的形成。OA1在調(diào)節(jié)MITF表達(dá)中的作用參與α-MSH-MITF信號(hào)傳導(dǎo)途徑[23],并且OA1功能的喪失將大大降低MITF的表達(dá),盡管其水平仍足以維持色素細(xì)胞的存活和分化狀態(tài)[24]。SOX5在不同毛色小鼠皮膚中定位以及表達(dá)是否存在一定的線性關(guān)系從而參與毛色的形成,以及在小鼠黑色素細(xì)胞中SOX5是如何調(diào)控黑色素的合成,目前未見(jiàn)相關(guān)報(bào)道。通過(guò)不同的生物學(xué)方法對(duì)SOX5進(jìn)行檢測(cè),從而確定SOX5與毛色形成的相關(guān)性以及為研究SOX5調(diào)控黑色素合成路徑奠定基礎(chǔ)。
MELM(2201) (SCIENCELL)、SOX5、TYR、TYRP1和TYRP2兔抗多克隆抗體(Abcam公司)、MITF兔抗多克隆抗體(武漢三鷹公司)、OA1兔抗多克隆抗體(Santa公司)、X-tremeGENE HP DNA Transfection Reagent(上海宇博生物公司)、C57BL/6品系小鼠、C57BL/6小鼠黑色素細(xì)胞5代、慢病毒載體pLV.Des3d.P/Puro(本實(shí)驗(yàn)室提供)。
小鼠品系為C57BL/6,由山西農(nóng)業(yè)大學(xué)國(guó)家級(jí)動(dòng)物醫(yī)學(xué)實(shí)驗(yàn)教學(xué)示范中心動(dòng)物室提供,隨機(jī)選取出生后12 d的黑色、棕色、灰色小鼠各3 只,背部刮毛每只小鼠各取3塊皮膚組織,其中2塊組織用于總蛋白質(zhì)及總RNA的提取。其余1 塊在Bouin’s液中固定,用于小鼠皮膚毛囊組織切片制作。
Trizol法提取不同毛色小鼠皮膚和每組細(xì)胞的總RNA,測(cè)定其濃度后反轉(zhuǎn)錄。在NCBI上檢索小鼠SOX5、MITF-M、TYR、TYRP1、TYRP2、PMEL、OA1序列,利用Premier 5.0軟件設(shè)計(jì)PCR擴(kuò)增引物,送北京華大基因公司合成。引物序列和產(chǎn)物長(zhǎng)度見(jiàn)表1,退火溫度為58 ℃。
按照SYBR?Premix Ex TapTMⅡ試劑盒說(shuō)明書(shū)進(jìn)行熒光定量PCR,通過(guò)2-ΔΔCT法計(jì)算目的mRNA相對(duì)表達(dá)量變化。
根據(jù)碧云天裂解液試劑盒說(shuō)明書(shū)提取不同毛色小鼠皮膚組織和各組黑色素細(xì)胞的總蛋白,每個(gè)樣品總蛋白上樣量為200 μg,待SDS-PAGE電泳結(jié)束后,轉(zhuǎn)移至NC膜;NC膜經(jīng)5 %脫脂奶粉室溫封閉1 h;加入SOX5(1∶500),MITF、TYR、TYRP1、TYRP2(1∶1 000),OA1(1∶400)以及β-Actin(1∶2 000)一抗4 ℃過(guò)夜孵育;次日NC膜用TBST搖洗3次(每次10 min);加入HRP標(biāo)記的二抗(1∶10 000)37 ℃恒溫水平搖床孵育NC膜1 h。NC膜用TBST搖洗6次(每次5 min),使用ECL試劑盒顯色后進(jìn)行膠片曝光,掃描獲取目的圖像,用Image-ProPlus 6.0軟件對(duì)目的基因和β-actin免疫印跡結(jié)果進(jìn)行分析。蛋白含量=條帶面積×平均灰度;目的蛋白半定量值=目的蛋白含量/β-actin蛋白含量。
表1目的基因引物序列及PCR擴(kuò)增產(chǎn)物
Table1SequenceofprimerandproductssizeofPCR
將石蠟組織切片經(jīng)梯度酒精復(fù)水,滴加3% H2O2室溫靜置(10 min),PBS搖洗3次(每次3 min);滴加5%山羊血清,室溫封閉10 min,棄掉切片上的血清,并滴加1∶50倍SOX5兔抗多克隆抗體,陰性對(duì)照滴加抗體稀釋液;4 ℃過(guò)夜;次日37 ℃復(fù)溫30 min,用PBS搖洗2 次(每次3 min);滴加1∶200倍FITC標(biāo)記羊抗兔IgG,放入37 ℃溫箱孵育30 min,用PBS搖洗4 次(每次5 min);梯度脫水,水溶性封片劑封片、熒光顯微鏡下觀察。
1.5.1 克隆載體構(gòu)建 首先,Enzyme Solution 5 μL;目的基因PCR膠回收產(chǎn)物4 μL;T-Vector pMD19 1 μL。16 ℃連接14~16 h;隨后轉(zhuǎn)化、涂板;次日進(jìn)行藍(lán)白斑篩選,37 ℃水平搖床200 r·min-1培養(yǎng)12~16 h,提取質(zhì)粒后,送華大基因公司測(cè)序,確定克隆載體是否構(gòu)建成功。
1.5.2 真核表達(dá)載體構(gòu)建 克隆載體雙酶切,回收的目的基因產(chǎn)物5 μL;表達(dá)載體產(chǎn)物4 μL;T4 DNA Ligase 1 μL?;靹?,PCR儀中16 ℃過(guò)夜連接;其余操作同1.5.1。
小鼠黑色素細(xì)胞復(fù)蘇、培養(yǎng),待細(xì)胞達(dá)融合到75%~80%時(shí)進(jìn)行基因轉(zhuǎn)染。首先,將200 μL(無(wú)血清雙抗)培養(yǎng)基稀釋7.5 μL轉(zhuǎn)染試劑,混勻后室溫靜置5 min。其次,將5.0 μg DNA組加入混合液中,混勻后室溫靜置15 min。最后,將混合物滴加到含有1 mL新鮮培養(yǎng)基的培養(yǎng)板(6 孔板)中,每孔補(bǔ)至2 mL,37 ℃培養(yǎng)48~56 h。
每組黑色素細(xì)胞用0.25%胰酶消化后收集,PBS沖洗2~3次,細(xì)胞計(jì)數(shù)后,用0.2 mol·L-1NaOH溶解黑色素細(xì)胞,85 ℃ 5 min充分溶解黑色素顆粒,475 nm波長(zhǎng)下進(jìn)行吸光值檢測(cè),每組至少重復(fù)3次。
所有數(shù)據(jù)均用SPSS19.0 軟件進(jìn)行單因素方差分析,結(jié)果均用“平均值±標(biāo)準(zhǔn)誤(Mean±SE)”表示,所有圖柱均用GraphPad PrismTM(GraphPad Software,Inc.California,USA)處理。
免疫熒光結(jié)果顯示,在不同毛色小鼠皮膚中均有SOX5蛋白的表達(dá),且其主要表達(dá)部位為毛囊外根鞘,黑色和灰色小鼠皮膚中熒光強(qiáng)度明顯高于棕色小鼠皮膚(圖1)。由此可以看出,SOX5可以在不同毛色小鼠皮膚定位和表達(dá)。
a、b、c.黑、灰、棕小鼠皮膚SOX5陽(yáng)性組; a-、b-、c-.黑、灰、棕小鼠皮膚SOX5陰性對(duì)照組;1.外根鞘;2.內(nèi)根鞘a, b, c.Black, gray, brown mice skin SOX5 positive groups; a-, b-, c-.Black, gray, brown mice skin SOX5 negative control groups; 1.Outer root sheath; 2. Inner root sheath圖1 不同毛色小鼠皮膚組織中 SOX5的免疫熒光圖Fig.1 Immunofluorescence results of SOX5 in mouse skin tissues with different coat colors
1%瓊脂糖凝膠電泳后顯示,SOX5條帶清晰且單一,條帶大小為157 bp (圖2A)。切膠后送華大基因公司測(cè)序,序列比對(duì)后正確,表明SOX5在不同毛色小鼠皮膚中可正常表達(dá)。qRT-PCR結(jié)果表明:SOX5在黑色和灰色小鼠皮膚中mRNA相對(duì)表達(dá)量是棕色的8.12倍(P<0.01)和2.87倍(P<0.01)
(圖2B)。蛋白免疫印跡結(jié)果表明:在不同毛色小鼠皮膚的總蛋白可以與SOX5抗體發(fā)生免疫學(xué)陽(yáng)性反應(yīng)(圖2C),通過(guò)對(duì)蛋白條帶分析可知,SOX5在黑色和灰色小鼠皮膚中蛋白水平是棕色的2.46倍(P<0.01)和1.91倍(P<0.01) (圖2D)。由此可以看出,SOX5在不同毛色小鼠皮膚中表達(dá)量存在差異性,說(shuō)明SOX5對(duì)毛色的形成有一定影響。
**.P<0.01。下同。A.不同毛色小鼠皮膚SOX5 PCR產(chǎn)物,M.DL2000 DNA marker; B.不同毛色小鼠皮膚SOX5的qRT-PCR分析結(jié)果;C.SOX5在不同毛色小鼠皮膚的蛋白印跡;D.SOX5在不同毛色小鼠皮膚中蛋白相對(duì)水平**.P<0.01. The same as below.A.SOX5 PCR products in different colors of mouse skin; M.DL2000 DNA marker;B. qRT-PCR analysis of SOX5 in different colors of mouse skin; C.Immunoblot results of SOX5 protein in different colors of mouse skin;D.Relative expression level of SOX5 protein in different colors of mouse skin圖2 不同毛色小鼠皮膚中SOX5表達(dá)量分析Fig.2 Analysis of the expression of SOX5 in different colors of mouse skin
在NCBI中獲取SOX5和MITF-M的CDS區(qū),成功構(gòu)建真核表達(dá)載體。為確保載體連接的準(zhǔn)確性,提取質(zhì)粒進(jìn)行了測(cè)序。在NCBI對(duì)測(cè)序結(jié)果進(jìn)行比對(duì),序列為小鼠SOX5和MITF-M的CDS區(qū),大小為2 292和1 260 bp(圖略),與SOX5和MITF-M序列完全一致。
小鼠黑色素細(xì)胞復(fù)蘇、培養(yǎng),待細(xì)胞達(dá)融合到75%~80%時(shí),進(jìn)行基因轉(zhuǎn)染,此時(shí)細(xì)胞密集且無(wú)其它細(xì)胞污染。空載組(Vector-GFP)、試驗(yàn)組(Vector-GFP-SOX5)與正常組(Control)相比形態(tài)未發(fā)生明顯改變 (圖3)。
Control.正常黑色素細(xì)胞;Vector-GFP.轉(zhuǎn)染空載體的黑色素細(xì)胞;Vector- GFP-SOX5.轉(zhuǎn)染SOX5的黑色素細(xì)胞。下同Control.Normal melanocytes;Vector-GFP.The melanocytes transfected with empty vector;Vector-GFP-SOX5.The melanocytes transfected with SOX5.The same as below 圖3 SOX5轉(zhuǎn)染后黑色素細(xì)胞的形態(tài)Fig.3 Morphology of melanocytes transfected by the SOX5
過(guò)表達(dá)SOX5后經(jīng)檢測(cè)空載組(Vector-GFP)與正常組(Control)中SOX5表達(dá)量無(wú)顯著差異,試驗(yàn)組(Vector-GFP-SOX5)中SOX5 mRNA升高18.80倍 (P<0.01) (圖4A); 蛋白升高1.69倍 (P<0.05)(圖4B,C)。
過(guò)表達(dá)SOX5后結(jié)果顯示:與空載組(Vector-GFP)對(duì)比,試驗(yàn)組(Vector-GFP-SOX5)的MITF-MmRNA升高1.50倍(P<0.05) (圖5A);蛋白升高1.95倍(P<0.01) (圖5B,C)。為了進(jìn)一步說(shuō)明SOX5與MITF-M的關(guān)系,過(guò)表達(dá)MITF-M后使SOX5的mRNA降低1.34倍(P<0.05)(圖5D);蛋白降低2.05倍(P<0.05)(圖5E,F)。表明,過(guò)表達(dá)SOX5促進(jìn)MITF-M的表達(dá),而過(guò)表達(dá)MITF-M抑制SOX5的表達(dá)。
過(guò)表達(dá)SOX5后結(jié)果顯示:與空載組(Vector-GFP)對(duì)比,試驗(yàn)組(Vector-GFP-SOX5)的TYRmRNA升高3.13倍(P<0.01),蛋白升高1.43倍(P<0.05);TYRP1 mRNA升高3.41倍(P<0.01),蛋白升高1.56倍(P<0.05);TYRP2 mRNA升高1.31倍(P<0.05),蛋白升高1.20倍(P<0.05) (圖6A,B,C)。通過(guò)檢測(cè)黑色素含量可知空載組(Vector-GFP)與正常組(Control)無(wú)顯著差異,試驗(yàn)組(Vector-GFP-SOX5)黑色素含量明顯增加,相對(duì)于空載組黑色素含量增加1.47倍(P<0.01)(圖6D)。表明,SOX5表達(dá)量的變化對(duì)黑色素的合成有影響。
*.P<0.05。1.Vector-GFP;2.Vector-GFP-SOX5。下同。A. SOX5 mRNA的表達(dá)差異;B.蛋白陽(yáng)性免疫印跡;C.蛋白相對(duì)水平分析*.P<0.05.1.Vector-GFP;2.Vector-GFP-SOX5.The same as below.A. SOX5 mRNA expression in melanocytes transfected with Vector-GFP-SOX5; B.The positively blotting signal in melanocytes transfected with Vector-GFP-SOX5; C. Relative level of SOX5 protein in melanocytes transfected with Vector-GFP-SOX5圖4 SOX 5轉(zhuǎn)染后黑色素細(xì)胞中SOX 5 mRNA和蛋白水平Fig.4 SOX5 mRNA and protein levels in melanocytes transfected by the SOX5
1.Vector-GFP; 2.Vector-GFP-SOX5; 3.Vector-GFP-MITF-M。A、D.MITF-M和SOX5 mRNA的表達(dá)差異;B、E.MITF-M和SOX5蛋白陽(yáng)性免疫印跡;C、F.MITF-M和SOX5蛋白相對(duì)水平分析1.Vector-GFP;2.Vector-GFP-SOX5;3.Vector-GFP-MITF-M.A,D.MITF-M and SOX5 mRNA expression in melanocytes transfected with Vector-GFP-SOX5 and Vector-GFP-MITF-M; B,E.The positively blotting signal in melanocytes transfected with Vector-GFP-SOX5 and GFP-MITF-M; C,F.Relative level of MITF-M and SOX5 proteins in melanocytes transfected with Vector-GFP-SOX5 and Vector-GFP-MITF-M圖5 檢測(cè)轉(zhuǎn)染后黑色素細(xì)胞中SOX5和MITF-M的表達(dá)Fig.5 Analysis of SOX5 and MITF-M expression in melanocytes after transfection
A.TYR、TYRP1、TYRP2 mRNA的表達(dá)差異; B.蛋白陽(yáng)性免疫印跡; C.TYR、TYRP1和TYRP2蛋白相對(duì)水平分析; D.黑色素含量分析A.TYR,TYRP1 and TYRP2 mRNA expression in melanocytes transfected with Vector-GFP-SOX5; B.The positively blotting signal in melanocytes transfected with Vector-GFP-SOX5; C.Relative levels of TYR,TYRP1 and TYRP2 protein in melanocytes transfected with Vector-GFP-SOX5; D.Melanin content analysis in Control, Vector-GFP and Vector-GFP-SOX5圖6 SOX5對(duì)黑色素生成的影響Fig.6 Effect of SOX5 on melanin formation
過(guò)表達(dá)SOX5后結(jié)果顯示:與空載組(Vector-GFP)對(duì)比,試驗(yàn)組(Vector-GFP-SOX5)的PMELmRNA升高4.8倍(P<0.01) (圖7A)(PMEL不屬于主線基因加上經(jīng)費(fèi)原因,沒(méi)有進(jìn)行相關(guān)蛋白分析);OA1 mRNA升高2.1倍(P<0.05),OA1蛋白升高1.29倍(P<0.05) (圖7B,C,D)。由此可以看出,過(guò)表達(dá)SOX5可以使PMEL和OA1的表達(dá)升高。
A、B. PMEL和OA1 mRNA的表達(dá)差異; C.OA1蛋白陽(yáng)性免疫印跡; D. OA1蛋白相對(duì)水平分析A,B.PMEL and OA1 mRNA expression in melanocytes transfected with Vector-GFP-SOX5;C.The positively blotting signal of OA1 in melanocytes transfected with Vector-GFP-SOX5;D.Relative level of OA1 protein in melanocytes transfected with Vector-GFP-SOX5圖7 SOX5對(duì)PMEL和OA1的影響Fig.7 Effect of SOX5 on PMEL and OA1
哺乳動(dòng)物背毛顏色的多樣性取決于黑色素中的真黑素(棕色/黑色)和褐黑素(黃色/紅色)的相對(duì)含量[25]。P.C.Wang等[26]在黑色素細(xì)胞中發(fā)現(xiàn)microRNA-21a-5p在調(diào)節(jié)黑色素生成的功能中是通過(guò)靶向SOX5實(shí)現(xiàn)的。以及在人的黑色素瘤細(xì)胞中,SOX5通過(guò)MITF調(diào)節(jié)人黑素瘤細(xì)胞的平衡。本試驗(yàn)探究SOX5在不同毛色小鼠皮膚表達(dá)量是否存在差異性,結(jié)果表明,SOX5在不同毛色小鼠皮膚表達(dá)量不同,SOX5在黑色小鼠皮膚的表達(dá)量>灰色>棕色。本試驗(yàn)結(jié)果為進(jìn)一步研究其對(duì)黑色素的生成以及如何參與毛色形成奠定了基礎(chǔ)。
本試驗(yàn)通過(guò)過(guò)表達(dá)SOX5后明顯升高M(jìn)ITF-M的表達(dá)。與此不同的是T.Kordab等[6]發(fā)現(xiàn)的升高SOX5抑制了MITF的表達(dá)。兩者存在差異性可能由于SOX5過(guò)高或過(guò)低激活相應(yīng)的調(diào)控路徑對(duì)MITF-M表達(dá)產(chǎn)生不同的結(jié)果。為了進(jìn)一步了解SOX5與MITF-M關(guān)系,結(jié)果顯示過(guò)表達(dá)MITF-M對(duì)SOX5表達(dá)存在負(fù)反饋?zhàn)饔?。由此可以看出,SOX5可以調(diào)控MITF-M表達(dá)進(jìn)而影響色素生成。黑素體是黑色素合成的場(chǎng)所[27],黑素體蛋白PMEL發(fā)生在黑素體I期和Ⅱ期作為原纖維的結(jié)構(gòu)基礎(chǔ),在斑馬魚(yú)視網(wǎng)膜色素上皮細(xì)胞PMEL和OA1兩者均可調(diào)節(jié)黑素體數(shù)量、形狀以及能動(dòng)性[28],并且過(guò)表達(dá)OA1可以明顯升高PMEL[22]。本試驗(yàn)過(guò)表達(dá)SOX5后,PMEL和 OA1表達(dá)量升高,由此可知,PMEL與 OA1受SOX5通過(guò)MITF-M來(lái)調(diào)節(jié)。本試驗(yàn)通過(guò)過(guò)表達(dá)SOX5,使TYR、TYRP1以及TYRP2表達(dá)量升高,最終引起黑色素含量升高;與楊玉靜等[29]研究相吻合。由此可以得出,SOX5可以影響色素生成,進(jìn)而參與毛色的形成。
SOX5在不同毛色小鼠皮膚中的表達(dá)存在差異性,可以通過(guò)MITF-M調(diào)控色素相關(guān)基因來(lái)影響色素生成,并且MITF-M對(duì)SOX5有負(fù)調(diào)控作用,這為SOX5參與毛色形成潛在機(jī)制提供依據(jù)。
[1] 儲(chǔ)沨婷. SOX蛋白在軟骨內(nèi)成骨中的作用[J]. 國(guó)外醫(yī)學(xué): 口腔醫(yī)學(xué)分冊(cè), 2006, 33(2): 136-138.
CHU F T. SOX protein in cartilage osteogenesis in the role of[J].ForeignMedicine:JournalofStomatology, 2006, 33(2): 136-138. (in Chinese)
[2] LEFEBVRE V. The SOXD transcription factors-SOX5, SOX6, and SOX13-are key cell fate modulators[J].IntJBiochemCellBiol, 2010, 42(3): 429-432.
[3] SMITS P, DY P, MITRA S, et al.SOX5 andSOX6 are needed to develop and maintain source, columnar, and hypertrophic chondrocytes in the cartilage growth plate[J].JCellBiol, 2004, 164(5): 747-758.
[4] MARTINEZ-MORALES P L, QUIROGA A C, BARBAS J A, et al. SOX5 controls cell cycle progression in neural progenitors by interfering with the WNT-β-catenin pathway[J].EMBORep, 2010, 11(6): 466-472.
[5] STOLT C C, LOMMES P, HILLGRTNER S, et al. The transcription factor SOX5 modulates SOX10 function during melanocyte development[J].NucleicAcidsRes, 2008, 36(17): 5427-5440.
[6] KORDAΒ T, WEBER C E M, OSWALD M, et al. SOX5 is involved in balancedMITFregulation in human melanoma cells[J].BMCMedGenomics, 2016, 9: 10.
[7] HEMESATH T J, STEINGRMSSON E, MCGILL G, et al. microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family[J].GenesDev, 1994, 8(22): 2770-2780.
[8] LEVY C, KHALED M, FISHER D E. MITF: master regulator of melanocyte development and melanoma oncogene[J].TrendsMolMed, 2006, 12(9): 406-414.
[9] HERSHEY C L, FISHER D E. Genomic analysis of theMicrophthalmialocus and identification of the MITF-J/Mitf-J isoform[J].Gene, 2005, 347(1): 73-82.
[10] FUSE N, YASUMOTO K, SUZUKI H, et al. Identification of a melanocyte-type promoter of the microphthalmia-associated transcription factor gene[J].BiochemBiophysResCommun, 1996, 219(3): 702-707.
[11] ROH E, YUN C Y, YUN J Y, et al. cAMP-binding site of PKA as a molecular target of bisabolangelone against melanocyte-specific hyperpigmented disorder[J].JInvestDermatol, 2013, 133(4): 1072-1079.
[12] HARTMAN M L, CZYZ M. Pro-survival role of MITF in melanoma[J].JInvestDermatol, 2015, 135(2): 352-358.
[13] WELLBROCK C, AROZARENA I. Microphthalmia-associated transcription factor in melanoma development and MAP-kinase pathway targeted therapy[J].PigmentCellMelanomaRes, 2015, 28(4): 390-406.
[14] YASUMOTO K, YOKOYAMA K, TAKAHASHI K, et al. Functional analysis of microphthalmia-associated transcription factor in pigment cell-specific transcription of the human tyrosinase family genes[J].JBiolChem, 1997, 272(1): 503-509.
[15] FANG D, TSUJI Y, SETALURI V. Selective down-regulation of tyrosinase family geneTYRP1 by inhibition of the activity of melanocyte transcription factor, MITF[J].NucleicAcidsRes, 2002, 30(14): 3096-3106.
[16] DU J Y, MILLER A J, WIDLUND H R, et al. MLANA/MART1 and SILV/PMEL17/GP100 are transcriptionally regulated by MITF in melanocytes and melanoma[J].AmJPathol, 2003, 163(1): 333-343.
[17] MCKAY B S, SCHWARTZ S G. Pigmentation and macular degeneration: is there a role for GPR143?[J].JOculPharmacolTher, 2016, 32(1): 3-4.
[18] GIORDANO F, SIMOES S, RAPOSO G. The ocular albinism type 1 (OA1) GPCR is ubiquitinated and its traffic requires endosomal sorting complex responsible for transport (ESCRT) function[J].ProcNatlAcadSciUSA, 2011, 108(29): 11906-11911.
[19] BENTLEY N J, EISEN T, GODING C R. Melanocyte-specific expression of the human tyrosinase promoter: activation by the microphthalmia gene product and role of the initiator[J].MolCellBiol, 1994, 14(12): 7996-8006.
[20] BAXTER L L, PAVAN W J.Pmel17 expression isMitf-dependent and reveals cranial melanoblast migration during murine development[J].GeneExprPatterns, 2003, 3(6): 703-707.
[21] WATT B, VAN NIEL G, RAPOSO G, et al. PMEL: a pigment cell-specific model for functional amyloid formation[J].PigmentCellMelanomaRes, 2013, 26(3): 300-315.
[22] CHEN T Z, WANG H D, LIU Y, et al.OcularAlbinismType1 regulates melanogenesis in mouse melanocytes[J].IntJMolSci, 2016, 17(10): 1596.
[23] FALLETTA P, BAGNATO P, BONO M, et al. Melanosome-autonomous regulation of size and number: the OA1 receptor sustains PMEL expression[J].PigmentCellMelanomaRes, 2014, 27(4): 565-579.
[25] THODY A J, HIGGINS E M, WAKAMATSU K, et al. Pheomelanin as well as eumelanin is present in human epidermis[J].JInvestDermatol, 1991, 97(2): 340-344.
[26] WANG P C, ZHAO Y Y, FAN R W, et al. microRNA-21a-5p functions on the regulation of melanogenesis by targeting Sox5 in mouse skin melanocytes[J].IntJMolSci, 2016, 17(7): 959.
[27] GERSTENBLITH M R, SHI J X, LANDI M T. Genome-wide association studies of pigmentation and skin cancer: a review and meta-analysis[J].PigmentCellMelanomaRes, 2010, 23(5): 587-606.
[28] BURGOYNE T, O′CONNOR M N, SEABRA M C, et al. Regulation of melanosome number, shape and movement in the zebrafish retinal pigment epithelium by OA1 and PMEL[J].JCellSci, 2015, 128(7): 1400-1407.
[29] 楊玉靜, 張丹瑾, 聶瑞強(qiáng), 等. 綿羊MITF-M在黑素細(xì)胞中過(guò)表達(dá)后的功能分析[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2016, 49(21): 4214-4221.
YANG Y J, ZHANG D J, NIE R Q, et al. The function analysis of over-expression of oar MITF-M in melanocytes[J].ScientiaAgriculturaSinica, 2016, 49(21): 4214-4221. (in Chinese)