亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        A double inequality for the modulus of the Gr?tzsch ring in Rn

        2018-01-25 03:21:40,
        關(guān)鍵詞:預(yù)學(xué)中學(xué)教師本課

        ,

        (School of Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China)

        0 Notation and Main Results

        wheremis then-dimensional Lebesgue measure. By [1, Theorem 8.28, (8.31), (8.34) and (8.35)], the conformal capacity capRG,n(s) of the Gr?tzsch ringRG,n(s) can be expressed by

        γn(s)≡capRG,n(s)≡M(Δ(Bn,[se1,∞])),

        while the (conformal) modulus ofRG,n(1/r) is defined by

        whereωn-1is the surface area of the unit sphereSn-1=?Bn. Clearly,μ(r)≡M2(r) is exactly the so-called Gr?tzsch ring function, which has the following expression

        (1)

        where

        The Gr?tzsch ring constantλnis defined by

        which is indispensable in the study ofMn(r) andγn(s). It is well known thatλ2=4. Unfortunately, so far we have only known some estimates forλnwhenn≥3, among which is the following double inequality

        2e0.76(n-1)<λn≤2en+(1/n)-(3/2),n≥3

        (2)

        (see [1, Theorem 12.21(1)] and [3]).

        Now we introduce the gamma and beta functions, and some constants depending only onn, which are needed in the study of the properties ofMn(r) andγn(s). As usual, for complex numbersxandywith Rex>0 and Rey>0, the gamma and beta functions are defined by

        respectively. (Cf. [4] and [5].) It is well known that, forn≥3, the volume Ωnof Bnand the (n-1)-dimensional surface areaωn-1ofSn-1can be expressed by

        respectively. (Cf. [1, 2.23] and [6].) Let

        In particular,

        Some properties of Ωn,ωn-1,Jn,cnandAnwere given in [1, pp.38-44&163] and in [6].

        In the sequel, we let arth denote the inverse function of the hyperbolic tangent tanh, that is,

        During the past decades, many properties have been obtained forμ(r) (cf. [1]-[2] and [7]). The known properties ofMn(r), however, are much less than those ofμ(r), because of lack of effective tools for the study ofMn(r) whenn≥3. For example, we have no explicit expression as or similar to (1) forMn(r) whenn≥3. For the known properties ofMn(r) and its related functions, the reader is referred to [1], [3] and [7-13]. Some of these known results forMn(r) are related to the constantsλn,Ωn,ωn-1,Jn,cnandAn. For example, the following inequalities hold

        (3)

        (4)

        (5)

        forr∈(0,1) andn≥3 (see [1, Theorems 11.20(1), 11.21(2)&(4), and 11.21(5) ]).

        h2(r)+h2(r′)=μ(r)μ(r′)≡π2/4

        by [1, (5.2)]. It is well known that for eachn≥2, allr∈(0,1) and for allK>0,

        φK,n(r)2+φ1/K,n(r′)2=1?Mn(r)Mn(r′)=const,

        (6)

        Later, [1, 11.36(2)] says that for eachn≥2 and allr∈(0,1),

        (7)

        However, the proof of the second inequality in (7) given in [1, p.244] contains an error. This proof in [1, p.244] is as follows: [1, Corollary 11.23(1) and (4) ] yield

        and the upper bound in (7) follows, since [1, Theorem 1.25 ] implies that the function

        合作學(xué)習(xí)應(yīng)該建立在學(xué)生自主學(xué)習(xí)基礎(chǔ)上,為進(jìn)一步提升學(xué)生合作學(xué)習(xí)效率,作為中學(xué)教師要合理引導(dǎo)學(xué)生自主預(yù)學(xué),使學(xué)生對本課學(xué)習(xí)內(nèi)容形成初步認(rèn)識。

        is increasing from (0,1) onto (1,2 logλn). It is easy to see that by this “proof ”, one can only obtain the following inequality

        so that the upper bound forhn(r)+hn(r′), which we can obtain by this method, is as follows

        consisting with that in (6). So far, the known best upper bound forhn(r)+hn(r′) is given by (6).

        In addition to indicating the error in the proof of (7) given in [1, p.244] as above-mentioned, the main purpose of this paper is to improve the upper bound given in (6) by proving the following result.

        Theorem1Lethn(r)=r′2Mn(r)Mn(r′)n-1. Then for eachn≥2 and allr∈(0,1),

        (8)

        where

        1 Proof of Theorem 1

        The proof of Theorem 1 stated in Section 0 requires the following lemma.

        1.1 A Technical Lemma

        Lemma1a) Forr∈(0,1), letg(r)=r2/arthrandf(r)=g′(r)/r. Thenfis strictly decreasing from (0,1) onto (-∞,∞).

        (9)

        Proof:a) Differentiation gives

        so that

        (10)

        Clearly,f(0+)=∞ andf(1-)=-∞. By differentiation,

        (11)

        b) It is easy to verify that

        Then the remaining conclusions are clear.

        1.2 Proof of Theorem 1

        The first inequality in (8) was proved in [8, Theorem 5.1(3)].

        LetH(r)=hn(r)+hn(r′), andFbe as in Lemma 1 b). By (5), we see that

        (12)

        On the other hand, the following inequality holds

        Mn(r)

        (13)

        for eachn≥2 and all 0

        is strictly decreasing from (0,1) onto (0,1) by [1, Theorem 11.21(4)]. It follows from (12) and (13) that

        This, together with Lemma 1 b), yields

        (14)

        By (2), the following double inequality holds

        (15)

        where

        This yields the second inequality in (8) as desired.

        [1] Anderson G D, Vamanamurthy M K, Vuorinen M. Conformal Invariants, Inequalities, and Quasiconformal Maps[M]. New York: John Wiley and Sons,1997.

        [2] Ahlfors L V. Lectures on Quasiconformal Mappings[M]. 2nd ed. American Mathematical Society,2005.

        [3] Anderson G D, Frame J S. Numerical estimates for a Gr?tzsch ring constant[J]. Constr Approx,1988,4:223-242.

        [4] Abramowitz M, Stegun I A(Eds.). Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables[M]. New York: Dover,1965.

        [5] Qiu S L, Vuorinen M. Handbook of Complex Analysis: Special Function in Geometric Function Theory: Volume 2[M]. Elsevier B V,2005:621-659.

        [6] Qiu S L, Vuorinen M. Some properties of the gamma and psi functions with applications[J]. Math Comput,2005,74(250):723-742.

        [7] Qiu S L. Gr?tzsch ring and Ramanujan’s modular equations[J]. Acta Mathematica Sinica,2000,43(2):283-290.

        [8] Anderson G D, Qiu S L, Vamanamurthy M K. Gr?tzsch ring and quasiconformal distortion functions[J]. Hokkaido Math J,1995,24(3):551-566.

        [9] Anderson G D, Vamanamurthy M K, Vuorinen M. Conformal invariants, quasiconformal maps, and special functions[M]//Quasiconformal Space Mappings. Berlin-Heidelberg: Springer-Verlag,1992:1-19.

        [10] Anderson G D, Vamanamurthy M K, Vuorinen M. Inequalities for quasiconformal mappings in space[J]. Pacific J Math,1993,160:1-18.

        [11] Ikoma K. An estimate for the modulus of the Gr?tzsch ring inn-space[J]. Bull Yamagata Univ Natur Sci,1967,6:395-400.

        [12] Qiu S L, Vamanamurthy M K. Elliptic integrals and the modulus of Gr?tzsch ring[J]. PanAmer Math J,1995,5(2):41-60.

        [13] Vuorinen M. On the boundary behavior of locallyK-quasiconformal mappings in space[J]. Ann Acad Sci Fenn Ser A I,1980,5:79-95.

        猜你喜歡
        預(yù)學(xué)中學(xué)教師本課
        淺談注重預(yù)學(xué)設(shè)計提升小學(xué)語文核心素養(yǎng)
        名師在線繪本課
        教師作品
        江蘇教育(2022年69期)2022-10-24 09:45:24
        明確預(yù)學(xué)起點(diǎn) 構(gòu)建教學(xué)基點(diǎn)
        從“封閉”走向“開放”——北京市遠(yuǎn)郊區(qū)中學(xué)教師教育創(chuàng)新的瓶頸與突破
        青年心理(2021年28期)2021-05-23 13:20:44
        人教版八年級物理下冊《液體的壓強(qiáng)》教學(xué)設(shè)計
        成長(2020年3期)2020-05-27 03:45:44
        小學(xué)數(shù)學(xué)有效預(yù)學(xué)策略探索
        中學(xué)教師工作投入問卷的編制
        西藏中學(xué)教師職業(yè)認(rèn)同現(xiàn)狀及其提升建議
        西藏科技(2015年12期)2015-09-26 12:13:43
        單(雙)腳蹬地翻身上成支撐教學(xué)設(shè)計(片斷)
        中文字幕日韩一区二区不卡 | 大地资源网在线观看免费官网 | 国产亚洲日本精品二区| 蜜桃一区二区三区视频| 一本丁香综合久久久久不卡网站| 久久综合狠狠综合久久| 中文字幕一区二区三区四区在线| 亚洲精品区二区三区蜜桃| 日本精品一级二区三级| 97一期涩涩97片久久久久久久| 丰满少妇a级毛片野外| 少妇的丰满3中文字幕| 在线观看中文字幕一区二区三区| 亚洲国产一区二区网站| 国产精品免费观看调教网| 国产乱xxⅹxx国语对白| 毛片无码高潮喷白浆视频| 又爽又猛又大又湿的视频| 美女视频一区二区三区在线| 亚洲人交乣女bbw| 亚洲国产高清在线一区二区三区| 无码高清视频在线播放十区| 国产女主播一区二区三区在线观看 | 成人在线免费电影| 国产精品麻豆欧美日韩ww| 无码伊人久久大杳蕉中文无码| 亚洲狠狠久久五月婷婷| 一本色道久久hezyo无码| 94久久国产乱子伦精品免费| 女同性恋精品一区二区三区| 人妻熟女中文字幕av| www国产亚洲精品| 精品无码人妻一区二区三区不卡| 国产精品无码久久久久免费AV| 久久本道久久综合一人| 国产亚洲一区二区在线观看| 亚洲第一页综合图片自拍| 午夜a福利| 亚洲精品中文字幕乱码三区99| 日韩精品亚洲一区二区| 性欧美牲交xxxxx视频欧美|