吳曉榮,張蓓蓓*,余云飛,黃 蓉,顏明娟,倪 康,崔靜雅,王慎強(qiáng),程 誼*
硝化抑制劑對(duì)典型茶園土壤尿素硝化過(guò)程的影響
吳曉榮1,張蓓蓓1*,余云飛2,黃 蓉3,顏明娟4,倪 康5,崔靜雅6,王慎強(qiáng)3,程 誼3*
(1.陜西省災(zāi)害監(jiān)測(cè)與機(jī)理模擬重點(diǎn)實(shí)驗(yàn)室(寶雞文理學(xué)院地理與環(huán)境學(xué)院),陜西 寶雞 721013;2.江蘇省農(nóng)業(yè)委員會(huì),南京 210036;3.土壤與農(nóng)業(yè)可持續(xù)發(fā)展國(guó)家重點(diǎn)實(shí)驗(yàn)室(中國(guó)科學(xué)院南京土壤研究所),南京210008;4.福建省農(nóng)業(yè)科學(xué)院土壤肥料研究所,福州 350013;5.中國(guó)農(nóng)業(yè)科學(xué)院茶葉研究所,杭州 310083;6.南京師范大學(xué)環(huán)境學(xué)院,南京 210023)
通過(guò)室內(nèi)好氧培養(yǎng)試驗(yàn),研究了雙氰胺(DCD)和2-氯-6-三氯甲基吡啶(Nitrapyrin)2種常用硝化抑制劑對(duì)我國(guó)4種典型茶園土壤硝化過(guò)程的影響。試驗(yàn)設(shè)置5個(gè)處理:(1)尿素(CK);(2)尿素+2%DCD(DCD 占施氮量的2%,下同);(3)尿素+10%DCD;(4)尿素+0.27%Nitrapyrin;(5)尿素+0.54%Nitrapyrin。結(jié)果表明:對(duì)于4種供試茶園土壤,DCD在培養(yǎng)過(guò)程中對(duì)硝化過(guò)程的抑制效果隨培養(yǎng)時(shí)間的延長(zhǎng)呈下降趨勢(shì),且高濃度DCD僅在培養(yǎng)第28 d時(shí)才表現(xiàn)出比低濃度DCD更強(qiáng)的抑制效果。培養(yǎng)第28 d后,在安溪和宜興茶園土壤中DCD的抑制率仍可達(dá)12.15%~59.68%,而對(duì)于杭州和郎溪茶園土壤,無(wú)論DCD濃度高低,培養(yǎng)第28 d后抑制效果消失;對(duì)于所研究的4種茶園土壤,DCD處理在培養(yǎng)期間的抑制效果表現(xiàn)為宜興土壤>安溪土壤>杭州土壤>郎溪土壤。與DCD相比,無(wú)論Nitrapyrin濃度高低,其在培養(yǎng)期間對(duì)4種茶園土壤的硝化抑制率接近甚至超過(guò)100%,表明Nitrapyrin能完全抑制茶園土壤硝化作用,且抑制有效期達(dá)28 d。因此,Nitrapyrin是一種針對(duì)茶園土壤比較高效的硝化抑制劑。
硝化抑制劑;茶園土壤;凈硝化速率;硝化抑制率
我國(guó)是傳統(tǒng)的茶葉種植大國(guó),2013年我國(guó)茶葉總種植面積約176萬(wàn)hm2[1],約占世界茶園種植面積的59%。與其他的農(nóng)作物相比,茶樹(shù)獨(dú)具特點(diǎn)。茶樹(shù)是典型的喜酸好鋁作物[2],生長(zhǎng)于pH值為3.0~6.8的土壤中,但最適宜pH值為4.5~5.5[3]。隨著植茶年限的增加,茶園自身物質(zhì)循環(huán)和茶樹(shù)根系代謝致使土壤pH值下降,鈣、鎂等鹽基離子和微量元素缺乏,鋁、氟和多酚類(lèi)物質(zhì)逐漸富集[4-6]。茶樹(shù)喜銨厭硝,易于吸收銨態(tài)氮肥。茶樹(shù)這些特性無(wú)疑決定其與其他生態(tài)系統(tǒng)存在不同的微生物群落結(jié)構(gòu)及氮循環(huán)特征。
早在20世紀(jì)初,人們普遍認(rèn)為pH<5的土壤基本上不發(fā)生硝化作用[7]。由于茶園土壤多呈酸性,加上酸雨、人為施肥、管理不當(dāng)及茶樹(shù)生長(zhǎng)過(guò)程中的自身代謝等種種原因,茶園土壤酸化日趨嚴(yán)重。在20世紀(jì)90年代,江蘇、浙江、安徽3省的茶園土壤pH<4.0的幾率由1990年的13.7%上升到1998年的43.9%[8]。2008—2010年間江蘇省21個(gè)典型茶場(chǎng)的調(diào)查結(jié)果顯示,所調(diào)查的茶園土壤pH值均低于茶樹(shù)生長(zhǎng)最適值5.5,其中pH<4.0的茶園占到了42.8%[9]。因此,人們一直認(rèn)為酸性茶園土壤硝化速率可以忽略不計(jì)。但事實(shí)上茶園土壤盡管pH值較低,但仍存在明顯的硝化作用[10-12]。韓文炎等[3]在2011年測(cè)定了我國(guó)130個(gè)茶園土壤的凈硝化速率,發(fā)現(xiàn)土壤樣本凈硝化速率在0~3.00 mg·kg-1·d-1之間的占 71.6%,凈硝化速率超過(guò)3.00 mg·kg-1·d-1的土壤樣本占 18.5%,超過(guò) 5.00 mg·kg-1·d-1的占5.4%,多數(shù)NO-3濃度特別高的土壤pH<4。有研究表明硝化作用甚至可以發(fā)生在pH為2.9的極酸性茶園土壤中[13]。
目前我國(guó)茶園氮肥使用量為0~2600 kg·hm-2,主要產(chǎn)茶區(qū)平均為553 kg·hm-2,且有不斷提高的趨勢(shì)。隨著施氮量的增加,茶園土壤NO-3濃度顯著提高[3]。茶樹(shù)是喜銨厭硝作物,硝化作用產(chǎn)生的硝態(tài)氮在土壤中的大量累積不利于茶樹(shù)對(duì)氮的吸收,而茶樹(shù)生長(zhǎng)于熱帶亞熱帶地區(qū),其高降雨量必然導(dǎo)致大量硝態(tài)氮通過(guò)徑流、淋洗和反硝化損失,產(chǎn)生環(huán)境負(fù)效應(yīng)。此外,硝化致酸,進(jìn)一步加劇土壤酸化[14]??梢?jiàn),控制茶園土壤硝化作用不僅有利于茶樹(shù)對(duì)氮肥的吸收,還能降低氮肥的損失。目前控制土壤硝化過(guò)程較為普遍的措施是施用硝化抑制劑,常用的硝化抑制劑為雙氰胺(DCD)、2-氯-6-三氯甲基吡啶(Nitrapyrin)和 3,4-二甲基吡唑磷酸鹽(DMPP),主要應(yīng)用于水稻、小麥、玉米、蔬菜、草地等生態(tài)系統(tǒng)[15-18],而其在茶園這種獨(dú)特生態(tài)系統(tǒng)中的抑制效果鮮有報(bào)道。目前,尚不明確適宜茶園酸性土壤的硝化抑制劑種類(lèi)、用量及效果,因此有必要研究不同種類(lèi)硝化抑制劑對(duì)茶園土壤硝化過(guò)程的影響,其研究結(jié)果將為控制茶園土壤酸化和提高氮肥利用率提供依據(jù)。
本實(shí)驗(yàn)以我國(guó)4種典型茶園土壤為研究對(duì)象,通過(guò)室內(nèi)好氣培養(yǎng)試驗(yàn),探索尿素配施2種不同濃度的DCD和Nitrapyrin對(duì)硝化過(guò)程的抑制效果,從而篩選出針對(duì)茶園土壤有效的硝化抑制劑種類(lèi)及用量。
供試土壤采自福建安溪(植茶年限為22年,AX)、浙江杭州(植茶年限為100年,HZ)、安徽郎溪(植茶年限為60年,LX)和江蘇宜興(植茶年限為30年,YX)。其分別發(fā)育于花崗巖、石灰?guī)r、第四紀(jì)紅土和第四紀(jì)紅土。同一區(qū)域的茶園每年的施肥時(shí)間和施肥量基本相同,福建茶園在每年11月施用114 kg N·hm-2復(fù)合肥;浙江茶園在每年2月和5月施用225 kg N·hm-2尿素或硫酸銨,在9—10月施用103.5 kg N·hm-2有機(jī)肥或120 kg N·hm-2復(fù)合肥;安徽茶園在每年2月中旬、5月下旬和7月上旬分別施用225、150、150 kg N·hm-2尿素,在10月底左右施用138 kg N·hm-2有機(jī)肥和112.5 kg N·hm-2復(fù)合肥;江蘇茶園在每年3月初施用149 kg N·hm-2菜籽餅,在9—11月施用120 kg N·hm-2有機(jī)-無(wú)機(jī)復(fù)合肥。
取土深度為0~20 cm,樣品多點(diǎn)采集混合,樣品中的石頭、植物根系和易見(jiàn)的動(dòng)物剔除后,在盡可能短的時(shí)間內(nèi)運(yùn)回實(shí)驗(yàn)室。過(guò)2 mm篩并將樣品分為兩部分,多數(shù)存放在4℃?zhèn)溆?,少量風(fēng)干供土壤基本理化性質(zhì)測(cè)定。供試土壤的理化性質(zhì)見(jiàn)表1。
試驗(yàn)選取2種常用的硝化抑制劑,分別為雙氰胺(Dicyandiamide,濃度98.00%,白色結(jié)晶性粉末,分析純,上海國(guó)藥集團(tuán)生產(chǎn))和2-氯-6-三氯甲基吡啶(Nitrapyrin,濃度24.00%,淺黃色乳油,浙江奧復(fù)托化工有限公司生產(chǎn))。設(shè)置5個(gè)處理,每個(gè)處理3個(gè)重復(fù):(1)尿素(CK);(2)尿素+2%DCD(2%DCD)(DCD占純氮量的2%,下同);(3)尿素+10%DCD(10%DCD);(4)尿素+0.27%Nitrapyrin(0.27%Nitrapyrin);(5)尿素+0.54%Nitrapyrin(0.54%Nitrapyrin)。施用 100 mg N·kg-1的尿素,硝化抑制劑施用量為其占施入純氮量的百分比,各硝化抑制劑用量均為推薦用量。對(duì)于4種典型茶園土壤,稱取相當(dāng)于20 g干土重的新鮮土樣,25℃預(yù)培養(yǎng)1 d,以調(diào)動(dòng)土壤中微生物活性。預(yù)培養(yǎng)結(jié)束后,向三角瓶中分別加入尿素和硝化抑制劑溶液,使其盡可能均勻分布于土壤表面,同時(shí)加入蒸餾水,調(diào)節(jié)土壤含水量至60%田間持水量。用硅膠塞密封,25℃下恒溫培養(yǎng)28 d,每日去塞通氣20 min左右,每隔2 d補(bǔ)水1次,以補(bǔ)充因蒸發(fā)導(dǎo)致的水分損失。分別在添加硝化抑制劑后的 2、5、9、14、21、28 d采集土壤樣品,采集后的土壤樣品用2 mol·L-1的KCl溶液提取,土液比為 1∶5,25 ℃ 250 r·min-1振蕩 1 h,過(guò)濾,收集濾液于塑料瓶中,置于4℃冰箱直至分析。
土樣中NH+4-N和NO-3-N濃度使用Skalar連續(xù)流動(dòng)分析儀測(cè)定。土壤pH值用KCl浸提液測(cè)定,土液比為1∶5,玻璃電極法測(cè)定。所有測(cè)定均重復(fù)3次。
凈硝化速率計(jì)算公式為:
表1 供試土壤的基本理化性質(zhì)Table 1 Chemical and physical properties of experimental soils
式中:N 為凈硝化速率,mg·kg-·1d-1;(和分別是培養(yǎng)t(2d)和t(1d)時(shí)濃度,mg·kg-1。
式中:M 為凈礦化速率,mg·kg-1·d-1;()t2和分別是培養(yǎng)t2(d)和t1(d)時(shí)濃度,mg·kg-1。
硝化抑制率計(jì)算公式:
采用Microsoft Excel 2007數(shù)據(jù)處理,Origin 2016作圖,SPSS 20.0數(shù)據(jù)分析,處理間比較以3個(gè)重復(fù)的平均值使用鄧肯新負(fù)極差法,采用全部觀測(cè)值進(jìn)行相關(guān)分析。圖表中數(shù)據(jù)用平均值±標(biāo)準(zhǔn)差表示。
結(jié)果表明,供試茶園土壤初始pH值在3.72~4.43之間,均低于茶園土壤最適宜pH值(4.5~5.5),土壤酸化嚴(yán)重(圖1中pH通過(guò)KCl浸提液測(cè)定)。所有處理土壤pH值在培養(yǎng)的前21 d呈逐漸上升趨勢(shì),尤其是前2 d上升最為迅速,而后緩慢下降或保持不變。整個(gè)培養(yǎng)期間茶園土壤的pH值增加了0.18~0.31個(gè)單位,增加最明顯的為郎溪茶園土壤0.27%Nitrapyrin處理。培養(yǎng)期間土壤pH值上升可能是因?yàn)槟蛩厮馍傻倪^(guò)程消耗H+。與對(duì)照相比,無(wú)論是加入DCD還是Nitrapyrin,均對(duì)土壤pH值無(wú)顯著影響。
圖1 不同硝化抑制劑對(duì)茶園土壤pH值的影響Figure 1 Soil pH from four typical tea soils treated with two different concentrations of DCD and Nitrapyrin
硝化抑制率是表征硝化抑制劑對(duì)土壤硝化過(guò)程抑制強(qiáng)度的一個(gè)重要指標(biāo),其值越高表明硝化抑制劑對(duì)土壤硝化過(guò)程抑制強(qiáng)度越強(qiáng)。據(jù)表2可知,對(duì)于4種供試茶園土壤,DCD在培養(yǎng)過(guò)程中對(duì)硝化過(guò)程的抑制效果隨培養(yǎng)時(shí)間的延長(zhǎng)呈下降趨勢(shì),且高濃度DCD僅在培養(yǎng)第28 d時(shí)才表現(xiàn)出比低濃度DCD更強(qiáng)的抑制效果。培養(yǎng)第28 d后,在安溪和宜興茶園土壤中DCD的抑制率仍可達(dá)12.15%~59.68%,而對(duì)于杭州和郎溪茶園土壤,無(wú)論DCD濃度高低,培養(yǎng)第28 d后抑制效果消失。對(duì)于所研究的4種茶園土壤,DCD處理在培養(yǎng)期間的抑制效果表現(xiàn)為宜興土壤>安溪土壤>杭州土壤>郎溪土壤。與DCD相比,無(wú)論加入Nitrapyrin濃度高低,在培養(yǎng)期間其對(duì)4種茶園土壤的硝化抑制率接近甚至超過(guò)100%,表明Nitrapyrin幾乎能完全抑制茶園土壤硝化作用,且抑制有效期超過(guò)28 d。
如圖3所示,對(duì)于供試4種茶園土壤,2%DCD和10%DCD與對(duì)照相比對(duì)凈硝化速率無(wú)顯著影響,而0.27%Nitrapyrin和0.54%Nitrapyrin則顯著降低了凈硝化速率。加入DCD的茶園土壤與對(duì)照相比,對(duì)土壤凈礦化速率沒(méi)有顯著影響,但郎溪土壤2%DCD加入顯著提高了凈礦化速率(p<0.05)。安溪土壤0.27%Nitrapyrin和0.54%Nitrapyrin處理凈礦化速率分別是對(duì)照處理的1.79、1.83倍。與對(duì)照處理相比,杭州和宜興土壤Nitrapyrin加入顯著抑制凈礦化速率,且杭州土壤低濃度的抑制效果強(qiáng)而宜興土壤則相反。郎溪土壤0.27%Nitrapyrin處理的凈礦化速率與對(duì)照處理相比無(wú)顯著差異,而0.54%Nitrapyrin加入則可顯著提高凈礦化速率。
圖2 不同種類(lèi)、不同劑量硝化抑制劑對(duì)茶園土壤銨態(tài)氮、硝態(tài)氮的影響Figure 2 Changes of soil ammonium and nitrate concentration in four typical tea soils treated with two different concentrations of DCD and Nitrapyrin
傳統(tǒng)觀點(diǎn)認(rèn)為土壤pH<5.0時(shí)硝化作用較慢,甚至缺失[7,19]。本研究選取的茶園土壤pH值均小于4.43(表 1),但其凈硝化速率并不低,在 0.52~3.65 mg·kg-1·d-1之間,尤以郎溪茶園土壤硝化速率最高。韓文炎等[3]測(cè)定了我國(guó)130個(gè)茶園土壤的凈硝化速率,發(fā)現(xiàn)土壤凈硝化速率在-6.08~6.54 mg·kg-1·d-1之間,平均為1.62 mg·kg-1·d-1??梢?jiàn),盡管茶園土壤 pH 值很低,但是硝化速率并不低。本研究結(jié)果表明,加入尿素后4種茶園土壤發(fā)生顯著的硝化作用,但尿素和Nitrapyrin混施處理中,NO-3濃度在培養(yǎng)期間卻沒(méi)有增加。這表明尿素施入后,茶園土壤發(fā)生了氨氧化過(guò)程(自養(yǎng)硝化),且Nitrapyrin完全抑制了培養(yǎng)期間硝態(tài)氮產(chǎn)生。由于硝化抑制劑抑制的是氨氧化過(guò)程,可以推斷茶園土壤硝態(tài)氮主要來(lái)自于自養(yǎng)硝化而非異養(yǎng)硝化過(guò)程[20-22]。這與人們通常認(rèn)為的pH值較低土壤中硝態(tài)氮主要來(lái)自異養(yǎng)硝化過(guò)程的觀點(diǎn)相左[23-26]??赡艿脑蚴遣鑸@土壤存在耐酸性或者嗜酸性的自養(yǎng)硝化細(xì)菌[13,27],而且還存在大量氨氧化古菌[28]。茶園一般施入銨態(tài)氮肥,由于銨態(tài)氮是氨氧化過(guò)程的底物,其施入必然刺激氨氧化細(xì)菌和古菌的生長(zhǎng),進(jìn)而提高自養(yǎng)硝化速率,尤其尿素水解能短暫提高土壤pH值,進(jìn)一步提高自養(yǎng)硝化速率。茶樹(shù)喜銨,硝化不利于茶樹(shù)對(duì)氮的吸收,且硝化致酸,會(huì)進(jìn)一步酸化土壤,當(dāng)土壤pH值低于其最適宜pH值的下限,茶樹(shù)則無(wú)法生長(zhǎng)。茶樹(shù)生長(zhǎng)在熱帶和亞熱帶多雨地區(qū)[29],硝化產(chǎn)生的硝態(tài)氮易隨徑流和淋洗而損失。因此,選用硝化抑制劑抑制自養(yǎng)硝化是提高茶園土壤氮肥利用率以及降低氮損失的關(guān)鍵手段。
表2 供試土壤在培養(yǎng)期間的硝化抑制率Table 2 Nitrification inhibition rate(%)in four typical tea soils throughout the experimental period
圖3 硝化抑制劑對(duì)茶園土壤28 d的凈硝化速率和凈礦化速率的影響Figure 3 Nitrification and mineralization rates in four typical tea soils treated with two different concentrations of DCD and Nitrapyrin
本研究表明,Nitrapyrin和DCD均能抑制茶園土壤自養(yǎng)硝化過(guò)程,但 Nitrapyrin(98.28%~100%)比DCD(0~59.68%)抑制效果好,與他人在茶園酸性土壤和石灰性土壤中的研究結(jié)果一致[30-31]。DCD在土壤中有效抑制期與DCD的降解周期有關(guān)[32],同時(shí)DCD施用效果也受溫度的影響,其在5、15、25℃下有效抑制期分別為 89、37、18 d[33]。徐星凱等[34]使用同位素示蹤技術(shù),通過(guò)小麥盆栽試驗(yàn)發(fā)現(xiàn)DCD有效抑制硝化作用達(dá)2個(gè)月。本研究中DCD處理在培養(yǎng)期間的抑制效果表現(xiàn)為宜興土壤>安溪土壤>杭州土壤>郎溪土壤。研究表明,硝化抑制劑的施用效果受土壤有機(jī)質(zhì)含量和質(zhì)地的影響[15,33,35-36]。在土壤中施用硝化抑制劑,NO-2的生成量與砂粒含量呈負(fù)相關(guān)[37]。在砂土、壤土和黏土中,加入DCD后硝化抑制率分別為96.5%~99.4%、49.3%~79.4%和66.9%~85.6%,其施用效果總體表現(xiàn)為砂土>黏土>壤土[38]。本研究中安溪、杭州和宜興土壤屬于砂土,而郎溪土壤屬于黏壤土,這就解釋了為什么DCD在郎溪茶園土壤上的抑制效果較差。
施用Nitrapyrin幾乎能夠100%抑制茶園土壤的自養(yǎng)硝化速率,表明Nitrapyrin的抑制效果非常強(qiáng)勁,適合于控制茶園土壤的硝化作用。Nitrapyrin在石灰性砂土中的抑制率在96.6%~99.3%之間[31]。本研究表明,Nitrapyrin不僅抑制了硝化過(guò)程,在杭州和宜興土壤培養(yǎng)期間甚至出現(xiàn)NO-3顯著下降,說(shuō)明Nitrapyrin施入刺激了杭州和宜興土壤NO-3消耗。而好氧條件下NO-3的消耗主要以硝態(tài)氮同化和反硝化過(guò)程為主[39],一般情況下只要有銨態(tài)氮存在,硝態(tài)氮同化很難進(jìn)行[40],即使Nitrapyrin含有大量C源,在大量的銨態(tài)氮存在下,應(yīng)先促進(jìn)銨態(tài)氮同化,直到銨態(tài)氮被消耗完,才會(huì)促進(jìn)硝態(tài)氮同化。因此,杭州和宜興土壤中加入Nitrapyrin硝態(tài)氮隨培養(yǎng)時(shí)間下降可能是反硝化造成的,其原因可能是Nitrapyrin及其溶劑中含有易分解的C源,直接為反硝化細(xì)菌提供能量和電子而促進(jìn)反硝化[41-42]。Notton 等[43]研究也發(fā)現(xiàn),Nitrapyrin 在植物殘根及丙酮等C源的存在下,抑制硝化過(guò)程的同時(shí)刺激了砂土的硝酸鹽還原。
本研究表明,在28 d的培養(yǎng)期間,Nitrapyrin幾乎可以完全抑制茶園土壤硝化作用,而DCD的抑制效果相對(duì)較差,抑制率僅為0~60%。Nitrapyrin對(duì)于硝化過(guò)程的完全抑制表明硝態(tài)氮產(chǎn)生可能主要來(lái)自于自養(yǎng)硝化。因此,Nitrapyrin是一種針對(duì)茶園土壤比較高效的硝化抑制劑,配施銨態(tài)氮肥可以有效降低土壤硝酸鹽累積。但是,以上結(jié)果均是基于實(shí)驗(yàn)室培養(yǎng)試驗(yàn)的結(jié)果,將來(lái)需要通過(guò)田間試驗(yàn)進(jìn)一步驗(yàn)證本研究結(jié)果的可靠性。
[1]朱永興.最近5年世界各主要產(chǎn)茶國(guó)茶園面積和茶葉年產(chǎn)量[J].茶葉科學(xué),2015,35(4):12.ZHONG Yong-xing.Plantation area and annual output of tea in the world over the past 5 years[J].Journal of Tea Science,2015,35(4):12.
[2]Fung K F,Carr H P,Zhang J H,et al.Growth and nutrient uptake of tea under different aluminium concentrations[J].Journal of the Science of Food and Agriculture,2008,88(9):1582-1591.
[3]韓文炎,徐建明.茶園土壤NO-3-N含量與凈硝化速率的研究[J].茶葉科學(xué),2011,31(6):513-520.HAB Wen-yan,XU Jian-ming.NO-3-N concentration and net nitrification rate in tea soils[J].Journal of Tea Science,2011,31(6):513-520.
[4]丁瑞興,黃 驍.茶園-土壤系統(tǒng)鋁和氟的生物地球化學(xué)循環(huán)及其對(duì)土壤酸化的影響[J].土壤學(xué)報(bào),1991,28(3):229-236.DING Rui-xing,HUANG Xiao.Biogeochemical cycle of aluminum and fluorine in tea garden soil system and its relationship to soil acidification[J].Acta Pedologica Sinica,1991,28(3):229-236.
[5]Han W Y,Kemmitt S J,Brookes P C.Soil microbial biomass and activity in Chinese tea plantations of varying stand and productivity[J].Soil Biology and Biochemistry,2007,39(7):1468-1478.
[6]Pansombat K,Kanazawa S,Horiguchi T.Microbial ecology in tea soils:I.Soil properties and microbial populations[J].Soil Science and Plant Nutrition,1997,43(2):317-327.
[7]Noyes H A,Conner S D.Nitrates,nitrification,and bacterial contents of five typical acid soils as affected by lime,fertilizer,crops and moisture[J].J Agric Res,1919,16:27-60.
[8]馬立鋒,石元值,阮建云.蘇、浙、皖茶區(qū)茶園土壤pH狀況及近十年來(lái)的變化[J].土壤通報(bào),2000,31(5):205-207.MA Li-feng,SHI Yuan-zhi,RUAN Jian-yun.Soil pHs in the tea gardens in Jiangsu,Zhejiang,and Anhui Provinces and changes of soil pH in the past decade[J].Chinese Journal of Soil Science,2000,31(5):205-207.
[9]張 倩,宗良綱,曹 丹,等.江蘇省典型茶園土壤酸化趨勢(shì)及其制約因素研究[J].土壤,2011,43(5):751-757.ZHANG Qian,ZONG Liang-gang,CAO Dan,et al.Study on soil acidification and its restrictive factors of typical tea garden in Jiangsu Province[J].Soils,2011,43(5):751-757.
[10]Xue D,Yao H Y,Huang C Y.Microbial biomass,N mineralization and nitrification,enzyme activities,and microbial community diversity in tea orchard soils[J].Plant and Soil,2006,288(1/2):319-331.
[11]Zhu T B,Zhang J B,Meng T Z,et al.Tea plantation destroys soil retention of NO-3and increases N2O emissions in subtropical China[J].Soil Biology and Biochemistry,2014,73:106-114.
[12]Hayatsu M,Kosuge N.Effects of difference in fertilization treatments on nitrification activity in tea soils[J].Soil Science and Plant Nutrition,1993,39(2):373-378.
[13]Hayatsu M.The lowest limit of pH for nitrification in tea soil and isolation of an acidophilic ammonia oxidizing bacterium[J].Soil Science and Plant Nutrition,1993,39(2):219-226.
[14]Helyar K R.Nitrogen cycling and soil acidification[J].J Aust Inst Agric Sci,1976,42(4):217.
[15]孫志梅,武志杰,陳利軍,等.硝化抑制劑的施用效果、影響因素及其評(píng)價(jià)[J].應(yīng)用生態(tài)學(xué)報(bào),2008,19(7):1611-1618.SUN Zhi-mei,WU Zhi-jie,CHEN Li-jun,et al.Application effect,affecting factors,and evaluation of nitrification inhibitor:A review[J].Chinese Journal of Applied Ecology,2008,19(7):1611-1618.
[16]Qiao C L,Liu L I,Hu S J,et al.How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input[J].Global Change Biology,2015,21(3):1249-1257.
[17]Gilsanz C,Báez D,Misselbrook T H,et al.Development of emission factors and efficiency of two nitrification inhibitors,DCD and DMPP[J].Agriculture,Ecosystems and Environment,2016,216:1-8.
[18]Reiner R,Rudolf S.The effect of nitrification inhibitors on the nitrous oxide(N2O)release from agricultural soils:A review[J].Journal of Plant Nutrition and Soil Science,2015,178(2):171-188.
[19]Weber D F,Gainey P L.Relative sensitivity of nitrifying organisms to hydrogen ions in soils and solutions[J].Soil Science,1962,94(3):138-145.
[20]Boer W D,Duyts H,Laanbroek H J.Autotrophic nitrification in a fertilized acid heath soil[J].Soil Biology and Biochemistry,1988,20(6):845-850.
[21]Hayatsu M,Kosuge N.Autotrophic nitrification in acid tea soils[J].Soil Science and Plant Nutrition,1993,39(2):209-217.
[22]Bauhus J,Meyer A C,Brumme R.Effect of the inhibitors nitrapyrin and sodium chlorate on nitrification and N2O formation in an acid forest soil[J].Biology and Fertility of Soils,1996,22(4):318-325.
[23]Kreitinger J P,Klein T M,Novick N J,et al.Nitrification and characteristics of nitrifying microorganisms in an acid forest soil[J].Soil Science Society of America Journal,1985,49(6):1407-1410.
[24]Wood P M.Autotrophic and heterotrophic mechanisms for ammonia oxidation[J].Soil Use and Management,1990,6(2):78-79.
[25]Zhang J B,Müller C,Zhu T B,et al.Heterotrophic nitrification is the predominant NO-3production mechanism in coniferous but not broadleaf acid forest soil in subtropical China[J].Biology and Fertility of Soils,2011,47(5):533-542.
[26]Zhang J B,Sun W J,Zhong W H,et al.The substrate is an important factor in controlling the significance of heterotrophic nitrification in acidic forest soils[J].Soil Biology and Biochemistry,2014,76:143-148.
[27]Walker N,Wickramasinghe K N.Nitrification and autotrophic nitrifying bacteria in acid tea soils[J].Soil Biology and Biochemistry,1979,11(3):231-236.
[28]Yao H Y,Gao Y M,Nicol G W,et al.Links between ammonia oxidizer community structure,abundance,and nitrification potential in acidic soils[J].Applied and Environmental Microbiology,2011,77(13):4618-4625.
[29]Li S Y,Wu X,Xue H,et al.Quantifying carbon storage for tea plantations in China[J].Agriculture,Ecosystems and Environment,2011,141(3):390-398.
[30]Wickramasinghe K N,Rodgers G A,Jenkinson D S.Nitrification in acid tea soils and a neutral grassland soil:Effects of nitrification inhibitors and inorganic salts[J].Soil Biology and Biochemistry,1985,17(2):249-252.
[31]劉 濤,梁永超,褚貴新,等.三種硝化抑制劑在石灰性土壤中的應(yīng)用效果比較[J].土壤,2011,43(5):758-762.LIU Tao,LIANG Yong-chao,CHU Gui-xin,et al.Effect comparison of three different types of nitrification inhibitors(DCD,DMPP and Nitrapyrin)in calcareous soils[J].Soils,2011,43(5):758-762.
[32]Hauser M,Haselwandter K.Degradation of dicyandiamide by soil bacteria[J].Soil Biology&Biochemistry,1990,22(1):113-114.
[33]McGeough K L,Watson C J,Müller C,et al.Evidence that the efficacy of the nitrification inhibitor dicyandiamide(DCD)is affected by soil properties in UK soils[J].Soil Biology and Biochemistry,2016,94:222-232.
[34]徐星凱,周禮愷.脲酶抑制劑/硝化抑制劑對(duì)土壤中尿素氮轉(zhuǎn)化及形態(tài)分布的影響[J].土壤學(xué)報(bào),2000,37(3):339-345.XU Xing-kai,ZHOU Li-kai,Cleemput O V.Effect of urease/nitrification inhibitors on the distribution of transformed urea-N form in soil[J].Acta Pedologica Sinica,2000,37(3):339-345.
[35]Slangen J H G,Kerkhoff P.Nitrification inhibitors in agriculture and horticulture:A literature review[J].Fertilizer Research,1984,5(1):1-76.
[36]Tate K R.Soil phosphorus[M].Springer Netherlands,1985:329-377.
[37]Barth G,von Tucher S,Schmidhalter U.Influence of soil parameters on the effect of 3,4-dimethylpyrazole-phosphate as a nitrification inhibitor[J].Biol Fertil Soils,2001,34:98-102.
[38]劉 倩,褚貴新,劉 濤,等.DCD在不同質(zhì)地土壤上的硝化抑制效果和劑量效應(yīng)研究[J].中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2011,19(4):765-770.LIU Qian,CHU Gui-xin,LIU Tao,et al.Nitrification inhibition and dose-dependent effect of dicyandiamide on sandy,loamy and clayey soils[J].Chinese Journal of Eco-Agriculture,2011,19(4):765-770.
[39]周立祥,黃峰源,王世梅.好氧反硝化菌的分離及其在土壤氮素轉(zhuǎn)化過(guò)程中的作用[J].土壤學(xué)報(bào),2006,43(3):430-435.ZHOU Li-xiang,HUANG Feng-yuan,WANG Shi-mei.Isolation of aerobic denitrifiers and their roles in soil nitrogen transformation[J].Acta Pedologica Sinica,2006,43(3):430-435.
[40]Jansson,Sven L.Tracer studies on nitrogen transformations in soil with special attention to mineralization-immobilization relationships[J].Ann Roy Agric Coll Sweden,1958,24:101-361.
[41]Klemedtsson L,Svensson B H,Rosswall T.A method of selective inhibition to distinguish between nitrification and denitrification as sources of nitrous oxide in soil[J].Biology and Fertility of Soils,1988,6(2):112-119.
[42]孫志梅,武志杰,陳利軍,等.土壤硝化作用的抑制劑調(diào)控及其機(jī)理[J].應(yīng)用生態(tài)學(xué)報(bào),2008,19(6):1389-1395.SUN Zhi-mei,WU Zhi-jie,CHEN Li-jun,et al.Regulation of soil nitrification with nitrification inhibitors and related mechanisms[J].Chinese Journal of Applied Ecology,2008,19(6):1389-1395.
[43]Notton B A,Watson E F,Hewitt E J.Effects of N-serve(2-chloro-6-(trichloromethyl)pyridine)formulations on nitrification and on loss of nitrate in sand culture experiments[J].Plant and Soil,1979,51(1):1-12.
Effects of nitrification inhibitors on nitrification rate of urea in four typical tea soils
WU Xiao-rong1,ZHANG Bei-bei1*,YU Yun-fei2,HUANG Rong3,YAN Ming-juan4,NI Kang5,CUI Jing-ya6,WANG Shen-qiang3,CHENG Yi3*
(1.Key Laboratory of Disaster Survey and Mechanism Simulation of Shaanxi Province,College of Geography and Environment,Baoji University of Art and Sciences,Baoji 721013,China;2.Jiangsu Agriculture Commission,Nanjing 210036,China;3.State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008,China;4.Institute of Soil and Fertilizer,Fujian Academy of Agricultural Sciences,Fuzhou 350013,China;5.Tea Research Institute,Chinese Academy of Agriculture Sciences,Hangzhou 310008,China;6.School of Environment,Nanjing Normal University,Nanjing 210023,China)
A laboratory incubation study over a 28-day period at 25 ℃ and 60%water holding capacity in China was conducted to determine the effect of nitrification inhibitors on nitrification rates in four typical tea soils(pH 3.32~3.54).The experiment included five treatments applied on an equivalent N basis:(1)CK,soil+urea(100 mg N·kg-1);(2)2%DCD(Dicyandiamide),soil+urea+2%DCD;(3)10%DCD,soil+urea+10%DCD;(4)0.27%Nitrapyrin(2-chloro-6-(trichloromethyl)pyridine),soil+urea+0.27%Nitrapyrin;(5)0.54%Nitrapyrin,soil+urea+0.54%Nitrapyrin.Both nitrification inhibitors were applied at recommendation rates.The results showed that inhibitory effect of DCD decreased with incubation time in the four tea soils,and the high concentration of DCD showed a stronger inhibitory effect than the low concentration only on the 28th day.After 28 days of incubation,both rates of DCD reduced nitrification by 12.15%~59.68%inAnxi and Yixing tea soils,while the inhibitory effect disappeared in Hangzhou and Langxi tea soils regardless of DCD concentration.In general,DCD inhibition effects over 28 d incubation ranked as Yixing soil>Anxi soil>Hangzhou soil>Langxi soil.Compared with DCD,Nitrapyrin completely inhibited net nitrification in the four tea soils during the whole experiment period regardless of the concentration of Nitrapyrin,indicating that Nitrapyrin could effectively inhibit the nitrification of tea soils during the 28 days of incubation.Overall,Nitrapyrin is a more efficient nitrification inhibitor for tea soils.
nitrification inhibitors;tea soil;net nitrification rate;nitrification inhibition rate
X53
A
1672-2043(2017)10-2063-08
10.11654/jaes.2017-0488
吳曉榮,張蓓蓓,余云飛,等.硝化抑制劑對(duì)典型茶園土壤尿素硝化過(guò)程的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2017,36(10):2063-2070.
WU Xiao-rong,ZHANG Bei-bei,YU Yun-fei,et al.Effects of nitrification inhibitors on nitrification rate of urea in four typical tea soils[J].Journal of Agro-Environment Science,2017,36(10):2063-2070.
2017-04-03 錄用日期:2017-06-01
吳曉榮(1990—),女,陜西寶雞人,碩士研究生,從事土壤氮素循環(huán)及其環(huán)境效應(yīng)研究。E-mail:wxrtuzi@163.com
*通信作者:張蓓蓓 E-mail:zbb83101@126.com;程 誼 E-mail:ycheng@issas.ac.cn
國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD0800103,2017YFD0200106);國(guó)家自然科學(xué)基金項(xiàng)目(41671231,41571294,41601016);江蘇省農(nóng)業(yè)科技自主創(chuàng)新資金項(xiàng)目[CX(15)1004]
Project supported:National Key Research and Development Program of China(2017YFD0800103,2017YFD0200106);National Natural Science Foundation of China(41671231,41571294,41601016);Agricultural Science and Technology Independent Innovation Fund Project of Jiangsu Province[CX(15)1004]